压电陶瓷材料及应用..-共22页

合集下载

压电陶瓷应用

压电陶瓷应用

压电陶瓷的市场用途及其发展压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。

这是一种具有压电效应的材料。

所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。

反之,施加激励电场,介质将产生机械变形,称逆压电效应。

这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。

在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。

电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。

用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。

地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。

压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。

这不能不说是压电陶瓷的一大奇功。

压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。

谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。

它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。

塑料甚至金属进行加工。

压电陶瓷的用途主要有以下几个:1、声音转换器声音转换器是最常见的应用之一。

像拾音器、传声器、耳机、蜂鸣器、超声波探深仪、声纳、材料的超声波探伤仪等都可以用压电陶瓷做声音转换器。

压电陶瓷(PDF)

压电陶瓷(PDF)

平移台系列纳米定位偏转台系列纳米定位动电源系列压电陶瓷驱微仪系列高精度测其他定制及 产品代理进口5低压驱动超长的使用寿命刚度大亚毫秒的响应速度亚纳米的分辨率光学成像激光调准精密机械聚焦显微微定位特点应用XP 6×6/18XP 4.5×4.5/18 XHP 150/14-10/12XP 6×6/18电压与位移曲线XP 6×6/18蠕变曲线D31:-290picometer/VoltD33:+635picometer/Volt相对介电常数Rel.dielectric constant ε:5400居里温度Curie temperature ℃:150℃密度Density :8g/cm 3弹性柔顺常数S 33 :18×10-12m 2/N 使用温度:-50~80℃居里温度:150℃空载满幅值最大使用频率:123HzXP 6×6/18XP 4.5×4.5/18XHP 150/14-10/12外形尺寸[mm]±0.16×6×184.5×4.5×18OD/ID :14/10 标称位移 [μm]±10%181812最大位移[μm]±10%242416静电容量[μF]±20%1.80.82.7刚度 [N/μm]±10%7030270响应频率 [kHz]455065标称推力[N]1400600 4000 型号其他使用参数:压电陶瓷材料特性:低压叠堆压电陶瓷-推荐型号术参数www.xm tkj.c o m *************X M T 芯明天科技024681012141618200102030405060708090100110120130140150S 输出位移(u m )驱动电压V (v )压电陶瓷XP 6×6/18驱动电压与输出位移测试曲线图6×6×203×4×9XP 6×6/20XP 3×4/92013 1.40.17492569100100020018 9标称位移是在0~150V 驱动电压下的位移,最大驱动电压可在-30V~150V ;建议在0~150V 驱动电压下使用。

压电陶瓷的机理及应用

压电陶瓷的机理及应用

压电陶瓷的机理及应用压电陶瓷是一种特殊的陶瓷材料,具有压电效应。

压电效应是指在施加外力或变形作用下会产生电势差的现象,既可以把电能转化为机械能,又可以把机械能转化为电能。

压电陶瓷的机理主要涉及晶格结构和电偶极矩的相互作用。

压电陶瓷的晶格结构由正极性和负极性离子组成,称为铅酸钡结构。

这种结构有一个重要特性,即当施加压力或机械应力时,该结构会发生畸变,导致离子移动,进而在材料中产生电荷分离,形成电场。

这个电场就是压电陶瓷产生电势差的原因。

具体来说,当外界施加压力时,压电陶瓷晶体结构会发生压缩和伸展。

在压缩时,正极性离子向负极性离子方向移动;在伸展时,正负极性离子则相反地移动。

这种离子的移动引起了电势差的产生。

压电陶瓷的应用非常广泛。

以下是一些主要的应用领域:1. 声波和超声波技术:压电陶瓷可将电能转化为声波能量,它被广泛应用于扬声器、声纳、超声波清洗器等领域。

2. 振动控制技术:压电陶瓷能够将机械能转化为电能,可以被用于减震、减振和振动控制系统,如压电陶瓷驱动器、振动降噪器等。

3. 电子和通信设备:压电陶瓷在电子设备中用于振荡器、滤波器、传感器等部件中,因其良好的电特性被广泛应用于通信和电子设备领域。

4. 高精度测量技术:压电陶瓷电特性的稳定性和高精度使其适用于精密测量领域,如压力传感器、温度传感器、加速度传感器等。

5. 医疗器械:由于其生物相容性,压电陶瓷常被用于医疗器械中,如超声医学成像、心脏起搏器、超声刀等。

6. 能量采集和储存:压电陶瓷可以将机械能转化为电能,因此被广泛应用于能量采集和储存技术,如压电发电、压电储能装置等。

总的来说,压电陶瓷以其优异的压电性能,在声波和超声波技术、振动控制、电子和通信设备、高精度测量、医疗器械以及能量采集和储存等领域得到了广泛的应用和研究。

随着科技的不断进步,压电陶瓷的应用前景将不断扩大。

压电陶瓷及其应用PPT课件

压电陶瓷及其应用PPT课件

顺电相
铁电相
4. 铋层状结构
Bi4Ti3O12
(1) 钛酸钡压电陶瓷 钛酸钡(BaTiO3)是由碳酸钡(BaCO3)和二氧
化钛(TiO2)按1:1分子比例在高温下合成的压电陶瓷 。
它具有很高的介电常数和较大的压电系数(约为石 英晶体的50倍)。不足之处是居里温度低(120℃), 温(度2)稳定锆性钛和酸机铅械系强压度电不陶如瓷石(英PZ晶T)体。
2019/12/23
22
铁路钢轨探头
铁路钢轨对接焊 缝探测用探头
缺陷 焊缝
2019/12/23
铁路钢轨探伤 用滑板式探头
23
管道环焊缝 超声波检测装置
2019/12/23
管道环焊缝超声 波检测装置原理
24
超声探伤仪
2019/12/23
25
构件的超声探伤
2019/12/23
26
构件的超声探伤
另外,PbTiO3陶瓷的介电系数小,热释电系 数大,接近于60μC/cm2·K,居里点高,抗辐射性 能好,还是一种相当理想的热释电探测器材料。
2. PbNb2O6 钨青铜结构 Tc高(570℃) 压电系数的各向异性大,d33/d31≈10 机械品质因素特别低(Q≈11)
主要用于超声缺陷检测、人体超身诊断及水听器等
4、压电半导体材料 如ZnO、CdS 、ZnO 、CdTe,这种力敏器件具有灵振荡器的压电材料,可测取力和温度等参数。
BaTiO3和PbTiO3压电陶瓷比较
BaTiO3陶瓷 工作温区窄(Tc=120℃
) 易极化 热稳定性差 ε=1900 Kp =0.354 d33=191(10-12库/牛) g33=11.4(10-3伏·米/牛) 工艺性好

压电陶瓷的压电系数PPT课件

压电陶瓷的压电系数PPT课件
第15页/共32页
压电材料
(a)未极化 图5-4 压电陶瓷的极化
(b)电极化
当陶瓷材料受到外力作用时,电畴的界限发生移动,
电畴发生偏转,从而引起剩余极化强度的变化,因而
在垂直于极化方向的平面上将出现极化电荷的变化。
这种因受力而产生的由机械效应转变为电效应,将机
械能转变为电能的现象,就是压电陶瓷的正压电效应。
压电材料
天然结构定义
• x:两平行柱面内夹角等分线,垂直此轴压 电效应最强。称为电轴。
• y :垂直于平行柱面,在电场作用下变形最 大,称为机械轴。
• z :无压电效应,中心轴,也称光轴。
通常把沿电轴x方向的力作用下产生电 荷的压电效应称为“纵向压电效应”, 而把沿机械y方向的作用下产生电荷的压 电效应称为“横向压电效应”。而沿光 轴 z 方 向第受10页力/共时32页不 产 生 压 电 效 应 。
它的转换效率和转换精度高、线性范围宽、重复 性好、固有频率高、动态特性好、工作温度高达 550℃(压电系数不随温度而改变)、工作湿度高 达100%、稳定性好。
第8页/共32页
压电材料
(a)
(b)
图5-2 石英晶体
(c)
天然结构的石英晶体外形。它是一个正六面 体。石英晶体各个方向的特性是不同的
第9页/共32页
电压放大器电荷放大器上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当压电式测力传感器上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当压电式加速度传感器上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当压电式金属加工切削力测量上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当

压电陶瓷

压电陶瓷
在外力F的作用下,压电陶瓷产生形变,晶体的极化强 度发生变化,因而表面束缚电荷变化,晶体对外显示电 性——压电效应。
在压电陶瓷上加上电场,设电场方向与极化方向相同, 则晶体的极化加强,晶体沿极化方向伸长,产生了形变— —逆压电效应。若加上反向场强,则晶体沿极化方向缩短; 若加上交变电场,则晶体产生振动。
Qm ,热稳定性好 抗老化性好
低衰减 硬性材料 频率稳定 软性材料
§ 7-1 压电陶瓷
由于一些性能往往是互相克制的,如Qm ↑ ,则KP ↓ ; ε↑则tgδ ↑ ;KP ↑则热稳定性↓,因此选用材料时应全面考虑, 适当折中。
三§元7系-1铅基压压电电陶陶瓷瓷
a、所谓三元系压电陶瓷,是在PZT的基础上再添加三元复合钙钛矿型物质(A,A’)(B,B’)O3 而组成的。在实际大多 数多元系压电陶瓷中,A位元素仍是铅,所改变的只是处 于八面体中的B位的元素。因此:在钙钛矿结构的三维八 面体网中,在相互固溶的情况下,八面体的中心将有四种 或更多电价不一定为4的元素(包括Zr和Ti)统计地均匀 分布,改变其元素种类与配料,就可调整、优选出一系列 具有特殊性能的压电陶瓷。
等 价 取 代
PZT的



为:异


软 性 代硬 性
取 取
代 代
改 改
性 性

其 它 取 代 改 性
§ 7-1 压电陶瓷
⑶ 常用PZT瓷料 压电陶瓷用途很多,不同场合对压电陶瓷性能要求不同。








:g33或g31大
,K
P
,
高效率、高灵敏度 软性材料
换 能 器
常用的为横向压电系数d31和纵向压电系数d33(脚标第 一位数字表示压电陶瓷的极化方向;第二位数字表示机械 振动方向)。四方钙钛矿结构有三个独立的压电系数d31 、 d33和 d15 。

压电陶瓷幻灯片课件


------
++++++
1.2压电材料
(1).压电晶体
■ 石英( SiO2 ,J·居里和P·居里兄弟于1880年发现的),性能稳定, 但价格高,一般仅用于标准仪器或要求较高的传感器中;
■ 酒石酸钾纳(在常温下有压电性,技术上有使用价值,但有易溶 解的缺点 );
■ 磷酸铵低于-14 8℃下才有压电性,工程使用价值不大。
■ 引燃引爆、高压警棒、小型电源 ■ 压电陶瓷点火的优点: 10年寿命;半永久性;不用
维修。
3.2、压电振荡器和滤波器:高Qm
■ 原理:压电振子的谐振特性。作用在压电陶瓷上的交 变电压会产生一定频率的机械振动。在一般情况下, 这种机械振动的振幅很小。
■ 压电振荡器原理:
❏ 当外加电压的频率与压电陶瓷的固有机械振动频率相同时, 就会引起共振,使振幅大大增加。
点火器
高压产生-电极放电-点燃 气体
压电点火原理
V=gh/FA ; g——压电电压常数; h——圆柱体高度; F ——作用力
A——受力圆柱体截面积;
应用举例:
■ 煤气灶中,两个直径3毫米、高5毫米的压电陶瓷柱取 代了普通的火石
■ 打火机中,采用直径为2.5毫米,高度为4毫米的压电 陶瓷,就可得到10~20千伏的高电压
(2).聚合物 ■ PVF2(聚二氟乙烯)
(3).压电陶瓷
■ 并非所有的陶瓷都具有压电效应。作为压电陶瓷的原材料,在晶 体结构上一定是不具有对称中心的晶体,如氧化铅、氧化锆、氧 化钛、碳酸钡、氧化铌、氧化镁、氧化锌等。
■ 在32种点群的晶体中,只有20种非中心对称点群的晶体才有压电 效应。
■ 将这些原材料在高温下致密烧结,制成陶瓷,并将制好的陶瓷在 直流高压电场下进行极化处理,才能成为压电陶瓷。

压电材料与应用

无铅压电材料
迄今为止,可被考虑的无铅压电陶瓷体系有: 1.BaTiO3基无铅压电陶瓷 a(1-x) BaTiO3-xABO3(A=Ba、Ca等,B=Zr、Sn、Hf、Ce等) I II I II b (1-x) BaTiO3-xA B O3 (A =K、Na,B =Nb、Ta) c(1-x) BaTiO3-xAII0.5NbO3 (AII=Ca、Sr、Ba)
材料 Kp Kt d33 (PC/N)
g33 (×10-3Vm/N)
F15-6 15PZTPZT-4 F15-7 15F C-1 P-5 PS PZTPZT-8 F3 SW2 SW3 PGB PZTPZT-7 F 2-6 BTBT-2
0.62 0.58 0.52 0.57 0.58 0.55 0.59 0.59 0.51 0.56 0.32
压电材料性能指标 压电材料性能指标
Kt Kp
K33 K15 K31
3、机械品质因数Qm
压电材料性能指标 压电材料性能指标
压电陶瓷在振动时,为了克服内摩擦需要消耗能量。 压电陶瓷在振动时,为了克服内摩擦需要消耗能量。机械品质因数Qm 是反映能量消耗大小的一个参数。 越大,能量消耗越小。 是反映能量消耗大小的一个参数。Qm越大,能量消耗越小。机械品质因数 的定义式是: Qm的定义式是:
压电材料概述
压电陶瓷
优点:抗酸碱,机电耦合系数高,易制程任意形状,价格 优点:抗酸碱,机电耦合系数高,易制程任意形状, 便宜。 便宜。 缺点:温度系数大,需高压极化处理(kV/mm) (kV/mm)。 缺点:温度系数大,需高压极化处理(kV/mm)。
压电聚合物
优点:低声学阻抗特性,柔软可做极薄的组件。 优点:低声学阻抗特性,柔软可做极薄的组件。 缺点:压电参数小,需极高的极化电场(MV/mm) 缺点:压电参数小,需极高的极化电场(MV/mm)

压电陶瓷

目录(contents)
01
压电陶瓷的原 理及应用
压电陶瓷的 性能参数
03
02
04
压电陶瓷的制 作工艺
压电陶瓷的 研究现状
压电陶瓷的原理及应用

压电陶瓷是一种将机械能与电能相互转换的功能陶瓷
压电陶瓷点火器 深大材料学院
压电陶瓷加湿器
压电陶瓷的原理及应用

压电陶瓷因受力形变而产生电的效应,称为正压电效应。 压电陶瓷因加电压而产生形变的效应,称为逆压电效应。
深大材料学院
压电陶瓷的制作工艺
干压成型是将经过造粒的瓷料装入一定形状的钢模内, 借助于模塞,在一定外力下压制成坯体。

加压方式
干压成型一般分单向加压和双向加压两种方式。较薄 制品可采用单向加压方式;厚制品宜采用双向加压,以 使坯体内密度较均匀。
深大材料学院
压电陶瓷的制作工艺 排塑
粘合剂是一种还原性强的物质,压电瓷料干压成型主要 使用聚乙烯醇(PVA)、聚乙二醇(PGE)。在成型以后需要 升温将其排出,以避免影响烧结质量,这一工序称为排塑。 为了防止还原作用,排塑时要保证较好的通风条件。
深大材料学院
压电陶瓷的制作工艺

2) 材料类型
① 接收型压电陶瓷材料 已引入了降低电导率和老化率的高价施主杂质,原料中 在0.5%以内的杂质不足以显著影响施主杂质的既定作用。 ② 发射型压电陶瓷材料 要求低机电损耗,因而配料中的杂质总量,愈少愈好, 一般希望在0.05%以下。对于为了提高其它性能参数的有意 添加物,另当别论。
深大材料学院
压电陶瓷的原理及应用

这种电极化不是由外电场产生,而是由晶体自身 产生的,所以成为自发极化,其相变温度TC称为 居里温度。

压电陶瓷及其应用

] 压电陶瓷及其应用关健词:压电马达;;压电陶瓷;;介电性能;;压电性能[ 摘要]利用压电陶瓷将外力转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。

用两个直径3毫米、高5毫米的压电陶瓷柱取代普通的火石,可以制成一种可连续打火几万次的气体电子打火机。

用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。

压电陶瓷是一能够将机械能和电能互相转换的功能陶瓷材料。

所谓压电效应是指某些介质在受到机械压力时,哪怕这种压力像声波振动那样微小,都会产生压缩或伸长等形状变化,引起介质表面带电,这是正压电效应。

反之,施加激励电场,介质将产生机械变形,称逆压电效应。

1880年法国人居里兄弟发现了“压电效应”。

1942年,第一个压电陶瓷材料钛酸钡先后在美国、前苏联和日本制成。

1947年,钛酸钡拾音器---第一个压电陶瓷器件诞生了。

上世纪50年代初,又一种性能大大优于钛酸钡的压电陶瓷材料---锆钛酸铅研制成功。

从此,压电陶瓷的发展进入了新的阶段。

60年代到70年代,压电陶瓷不断改进,逐趋完美。

如用多种元素改进的锆钛酸铅二元系压电陶瓷,以锆钛酸铅为基础的三元系、四元系压电陶瓷也都应运而生。

这些材料性能优异,制造简单,成本低廉,应用广泛。

压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,并将极其微弱的机械振动转换成电信号。

利用压电陶瓷的这一特性,可应用于声纳系统、气象探测、遥测环境保护、家用电器等方面。

如今压电陶瓷已经被科学家应用到国防建设、科学研究、工业生产以及和人民生活密切相关的许多领域中,成为信息时代的多面手。

在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的“舵”。

依靠“舵”,航天器和人造卫星,才能保证其既定的方位和航线。

传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压电陶瓷材料及应用一、概述1.1电介质电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。

国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。

美国MIT建立了以Hippel教授为首的绝缘研究室。

苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。

特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。

随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。

我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。

80年代初中国电工技术学会又建立了工程电介质专业委员会。

近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。

主要有:(1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。

(2)、化学功能陶瓷如各种传感器、化学泵等。

(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。

(电介质物理——邓宏)功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。

压电陶瓷作为重要的功能材料在电子材料领域占据相当大的比重。

(材料一)1.2压电材料的分类具有压电效应的材料称为压电材料。

自1880年Jacques Curie 和Pierre Curie发现压电效应以来,压电材料发展十分迅速。

利用压电材料构成的压电器件不仅广泛用于电子学的各个领域,而且已遍及日常生活。

例如,农村中家家户户屋檐下挂的小喇叭--压电陶瓷扬声器;医院里检查心脏、肝部的超声诊断仪上的探头--压电超声换能器;电子仪器内的各种压电滤波器;石油、化工用各种压电测压器、压电流量仪等等。

压电材料主要有压电晶体、陶瓷、压电薄膜、压电聚合物及复合压电材料等(如图1.1所示)。

图1.1 压电材料的分类压电单晶体是指按晶体空间点阵长程有序生长而成的晶体。

这种晶体结构无对称中心,因此具有压电性。

如水晶(石英晶体)、镓酸锂等。

压电陶瓷是经过直流高电压极化处理过后具有压电性的铁电陶瓷。

这些构成铁电陶瓷的晶粒的结构一般是不具有对称中心的,存在着与其它晶轴不同的极化轴,而且它们的原胞正负电荷重心不重合,即有固有电矩——自发极化(Ps)存在。

然而,铁电陶瓷是由许多细小晶粒聚集在一起构成的多晶体。

这些小晶粒在陶瓷烧结后,通常是无规则地排列的。

而且,各晶粒间自发极化方向杂乱,总的压电效应会互相抵消,因此在宏观上往往不呈现压电性能。

在外电场作用下,铁电陶瓷的自发极化强度可以发生转向,在外电场去除后还能保持着一定值——剩余极化(Pr),如图1.2所示,其中Ec为矫顽场,Psat为饱和极化强度(定义)。

利用铁电材料晶体结构中的这种特性,可以对烧成后的铁电陶瓷在一定的温度、时间条件下,用强直流电场处理,使之在沿电场方向显示出一定的净极化强度。

这一过程称为人工极化。

经过极化处理后,烧结的铁电陶瓷将由各向同性变成各向异性,并因此具有压电效应。

由此可见,陶瓷的压电效应来源于材料本身的铁电性。

因此,所有的压电陶瓷也都应是铁电陶瓷。

图1.2 铁电材料的电滞回线相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。

石英等压电单晶压电性弱,介电常数很低,受切割限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准品率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。

压电薄膜是一种独特的高分子传感材料,能相对于压力或拉伸力的变化输出电压信号,因此是一种理想的动态应变片,压电薄膜元件通常由四部分组成:金属电极、加强电压信号压膜、引线和屏蔽层。

压电聚合物,如偏聚氟乙烯(PVDF)(薄膜)等,具有材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点,为世人瞩目且发展十分迅速,现在水声超声测量、压力传感、引燃引爆等方面获得应用。

不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。

复合压电材料,是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。

至今已在水声、电声、超声、医学等领域得到广泛的应用。

如它制成的水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用于不同的深度。

(材料一)1.3发展概况1942-1945年间发现钛酸钡(BaTiO3)具有异常高的介电常数,不久又发现它具有压电性,BaTiO3压电陶瓷的发现是压电材料的一个飞跃。

这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。

1947年美国用BaTiO3陶瓷制造留声机用拾音器,日本比美国晚用两年。

BaTiO3存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。

1954年美国B·贾菲等人发现了压电PbZrO3-PbTiO3(PZT)固溶体系统,这是一个划时代大事,使在BaTiO3时代不能制作的器件成为可能。

此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

六十年代初,Smolensky等人对复合钙钛矿型化合物进行了系统的研究,提出可以用不同原子价的元素组合取代钙钛矿结构中的A-位和B-位离子,大大增加了钙钛矿型化合物的种类。

如Pb(Mg1/3Nb2/3)O3(PMN)、Pb(Ni1/3Nb2/3)O3(PNN)、Pb(Sb1/3Nb2/3)O3(PSN)等,这些新的二元系压电陶瓷不仅各有特色,而且陶瓷的烧结温度低,工艺重复性好,对压电材料的发展起了积极作用。

1965年,日本松下电气公司的H.Ouchi发表了把Pb(Mg1/3Nb2/3)O3作为第三组分加到PZT 陶瓷中制成的三元系压电陶瓷(简称PCM),发现它具有良好的压电性能。

1969年,我国压电与声光技术研究所研制成功把Pb(Mn1/3Sb2/3)O3作为第三组分加到PZT中的三元系压电陶瓷,性能比PZT和PCM优越。

经过10多年的深入研究和广泛应用,这种材料成为我国自成体系的、具有独特性能的、工艺稳定的三元系压电陶瓷,起名PMS。

PMS压电陶瓷和用它作换能器的压电晶体速率陀螺均先后获国家科委发明奖。

80年代,为了既能满足人类日益增长的物质文化生活需要,又能减少对环境的污染,保护人类赖以生存的生态环境,简化材料制备工艺,开始了非铅基铁电压电陶瓷的研究工作。

非铅基铁电压电陶瓷主要是以铌酸盐和钛酸盐为主的化合物。

虽然这类材料的目前压电性能还不如锆钛酸铅系,但是非铅基铁电压电陶瓷的研究开发已成为压电陶瓷材料领域的研究前沿之一。

二、压电陶瓷的压电机理与性能参数压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。

2.1极化的微观机理在电场的作用下,电介质内部沿电场方向感应出偶极矩,即在电介质表面出现束缚电荷的物理现象。

极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。

极化机理主要有三种。

(1)电子位移极化——在外电场作用下,构成原子外围的电子云相对于原子核发生位移,这种极化称为电子位移极化(电子极化),其。

极化率称为电子位移极化率e电子位移极化结论是:对于同族元素:e α由上到下增大,因:外层电子数增加,原子半径R 增大;对于同周期元素:不定,因为外层电子数虽然增加,但轨道半径可能减小;离子的电子位移极化率的变化规律与原子大致相同;离子半径大,极化率大;实测电子位移极化率与理论结果仍有差别,但研究发现,304/R e πεα值大,对极化贡献大;电子位移极化率与温度无关,因为,R 与T 无关;极化率为快极化:10-15 –10-16s ,该极化无损耗。

在光频下,只有电子极化,介质的光折射率为:(2)离子位移极化——离子晶体中正、负离子发生相对位移而形成的极化,称为离子(位移)极化(Ionic polarization)。

极化率用i α表示。

离子位移极化结论是:离子位移极化率与电子位移极化率几乎有相同的数量级,均在04πε(10-10)3≈10-40法·米2数量级;离子位移极化只可能在离子晶体中存在,液体或气体介质中不存在离子极化;离子位移极化只与离子晶体结构参数有关,与温度无关;离子位移极化建立或消除时间与离子晶格振动周期有相同数量级,10-12~10-13秒。

(3)取向极化——当极性分子受外电场作用时,偶极子就会产生转矩,由于偶极子与电场方向相同时具有最小位能,于是就电介质整体来看,偶极矩不再等于零,而出现沿电场方向的宏观偶极矩,这种极化现象称为偶极子转向极化,用d α表示。

KT d 320μα= 0μ是极性分子固有偶极矩~米库⋅-3010 (2)根据电介质分子参与极化运动的种类,把极化分成三类:电子位移极化e α;离子位移极化i α;偶极矩转向极化d α。

()EE N E N E p i i d i e ⋅+==-=++=001:,1εαεαεεαααα或电介质的总极化为: (3) 对于各向异性晶体,极化强度与电场存在有如下关系m ,n=1,2,3 (4)式中为极化率,或用电位移写成:(5)图PPt9微观机理图2.2压电性、铁电性与反铁电性2.2.1压电效应压电效应是1880年由JacquesCurie和PierreCurie发现的。

他们在研究热电性与晶体对称性的关系时,发现在一些无对称中心晶体的特定方向上施加压力时,相应的表面上出现正或负的电荷,而且电荷密度与压力大小成正比;同年,他们证实了这类晶体具有可逆的性质,即晶体的形状会受外加电场的作用发生微小的变化(如图2.1所示)。

图2.2 压电效应示意图(a)正压电效应;(b)逆压电效应(ⅰ收缩ⅱ膨胀)。

相关文档
最新文档