垂直平分线的作图方法
1.3.2_线段的垂直平分线(2)

D
提示:
因为直线CD与线段AB的交点就是AB的中点,所以我们也用 这种方法作线段的中点.
回顾
思考 2
线段的垂直平分线的 性质定理
M
定理 线段垂直平分线上的点到这
条线段两个端点距离相等.
如图, ∵AC=BC,MN⊥AB,P是MN上任意一点 (已知), A ∴PA=PB (线段垂直平分线上的点到这 条线段两个端点距离相等).
所作出的三角形都全等吗? 若已知等腰三角形的底及底边上的高,
你能用尺规作出等腰三角形吗?能作几个?
做一做
初 露 锋 芒
已知底边及底边上的高,利用尺规作等腰三角形
a
h
已知:线段a,h(如图).
求作: △ABC,使AB=AC,且BC=a,高AD=h.
你能亲自写出作法吗?
随堂练习
已知:线段a,h(如图).
N
提示:这个结论是经常用来证明点在直线上
(或直线经过某一点)的根据之一.
试一试
小 试 牛 刀
1、已知直线和直线上一点P,利用尺规作直线
的垂线,使它经过点P.
C C
●
P B
A
D
l
想 一 想
学 无 止 境
1、已知直线和直线外一点P,利用尺规作直线 的垂线,使它经过点P.
P
●
l
想一想,做一做
利用尺规作出三角 形三条边的垂直平分线.
P
C
N
B
提示:
这个结论是经常用来证明两条线段相等的根据之一.
回顾
思考 3
线段的垂直平分线的 性质定理的逆定理
P
逆定理 到一条线段两个端点距离相等的点,在 这条线段的垂直平分线上. M 如图,
线段的垂直平分线 -八年级数学上册课件(沪科版)

对应练习
4、公路 l 同侧的A,B两村,共同出资在公路边修建一个停靠
站C,使停靠站到A,B两村距离相等.请你确定停靠站C的位置.
解:作AB的垂直平分线,交直线 l 于点C, 则点C就是停靠
站的位置.
B村
A村
C
l
5、如图,某城市规划局为了方便居民的生活,计划在三个住宅 小区A,B,C之间修建一个购物中心,试问:该购物中心应建 于何处,才能使得它到三个小区的距离相等?
知识拓展:
M
条件: 点在线段的垂直平分线上.
P
结论: 这个点到线段两端点的距离相等.
A
B
N
归纳总结 垂直平分线的性质:
定理: 线段垂直平分线上的点到线段两端的距离相等.
几何语言:
∵ 点 P 在线段AB的垂直平分线上 ∴ PA=PB (线段垂直平分线上的点到线段
两端的距离相等.)
知识拓展: 用线段的垂直平分线的性质可直接证明
必须要证明直线上有两点到线段两个端点的距离相等.
1、如图,在 △ABC 中,∠ACB=90°,AD 平分 ∠BAC, DE⊥AB 于 E . 求证:直线 AD 是 CE 的垂直平分线.
证明: ∵ AD平分∠BAC ∴ ∠EAD=∠CAD ∵ ∠ACB=90°,DE⊥AB ∴ ∠AED=∠ACB=90° 在 △AED 和 △FCE 中 ∠EAD=∠CAD ∵ ∠AED=∠ACB AD=AD (公共边) ∴ △ADE≌△ADC (AAS)
探究新知
问题:怎样作出线段的垂直平分线?
方法一: 折叠法
通过折纸,使线段AA'的两个
端点互相重合, 得到的折痕 l就
A (A')
是线段AA'的垂直平分线.
15.2线段的垂直平分线

∴BE+EC=AC.
∵AC=17,BC=16.
D
E
∴ △BCD的周长=BE+EC+BC=AC+BC=17+16=33.
练习3、如右图,△ABC中,AB=AC=16cm,AB的垂 直平分线ED交AC于D点. (1)当AE=13cm时,BE= cm; (2)当△BEC的周长为26cm时,则BC= cm; (3)当BC=15cm,则△BEC的周长是 cm.
C
A
O
B
线段垂直平分线的判定定理
定理 到线段两端距离相等的点在线段 的垂直平分线上.
P
几何语言 如图,
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (到线段两端距离相等的点在 A 线 段的垂直平分线上.)
线段垂直平分线的判定定理
B
练习1、
已知:如图,AC=AD,BC=BD, 求证:AB垂直平分CD。
E
交流与小结 本节课你学到了什么呢?
• • • • • 线段垂直平分线的折法 线段垂直平分线的画法 线段垂直平分线的性质 线段垂直平分线的判定 线段垂直平分线的应用
尺规作图 三角板取中点 画垂线
五、线段垂直平分线的判定
线段垂直平分线的性质定理 •线段垂直平分线上的点到线段两端距离相等. • 思考:你能写出上面定理的逆命题吗? • 它是真命题吗?如何证明呢? 命题 到线段两端距离相等的点在 这条线段的垂直平分线上. •
<一>操作:画线段垂直平分线 方法一
尺规画法
1
①分别以点A、B为圆心,大于 ½ AB长为半径画弧交于点E、F 则直线EF就是线段AB的垂直平分 线(如图) 方法二 利用三角板过中点画垂线
16.2尺规作图线段垂直平分线

永年县第四中学 吴睿
课前回顾
M P
1.垂直平分线的定义: ∵MN是AB的垂直平分线 AD=BD; ∴ MN⊥AB , A D B 2.垂直平分线的性质: N ∵MN是AB的垂直平分线 ∴ PA=PB ( 线段垂直平分线上点与这条线段两个端点的距离相等 ) 3.垂直平分线的判定: ∵PA=PB ∴ P在AB的垂直平分线上 ( 到线段两端距 离相等的点,在这条线段的垂直平分线上 )
先分别作出不同形状的三角形,再按要求去作图.
驶向胜利 的彼岸
作线段的垂直平分线
如果两个图形成轴对称,怎样作出图形的对称轴?
如果两个图形成轴对 称,其对称轴是任何一对 对应点所连线段的垂直平 分线.因此,只要找到任 意一组对应点,作出对应 点所连线段的垂直平分线, 就得到此图形的对称轴.
小结
1.说说线段垂直平分线的作法; 2.画成轴对称的图形的对称轴的几种常见方 法: (1)将图形对折; (2)用尺规作图; (3)用刻度尺先取一对对称点连线的中点,然 后画垂线.
(3)由DE是BC的垂直平分线得:BD=CD;所以AD+CD= AD+BD=AB. (4)由(2)中式子-(1)中式子得BC=10cm.
课堂练习
练习4 如图,过点P 画∠AOB 两边的垂线,并和 同桌交流你的作图过程. A
P O
B
独立作业
1
习题1.5
1.利用尺规作出三角形三条边的垂直平分线.
老师期望:
课堂练习
练习3:如图,与图形A成轴对称的是哪个图形? 画出它们的对称轴.
思考
两个成轴对称的图形,不经过折叠,你用什 么方法画出它的对称轴? 我们已经知道,如果两个图形关于某条直线 对称,那么对称轴是任何一对对应点所连线 段的垂直平分线.因此我们只要找到这两个 图形的一对对应点,然后画出以这两个对应 点为端点的线段的垂直平分线就可以了. 提问:如何画一条线段的垂直平分线呢?
线段的垂直平分线的作图

例2
2.如图,在△ABC中,∠ABC=60°, ∠C=45°. (1)作∠ABC的平分线BD,与AC交于点D; (用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,证明:△ABD为等 腰三角形.
A
B
C
典例精析,没有直接应用五个基本 尺规作图,比较复杂的作图题
时成立。 • 4.作好图后,下结论。 • 5.作图痕迹要清晰。
• 3.如图,已知在△ABC中,AB=AC,将 △ABC沿BC翻折得到△A1BC.
(1)用直尺和圆规作出△A1BC;(保留作图 痕迹,不要求写作法和证明)
(2)请判断四边形AB A1C的形状,并证明
你例精析,没有直接应用五个基本 尺规作图,比较复杂的作图题
• 如图,已知在△ABC中,∠A=90°。 • (1)请用圆规和直尺作出⊙P,使圆心P在
例3 如图,107国道OA和320国道OB在某市相交于
点O,在∠AOB的内部有工厂C和D,现要修建一个
货站P,使P到OA、OB的距离相等且PC=PD,用尺
规作出货站P的位置(不写作法,保留作图痕迹,写出
结论).
A
O
实际作图
D
C
B
几何作图
例3的解答
E
G
P
则点P为所求作的货站位置
如何做好一道作图题
• 1.首先掌握好五个基本尺规作图 • 2.看清该题是直接作图还是间接作图题 • 3.间接作图题要综合考虑,满足多个条件同
置,并说明理由.
A
C
B
2. 如图, △ABC,在图中找一点O,使T 它到△ABC的三边距离都相等. 点O应 在何处?请在图中标出点O的位置,并 说明理由.
人教版数学八年级上册课件:13.1.2线段的垂直平分线(2)

与1.一能条用线尺段规两作个已(端1知点)线用距段离尺的相垂等规直的平作点分,图线在.这的(难条点方线)段法的垂在直直平分线线上l上. 求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.
相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不
写作法,保留作图痕迹) 解:如图所示:
M
A
P
O
N
B
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的
点在两点连线的垂直平分线上.
作轴对称图形的对称轴
想一想:下图中的五角星有几条对称轴?如何作出这些对称轴呢?
2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.
例1 如图,已知点AAB、点垂B以直及平直线分l. 线与公路的交点便是.
B
方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.
线段垂直平分线的有关作图
A
公共汽车站
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
线段垂直平分线的判定 与线段两个端点距离相等的点在这条线段的垂直平分线上.
应用格式: ∵ PA =PB, ∴ 点P 在AB 的垂直平分线上.A
P B
作用:判断一个点是否在线段的垂直平分线上.
问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?
通过折叠,如果这(两)个图形能够互相重合,则这(两)个图形是轴对称的.
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.
尺规作图之垂直平分线

尺规作图之垂直平分线
1 .怎么用尺规作图画垂直平分线
2 .已知线段AB和动点P,点P总可以使PA=PB,求证:点P的所有可能位置是线段AB的垂直平分线。
3 .如图,已知线段A8及线段48外一点C,过点C作直线CZX使得8_1A8.
小欣的作法如下:
①以点B为圆心,BC长为半径作弧;
②以点A为圆心,AC长为半径作弧,两弧交于点。
;
③作直线CD.
则直线CO即为所求.
(1)根据小欣的作图过程补全图形;
(2)完成下面的证明.
证明:连接AC,AD,BC,BD.
,:BC=BD,
・・・点B在线段CO的垂直平分线上.()(填推理的依据)
VAC=,
・・・点A在线段CD的垂直平分线上.
・•・直线AB为线段CD的垂直平分线.
,∖CD±AB.
•C。
尺规作图垂直平分线

尺规作图垂直平分线
利用尺规作图垂直平分线,在建筑设计中,获得良好的效果就成了一项重要的
任务。
如果可以建立一道垂直平分线,就可以切分出均对等的空间,并建立一个完整的体系。
因此,尺规作图垂直平分线有助于构建出连续、有完整性的建筑空间。
利用尺规作图垂直平分线,可以使得整个建筑的空间结构更加均衡,这样不仅
可以满足室内的比例要求和空间构成,而且也可以增强建筑物整体的外观视觉效果。
在建筑设计中尤其突出,尺规作图垂直平分线有助于凸显建筑物尺度及室内布局,使得建筑设计空间更加统一、有层次感。
此外,使用尺规作图垂直平分线也可以有效控制建筑物室内的光线,提升建筑
的宜居性。
垂直平分线建立的两个对等的空间可以很好地调节室内的穿透光线,既可以防止室内过暗,也可以保证室内光线充足,从而使得建筑空间更加宜人。
尺规作图垂直平分线是一项重要的建筑技术,可以有效提升室内空间的美感。
它可以帮助构建出均衡、有层次感的空间,以及统一的穿透光线,更是提升了室内的宜居性。
因此,建筑师应该充分利用尺规作图垂直平分线这种技术,相信这会有助于设计出更加绚丽多彩的建筑艺术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直平分线的作图方法
展开全文
垂直平分线的作图顺序
①以A为中心,用圆规画出圆弧
②以B为中心,画出与①半径相同的圆弧
③连接交点
看到这张图,大家都觉得很熟悉吧?但是,为什么可以用这个方法画出垂直平分线,恐怕没几个人说得上来。
其实也不怪大家,因为这个方法是初中1年级上半学期的知识点,那时候大家还不具备全面理解垂直平分线原理的能力。
你能与以前学过的知识在此重聚,也算是一种缘分,既然如此,
我们就重新温习一下其中的原理吧。
【证明】
假设上图中的AP=BP、AQ=BQ。
在△APQ和△BPQ中,
AP=BP(假设)
AQ=BQ(假设)
PQ在一条直线上
由于三条边都相等,所以△APQ和△BPQ全等(关于三角形的全等条件,后面会详细说明)。
全等图形对应的角度是相等的,因此,
∠APQ=∠BPQ
接下来,看△APM和△BPM,
AP=BP(假设)
∠APM=∠BPM(∠APQ=∠BPQ)
PM在一条直线上
因为两边夹角相等,所以△APM和△BPM也全等。
全等三角形对应的边和角度是相等的,因此,
AM=BM ……①
∠AMP=∠BMP……②
由于∠AMB=180°,所以,
∠AMP+∠BMP=180°……③
根据①可得知,M是中点。
将③代入②,
综上所述,直线PQ是线段AB的垂直平分线。
(完)
我们再回顾一下刚才的作图方法。
设①和②的交点为P和Q,还是用①和②,证明出AP=BP、AQ=BQ。
另外,我们通过逆证明可以得知,线段的垂直平分线上的任意一点,到线段两端的点(图中的A和B)之间的距离是相等的。
垂直平分线的性质
线段垂直平分线上的点到这个线段的两个端点的距离相等。
这一性质非常重要,可以帮助你理解学到的等腰三角形和三角形外心的概念。