作线段、直线的垂直平分线

合集下载

线段的垂直平分线

线段的垂直平分线

验证结论 已知:如图,直线l⊥AB,垂足为C,AC =CB,点P
在l 上.求证:PA =PB.
证明:∵ l⊥AB,
l
∴ ∠PCA =∠PCB=90°.
P
在△PCA和△PCB中
AC =CB
∠PCA =∠PCB
A
C
B
PC =PC ∴ △PCA ≌△PCB(SAS).
∴ PA =PB.
性质定理: 线段垂直平分线上的点到这条 线段的两端点的距离相等
P3A,P3B的长,你能发现什么,请猜想点P1,P2,
P3,… 到点A 与点B 的距离之间的数量关系. P3
P1A _=___P1B P2A __=__ P2B
P2
P1
A
B
P3A __=__ P3B l
猜想: 点P1,P2,P3,… 到点A 与点B 的距离分别相等.
由此你能得到什么结论?
命题:线段垂直平分线上的点到这条线段两个端点 的距离相等. 你能验证这一结论吗?
垂直平分线分别交AB,BC于点D、E,AC的垂直平分
线分别交AC、BC于点F、G,求⊿AEG的周长。( B )
A. 6
B. 10
A
C. 5 D. 20 ADFD EB
EG
图①
C
B
C
图②
2.如图②所示,在△ABC中,BC=8cm,边AB的垂直平
分线交AB于点D,交边AC于点E, △BCE的周长等于
18cm,则AC的长是 10cm .
A
A.5cm
B.10cm C.15cm D.17.5cm
E
D
B
C
例:2 :如图,D、E分别是AB、AC的中点, CD⊥AB于D,BE⊥AC于E,求证:AC=AB。

线段的垂直平分线的性质

线段的垂直平分线的性质

线段的垂直平分线的性质
性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的
距离相等;三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点
的距离相等等。

1、垂直平分线垂直且平分其所在线段。

2、垂直平分线上任意一点,到线段两端点的距离相等。

3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的
距离相等。

4、垂直平分线的判定:必须同时满足(1)直线过线段中点;(2)直线⊥线段。

若图形(这个图形可以是直线的、折线的、曲线的)关于某条直线对称,这条轴就称
为对称轴。

以五角星为例,它有五条对称轴。

垂直平分线是存在某条线段时才会有这个概念。

它的定义是经过某一条线段的中点,
并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

它有一定的局限性。

轴对称图形的对称轴是对称图形中任意两个对应点连线段的垂直平分线。

感谢您的阅读,祝您生活愉快。

线段的垂直平分线 -八年级数学上册课件(沪科版)

线段的垂直平分线 -八年级数学上册课件(沪科版)

对应练习
4、公路 l 同侧的A,B两村,共同出资在公路边修建一个停靠
站C,使停靠站到A,B两村距离相等.请你确定停靠站C的位置.
解:作AB的垂直平分线,交直线 l 于点C, 则点C就是停靠
站的位置.
B村
A村
C
l
5、如图,某城市规划局为了方便居民的生活,计划在三个住宅 小区A,B,C之间修建一个购物中心,试问:该购物中心应建 于何处,才能使得它到三个小区的距离相等?
知识拓展:
M
条件: 点在线段的垂直平分线上.
P
结论: 这个点到线段两端点的距离相等.
A
B
N
归纳总结 垂直平分线的性质:
定理: 线段垂直平分线上的点到线段两端的距离相等.
几何语言:
∵ 点 P 在线段AB的垂直平分线上 ∴ PA=PB (线段垂直平分线上的点到线段
两端的距离相等.)
知识拓展: 用线段的垂直平分线的性质可直接证明
必须要证明直线上有两点到线段两个端点的距离相等.
1、如图,在 △ABC 中,∠ACB=90°,AD 平分 ∠BAC, DE⊥AB 于 E . 求证:直线 AD 是 CE 的垂直平分线.
证明: ∵ AD平分∠BAC ∴ ∠EAD=∠CAD ∵ ∠ACB=90°,DE⊥AB ∴ ∠AED=∠ACB=90° 在 △AED 和 △FCE 中 ∠EAD=∠CAD ∵ ∠AED=∠ACB AD=AD (公共边) ∴ △ADE≌△ADC (AAS)
探究新知
问题:怎样作出线段的垂直平分线?
方法一: 折叠法
通过折纸,使线段AA'的两个
端点互相重合, 得到的折痕 l就
A (A')
是线段AA'的垂直平分线.

经过一已知点作已知直线的垂线作已知线段的垂直平分线

经过一已知点作已知直线的垂线作已知线段的垂直平分线

3.四等分已知线段AB.


4.作△ABC 的三边的垂直平分线
(第 2题)
5. 如图,八(1)班与八(2)班两个班的学生分别在M,N两处参加植树劳动,现要
在道路AB、AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且
PM=PN,请你用折纸的方法找出P点并说明理由.
B PM
N A
C
课堂小结
经过一已知点作 已知直线的垂线
经过已知直线上一点作已知直线的垂线,实质 是作一个平角的平分线,并将角的平分线反向延长.
经过已知直线外一点作已知直线的垂线, 实质是作以直线外这一点为顶点,底在直线上 的等腰三角形的顶角的平分线.
线段垂直平分 线的尺规作图
作已知线段的垂直平分线理论依据是:判定三 角形全等的“边边边”
小区到车站的路程一样长,该公共汽车站应建在什么地方?
分析:增设的公共汽车站要满足到两
个小区的路程一样长,应在线段AB的
垂直平分线上,又要在公路边上,所
以找到AB的垂直平分线与公路的交点
A
便是.
B 公共汽车站
当堂练习
1.如图,点P在∠O的一边上,试过点P作∠O两边的垂线.
P
(第 1 题 )
2.如图,作△ABC边BC上的高. (第 2题)
1.经过已知直线上一点作已知直线的垂线
已知直线AB和AB上一点C,试按下列步骤用直尺 和圆规准确地经过
点C作出直线AB的垂线.
如图,由于点C在直线AB上,因此所求作的垂线正好是平
角ACB的平分线所在的直线.
A
C
B
第一步:作平角ACB的平分线CD;
D
第二步:反向延长射线CD.
A

线段垂直平分线定理知识总结

线段垂直平分线定理知识总结

线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。

2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。

例题、如图所示,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。

分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。

解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。

因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。

又因为AE +EC=AC=27, 所以BC=50-27=23。

二、线段垂直平分线定理的逆定理证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条EDCBA线段的直线,叫做这条线段的垂直平分线。

使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。

例题1、如图所示,P 为线段AB 外的一点,并且PA=PB 。

求证:点P 在线段AB 的垂直平分线上。

分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。

证明:过点P 作PC ⊥AB ,垂足为点C 。

因为PA=PB , 所以∠A=∠B 。

又因为PC ⊥AB , 所以∠PAB=∠PBA=90°. 在△PAC 和△PBC 中A B PAC PBC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△PAC ≌△PBC , 所以AC=BC 。

又因为PC ⊥AB ,所以PC 垂直平分线段AB ,所以点P 在线段AB 的垂直平分线上。

用尺规作图(作线段的垂直平分线)

用尺规作图(作线段的垂直平分线)

我们已熟悉尺规的四个基本作图:画 线段,画角.画角平分线、画线段的 垂线,那么利用尺规还能解决什么作 图问题呢?
画线段的垂直平分线;
如图,已知线段AB,画出它的垂直平 分线.
作法:(1)以点图A为2 4 .圆4 .7心,以大于AB一 半的长为半径画弧; (2)以点B为圆心,以同样的长为半径 画弧,两弧的交点记为C、D; (3)经过点C、D作直线CD. 直线CD即为所求.
·
B
C
问题探讨
在V型公路(∠AOB)内部,有两个村 庄C、D。你能选择一个纺织厂的厂址P,使P 到V型公路的距离相等,且使C、D两村的工 人上下班的路程一样吗?
A
O
C. D.
B
1,已知,如图,AD是△ABC的角平分线,
DE,DF,分别是△ABD和△ACD的高。
求证:AD垂直平分EF
A
E F
B
D
C
你能做出下面五角星的一条对称轴吗?
A
A’
生活中的数学
A
在某高速公路L的同侧,有两个工厂A、B,为了便
于两厂的工人看病,市政府计划在公路边上修建一所医 院,使得两个工厂的工人都没意见,问医院的院址应选 在何处?你的方案是什么?
B
L
高速公路
生活中的数学
A
某区政府为了方便居民的生 活,计划在三个住宅小区A、B、 C之间修建一个购物中心,试问, 该购物中心应建于何处,才能 使得它到三个小区的距离相等。
思考:
有时我们感觉两个平面图形是轴对称图形,如何验 证呢?不折叠图形,你能准确的作出轴对称图形的对称 轴吗?
如果两个图形成轴对称,其对称轴是任何 一对对应点所连线段的垂直平分线.因此,我们 只要找到一对对应点,作出连接它们的线段的 垂直平分线,就可以得到这两个图形的对称轴。

《线段垂直平分线的性质》

《线段垂直平分线的性质》

在几何图形中的应用
确定点与线段的距离
利用线段垂直平分线的性质,可以确定一个点到线段两端 点的距离相等,从而确定点的位置。
三角形中垂线定理
在三角形中,通过三角形顶点向对边作垂直平分线,该垂 直平分线将与对边相交于一点,该点将相对边分为两段相 等的线段,这是三角形中垂线定理。
角的平分线性质
角的平分线上的点到角的两边距离相等,利用这一性质可 以将角平分,从而将几何图形划分为两个相等的部分。
在日常生活中的应用
01
确定物体的对称点
在建筑、艺术和设计等领域中,常常需要找到一个物体的对称点,以实
现物体的平衡和美感。线段垂直平分线的性质可以用来确定这些对称点

02
测量距离
在道路、桥梁和建筑物等工程中,需要测量两点之间的距离。通过找到
这两点的垂直平分线,可以确定这两点之间的最短路径,从而得到准确
性质
总结词
如果一个点与线段两端点的距离相等,那么这个点必然位于线段的垂直平分线 上。
详细描述
这是对性质1和性质2的综合应用。如果一个点与线段两端点的距离相等,那么 这个点必然位于线段的垂直平分线上。这一性质在解决几何问题时也非常重要 ,尤其是在处理与中点和对称性相关的问题时。
03
线段垂直平分线的应用
定理
ห้องสมุดไป่ตู้
总结词
该定理描述了线段垂直平分线的性质,即如 果一条直线经过线段两端点,并且与经过中 点的垂直线相交,则这条直线也是该线段的 垂直平分线。
详细描述
在几何学中,这个定理进一步揭示了线段垂 直平分线的性质。如果一条直线同时经过线 段的两端点,并且与经过中点的垂直线相交 ,那么这条直线也是该线段的垂直平分线。 这个定理对于理解线段垂直平分线的性质和 判定方法非常重要。

八年级垂直平分线知识点

八年级垂直平分线知识点

八年级垂直平分线知识点垂直平分线是初中数学重要的知识点之一,其在几何问题中有着广泛的应用。

本篇文章将为大家详细介绍关于八年级垂直平分线的知识点。

一、垂直平分线的定义垂直平分线是指一条线段将另一条线段垂直平分的直线。

简单来说,就是把一条线段分成两段长度相等且垂直的线段。

二、如何求垂直平分线1、传统方法传统方法是一种利用勾股定理进行求解的方法。

假设线段AB 的两个端点分别为A(x1,y1)和B(x2,y2),垂直平分线上的点为P(x,y)。

则有以下公式:(x - (x1+x2)/2)² + (y - (y1+y2)/2)² = ((x2-x1)/2)² + ((y2-y1)/2)²该公式中等号右边是线段AB长度的一半,等号左边是线段AP 长度的平方与线段PB长度的平方之和。

2、向量法向量法是一种可以简化计算的方法。

如果线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则垂直于AB的向量为(-(y2-y1),x2-x1)。

具体操作如下:首先,将线段AB的中点的坐标求出来,记为C(xc,yc)然后,将AB的两个端点坐标作为一个向量,记为u(x2-x1,y2-y1)接着,求出u的一个垂直向量v,记为v(-(y2-y1),x2-x1)最后,直线的方程为(PC)·v=0,即[(x-xc)(-(y2-y1))+(y-yc)(x2-x1)]=0三、垂直平分线的性质1、垂直平分线上的点到AB两个端点的距离相等。

2、垂直平分线上任意一点与AB两个端点之间的两条线段的长度相等。

3、垂直平分线将线段AB分成的两个线段长度相等。

4、线段垂直平分线的两个部分互为相反数。

四、垂直平分线的应用垂直平分线在几何问题中有着广泛的应用。

举例如下:1、判断点C是否在直线AB的逆时针方向我们可以通过垂直平分线来解决。

如果点C在直线AB的逆时针方向,则垂直AB且平分AB的线段的中点在C的左侧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P72:A 组 作业 2. 已知:如图,点C,D在线段AB的垂直平分线上, 连接AC,AD,BC,BD.求证:∠CAD=∠CBD
证明: ∵C在线段AB的垂直平分线上
C A D B
∴AC=BC ∴∠CAB=∠CBA
同理:∠DAB=∠DBA ∴∠CAB+ ∠DAB =∠CBA+ ∠DBA 即:∠CAD=∠CBD

如图,在△ABC中,BC=8cm,AB的垂直 平分线交AB于点D,交边AC于点E,△BCE 的周长等于18cm,则AC的长等于( C ). A.6cm B.8cm C.10cm D.12cm
∵DE是AB的垂直平分线, ∴AE=BE(线段垂直平分线上的点到线段两端点的距离相等). 又∵在△BCE中, BE+CE+BC=18cm,BC=8cm, ∴BE+CE=10cm. ∴AC=AE+CE=BE+CE=10cm. 故应选择C.
练习,P72:A组3.
如图,在△ABC中,BC=9,AB的垂直平分线EF交BC于点F, AC的垂直平分线MN交BC于点N.求△AFN的周长。 解: 因为AB的垂直平分线EF交BC于点F, 所以FB=FA 同理:NAFN的周长=AF+FN+AN=BF+FN+NC=BC=9 答: △AFN的周长为9.
怎样找到线段的中点?.
因为线段的垂直平分线与线段的交点 就是线段的中点,所以可以用作出线段的 垂直平分线的方法找到线段的中点.
动脑筋
如何过一点P作已知直线l的垂线呢?
思考:一个点与一条直线有几种位置关系? (1)点P在直线l上. (2) 点P在直线l外.
由于两点确定一条直线, 因此我们可以通过在 已知直线上作线段的垂直平分线来找出垂线上 的另一点,从而确定已知直线的垂线.
解析
作业
P73:A组 4、5.
动脑筋 (1)当点P在直线l上.
①在直线l 上点P 的两旁分别截取线段PA, PB,使PA= PB;
1 ②分别以A,B 为圆心 以大于 AB 的长为 2
半径画弧, 两弧相交于点C;
③过点C, P作直线CP, 则直线 CP为所求作的直线.
动脑筋 (2) 当点P在直线l外.
①以点P 为圆心, 以大于点P 到直线l的距离 的线段长为半径画弧, 交直线l于点A,B;
作线段、直线的 垂直平分线
回忆
线段垂直平分线的性质定理: 线段垂直平分线上的点到 线段两端的距离相等. 线段垂直平分线的性质定理的逆定理: (线段垂直平分线的判定定理) 到线段两端距离相等的点在 线段的垂直平分线上.
P72:A 组 作业 1.
如图,在△ABC中,AB=AC, ∠A=36°, AC的垂直平分线分别交AC,AB于D,E,AE=5. 求∠ECB的度数及边BC的长。 A 解:因为AB=AC, 所以∠B=∠ACB D 又因为∠A=36°. E 所以∠B=∠ACB=72° B C 又因为DE为AC的垂直平分线 所以AE=EC 所以∠ACE=∠A=36° 所以∠BCE=∠ACB-∠ACE=72°-36°=36° 又因为∠BEC=∠A+∠ACE=72°. 所以∠B=∠BCE 所以BC=EC=AE=5 答:∠ECB=36°,BC=5.
做一做
如图,已知线段AB,作线段AB的垂直平分线.
分析:
根据“到线段两端距离相等的点在线段的垂直平分线上”, 要作线段AB的垂直平分线,关键是找出到线段AB 两端距离相等的两点.
做一做
作法
1 ①分别以点A,B 为圆心, 以大于 2 AB 的长
为半径画弧, 两弧相交于点C 和点D;
②过点C,D作直线CD,则直线CD就是线 段AB的垂直平分线.
1 ②分别以A,B 为圆心 以大于 AB 的长为 2
半径画弧, 两弧相交于点C;
③过点C,P作直线CP,则直线 CP为所求作的直线.
练习
用尺规完成下列作图(只保留作图痕迹,不要 求写出作法). 1. 如图,在直线l上求作一点P,使PA= PB.
2. 如图,作出△ABC的BC边上的高.
中考 试题
相关文档
最新文档