网络体系结构专项介绍
网络体系结构专项介绍PPT(41张)

五、高层协议
网络各层的功能
(1) 会话层 会话是在应用进程之间交换信息而按一定规则建立起来的一个 暂时联系 。 会话层通过对两个会话用户间的数据流进行方向的控制。 并且通过增强传输数据流的结构性的手段提供服务 。
网络各层的功能
(3)服务质量
服务是网络中各层向紧邻的上层提供的一组操作。 任何服务都有服务质量问题 。 网络层服务质量最主要的指标就是可靠性,包括是否有分组 丢失、重复、失序、连接及释放的时延等 。 根据不同类型的子网服务质量,OSI将传输协议分为5类:
0类协议:简单类,是面向A型网络服务的。其功能只是 建立一个简单的端到端的传输连接和在数据传输阶段具有将 长数据报文分段传输的功能。该类协议没有差错恢复和将多 条传输连接复用到一条网络连接上的功能。
(2)表示层
网络上不同的计算机对数据信息有不同的描述方法 。 表示层试图用一种抽象语法描述信息,以实现不同系统之间 信息表示的统一 。
网络各层的功能(3)Fra bibliotek用层应用层直接为各种应用服务。应用层是应用进程中与通信有关的 那部分环境空间。在这个空间内,对等的应用实体使用OSI各层提供 的服务交换有意义的信息。应用层的功能是向应用进程提供访问OSI 的手段。OSI在应用层中定义了几个重要的应用层标准,包括虚拟终 端标准VTP,用于不同类型的终端访问网络上不同的主机应用进程; 文件传输、访问和管理标准FTAM,用于不同等系统间能够在网络上 传输文件; 报文处理系统MHS用于对网络上使用非常普遍的电子邮件系统进行标 准化。
网络体系结构

网络体系结构网络体系结构,简称网络架构,指的是互联网整体架构的逻辑架构、物理架构和协议架构,它决定了互联网的功能、性能、可靠性和安全性,同时也为互联网的拓展和发展提供了基础支持。
一、逻辑架构网络逻辑架构是指网络系统中各个部分的功能和互相之间的关系。
它是网络系统最基本的部分,以分层的方式进行组织,从上至下分别是:应用层、传输层、网络层、数据链路层和物理层。
1. 应用层应用层是网络体系结构中最靠近用户的一层,它主要负责处理和管理用户与网络之间的信息交互。
在这一层上,包括了很多常见的协议,如HTTP、FTP、SMTP等。
2. 传输层传输层主要负责网络数据的传输和速率的控制,它负责把数据分成若干个数据包,并负责传输和接收。
这一层也包括了两个主要的协议:TCP和UDP。
3. 网络层网络层主要负责寻找最佳的路径,实现不同网络之间的数据传输,强调数据包在网络中的传输。
在这一层上最常见的协议是IP协议。
4. 数据链路层数据链路层位于物理层和网络层之间,主要负责将网络层传过来的数据包转换成适合物理层传输的数据包。
最常见的协议是以太网协议。
5. 物理层物理层负责传输和接收网络中的数据以及硬件的控制。
它决定了数据的传输速率、数据的格式和传输媒介等。
最常见的传输媒介是有线和无线两种。
二、物理架构网络物理架构是指网络系统中各个设备之间的连接方式和传输媒介等硬件设备的布局、位置和组成。
物理架构包括以下几种架构方式:1. 局域网(LAN)局域网是指在一个较小范围内的计算机网络,其覆盖范围通常在一个建筑物或者一个校园内。
局域网的传输速率非常快,最常常用的网线是双绞线。
2. 城域网(MAN)城域网是指在一个城市或者地理范围比较大的区域内的计算机网络。
城域网常用的传输媒介是光纤。
3. 广域网(WAN)广域网是指在一个大范围的区域内的计算机网络,它由多个局域网和城域网组成。
广域网的传输媒介是电话线路或者无线电波。
三、协议架构网络协议架构是指网络系统中使用的通信协议以及协议之间的关系。
计算机网络基础知识及体系结构

计算机网络基础知识及体系结构一、计算机网络基础知识1.计算机网络的定义:计算机网络是由若干台计算机及其互连设备(路由器、交换机等)通过通信链路和交换设备相互连接起来,共享资源并进行信息交换的系统。
2.通信协议:计算机网络中的通信是通过通信协议实现的。
通信协议规定了计算机之间信息的传输格式、传输方式、传输控制等规范。
3.网络拓扑结构:计算机网络中的拓扑结构有多种形式,常见的有总线型、环形、星型、树型等,不同的拓扑结构适用于不同的应用场景。
4.IP地址:IP地址是计算机在网络中的唯一标识,它由32位或128位二进制组成,用于定位计算机的位置。
5.域名系统(DNS):DNS是将域名与IP地址进行映射的系统,通过DNS可以通过域名访问到具体的计算机。
6.网络地址转换(NAT):NAT是一种将内部IP地址转换成公共IP 地址的技术,它可以实现多台计算机共享一个公共IP地址。
二、计算机网络体系结构1. TCP/IP体系结构:TCP/IP体系结构是Internet中最常用的体系结构,它分为四层:应用层、传输层、网络层和链路层。
-应用层:提供各种应用程序的网络服务,如HTTP、FTP、DNS等。
-传输层:提供可靠的端到端数据传输,如TCP、UDP等。
-网络层:负责数据的路由和转发,如IP等。
-链路层:将数据帧转化为比特流进行传输,如以太网、Wi-Fi等。
2.OSI参考模型:OSI参考模型是国际标准化组织(ISO)制定的一个网络体系结构,它分为七层:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
-物理层:负责电子信号的传输以及物理设备的连接和物理特性的定义。
-数据链路层:负责数据的分帧、差错检测和纠正,以及对物理层的错误控制。
-网络层:负责数据报的路由和转发。
-传输层:提供可靠的端到端传输和端口号的管理。
-会话层:负责建立、管理和终止会话。
-表示层:负责数据的加密解密、数据压缩和编码转换等。
-应用层:提供各种应用程序的网络服务。
《网络体系结构》课件

网络安全的未来发展
人工智能在网络安 全中的应用
人工智能可用于预测网络攻击
行为,加强网络安全防御。
区块链技术的网络 安全应用
区块链技术可以确保数据的安
全性和不可篡改性,用于加强
网络安全。
云安全的挑战与解决 方案
云安全面临着数据隐私和访问 控制等挑战,而安全监控和加 密技术则是解决这些挑战的关 键。
网络安全Байду номын сангаас决方案
谢谢观看!下次再见
网络体系结构的 演变
网络体系结构的演变从早期的单一主机到分布式计算,从 局域网演变到互联网,从传统的中心化体系结构到边缘计 算。
网络体系结构的演变
单一主机
网络仅由单一主机 组成
互联网
连接全球各地网络
边缘计算
在数据源附近进行 计算
分布式计算
多台计算机共同完 成任务
● 02
第2章 OSI参考模型
OSI参考模型概 述
防火墙
用于控制网络流量, 保护内部网络免受
外部攻击
加密技术
用于保护数据的机 密性和完整性
入侵检测系统
监控网络流量,及 时发现异常行为
01 网络攻击
包括DDoS攻击、恶意软件、黑客攻击等
02 数据泄露
包括敏感数据泄露、隐私泄露等
03 合规要求
如GDPR、HIPAA等要求的合规性
网络安全的未来发展
未来,人工智能将被广泛应用于网络安全领域,帮助提高网 络安全的智能化水平。区块链技术的发展也将为网络安全带 来更多创新。同时,云安全将面临挑战,但也必将迎来更多 解决方案。
网络体系结构的分类
分布式体系结 构
多个网络间互相连 接
对等体系结构
网络体系结构

一.网络体系结构
1.c/s结构:client/server 客户端与服务器结构,如QQ、微信手机APP。
2.b/s结构:browser/server 浏览器与服务器结构通过浏览器访问软件系统
的web展示信息,并通过web server与服务器进行信息交互,业务逻辑处理信息在服务器端完成。
3.P2P结构:point to point 通过直接的点对点通信交换实现数据信息资源、
服务共享。
C/S、B/S模式的系统以应用为核心,通信交互过程中必须有应用服务器,用户请求必须通过应用服务器来完成,用户同创新也必须通过应用服务器完成。
在P2P对等网络中,用户之间可以直接通信、共享资源,无需常规服务器的中转处理。
二.特点和区别
1.灵活性B/S结构灵活性高,因其浏览器是标准的、规范的,使用起来方
便灵活。
C/S结构灵活性差,当访问服务器时必须安装客户端在操作系统上面。
2.部署浏览器部署比较方便,兼容性强。
因为浏览器只要能正常解析
HTML标签,处理HTTP协议数据包就可以。
C/S结构客户端必须进行升级重新安装客户端软件。
3.系统的设计与开发
B/S开发效率高
C/S开发效率低
4.在系统性能方面
B/S就没那么明显。
完整版网络体系结构知识点总结

完整版网络体系结构知识点总结网络体系结构是指整个网络系统的结构组成和各个组成部分之间的关系。
下面是关于网络体系结构的知识点总结。
1.体系结构的分类:a.标准体系结构:例如OSI(开放系统互连)参考模型和TCP/IP(传输控制协议/互联网协议)体系结构。
b. 专有体系结构:由具体厂商设计和实现的网络体系结构,例如Cisco的三层体系结构(核心层、分布层和接入层)。
2.OSI参考模型:a.OSI模型是一种理论上的体系结构,用于描述和规范计算机网络中的协议。
b.OSI模型将网络通信过程划分为七个层次:-物理层:负责传输比特流,物理接口和电气特性。
-数据链路层:负责将比特流组织成帧,并提供差错检测和纠正。
-网络层:负责路径选择和分组传输。
-传输层:负责可靠的端到端传输。
-会话层:负责建立、管理和终止会话。
-表示层:负责数据格式的转换、加密和解密。
-应用层:提供网络服务和应用程序接口。
3.TCP/IP体系结构:a.TCP/IP是互联网上最常用的网络体系结构。
b.TCP/IP体系结构将网络通信过程划分为四个层次:-网络接口层:负责处理与物理网络的接口。
-网际层:负责建立和管理数据包在网络中的跳转。
-传输层:提供端到端的可靠传输。
-应用层:提供各种网络服务和应用程序。
4.网络组件:a.网络接口卡(NIC):在计算机和网络之间传输数据的设备。
b.集线器:用于将多个设备连接到局域网上的设备。
c.交换机:用于在局域网内部进行数据包的转发。
d.路由器:用于在不同网络之间进行数据包的转发。
e.网关:在不同协议或网络体系结构之间进行数据包的转换和传输。
f.防火墙:保护网络免受未经授权的访问和网络攻击。
g.服务器:提供网络服务和资源的计算机。
5.网络协议:a.网络协议是计算机网络中用于数据传输和通信的规则和约定。
b.常用的网络协议有TCP(传输控制协议)、IP(互联网协议)、UDP(用户数据报协议)、HTTP(超文本传输协议)等。
网络体系结构概述

网络体系结构概述网络体系结构是指互联网的整体结构和组织方式,包括互联网的核心部分、接入部分和边缘部分,以及这些部分之间的连接方式和协议规范等。
网络体系结构的设计和建设对于整个互联网的性能、可靠性、安全性等方面有着重要的影响。
互联网的核心部分是由一系列的网络节点和网络设备组成的,其中包括了多个主干网、骨干网和互联网交换点。
这些网络节点和设备通过高速传输线路连接在一起,形成了一个庞大的网络基础设施。
核心部分的设计是为了提供高速的全球覆盖能力和可靠的数据传输服务。
为了实现高可用性,核心网络通常使用容错技术和冗余设计,以保证数据能够在网络中的多条路径上传输。
互联网的接入部分是指用户与互联网之间的连接部分,包括了各种形式的接入设备和接入网络。
接入设备包括了个人电脑、手机、路由器、调制解调器等,接入网络包括有线网络(如以太网、光纤网络)和无线网络(如Wi-Fi、蓝牙、移动网络)等。
接入部分是互联网与用户交互的关键环节,其设计关系到用户体验的质量和互联网的可用性。
互联网的边缘部分是指网络中的各种应用系统和服务,包括电子邮件、网页浏览、文件传输、视频流媒体、在线游戏等。
边缘部分的设计要考虑到用户的需求和行为特点,提供方便、快速、安全的应用服务。
边缘部分也是互联网的繁荣之所在,各种应用系统和服务的发展和创新促进了互联网的进一步普及和发展。
网络体系结构中的各个部分之间通过一系列的协议和标准连接在一起,以保证网络的正常运行和互操作性。
最常用的协议是IP协议(InternetProtocol),它是互联网的核心协议,用于在全球范围内对数据包进行路由和传输。
除了IP协议,还有许多其他的协议和标准,如TCP、UDP、HTTP、FTP、DHCP、DNS等,它们各自负责不同的功能和服务。
随着互联网的不断发展和普及,网络体系结构也在不断演化和改进。
目前的互联网体系结构已经趋向于更加分布和去中心化的方向。
例如,内容分发网络(CDN)的出现,使得用户可以更快地获取互联网上的内容;云计算的兴起,使得用户可以通过网络访问和使用各种计算资源和应用服务。
完整版网络体系结构知识点总结

完整版网络体系结构知识点总结网络体系结构是指计算机网络中各个层次之间的关系和相互作用。
它决定了计算机网络中的数据传输方式和协议。
下面是对网络体系结构的完整版知识点总结:1.OSI参考模型:- OSI模型是Open Systems Interconnection(开放系统互联)的缩写,由国际标准化组织(ISO)于1984年提出。
-OSI参考模型将网络通信的过程分解为七个不同的层次,每个层次都有一个特定的功能,并通过接口与相邻的层次进行通信。
-七个层次分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
2.TCP/IP参考模型:- TCP/IP模型是Transmission Control Protocol/Internet Protocol(传输控制协议/网际协议)的缩写,是互联网最常用的体系结构模型。
-TCP/IP参考模型将网络通信的过程分为四个层次,分别是网络接口层、互联网层、传输层和应用层。
-网络接口层提供与硬件设备(如网卡)之间的接口,互联网层负责寻址和路由,传输层提供可靠的数据传输服务,应用层则负责应用程序的通信。
3.物理层:-物理层是最底层的层次,负责将比特流转换为信号发送到物理介质上,以及将接收到的信号转换为比特流。
-物理层的主要功能包括定义物理接口标准、传输速率、传输模式和物理连接标准等。
4.数据链路层:-数据链路层位于物理层之上,负责将比特流划分为帧,并提供可靠的数据传输服务。
-数据链路层的主要功能是进行物理寻址、帧同步、流量控制和错误检测与纠正等。
5.网络层:-网络层负责在计算机网络中寻址和路由,以实现不同计算机之间的通信。
-网络层的主要功能是确定数据包的路径和转发,实现逻辑寻址和分组交换等。
6.传输层:-传输层位于网络层之上,为应用程序提供端到端的可靠数据传输服务。
-传输层的主要功能包括面向连接的传输和无连接的传输,以及流量控制和拥塞控制等。
7.会话层:-会话层负责建立、管理和结束应用程序之间的会话。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络各层的功能
虚电路方式的特点:
➢ 分组按序到达; ➢ 分组携带信息少; ➢ 主机的多个进程可以进行多次呼叫,形成多条虚电路,
如 VC1 和 VC2; ➢ 多条虚电路在某些段可以使用同一条链路,这种功能称
为多路复用 ; ➢ 虚电路方式的缺点是虚呼叫需要连接的建立与断连的时
间。
网络各层的功能
虚电路和数据报的比计算机对数据信息有不同的描述方法 。 表示层试图用一种抽象语法描述信息,以实现不同系统之间 信息表示的统一 。
网络各层的功能
(3)应用层
应用层直接为各种应用服务。应用层是应用进程中与通信有关的 那部分环境空间。在这个空间内,对等的应用实体使用OSI各层提供 的服务交换有意义的信息。应用层的功能是向应用进程提供访问OSI 的手段。OSI在应用层中定义了几个重要的应用层标准,包括虚拟终 端标准VTP,用于不同类型的终端访问网络上不同的主机应用进程; 文件传输、访问和管理标准FTAM,用于不同等系统间能够在网络上 传输文件; 报文处理系统MHS用于对网络上使用非常普遍的电子邮件系统进行标 准化。
网络各层的功能
2)虚电路服务
• 在传输前,发送端先进行虚呼叫 (VC),与接收端进行虚电路的建立 。 • 虚电路建好后,把报文的所有分组按照分组序号顺序发往目的端,由
中间结点进行存储转发 。 • 到达目的结点后,重新组装报文送给主机 。
这里有两条虚电路 VC1和VC2。当然 还可以有多条,每 一条都可以单独传 输一路信息。从图 可见,在H2和H3 之间进行了多路复 用。
第二讲 网络体系结构 (2)
网络各层的功能
三、网络层
(1)基本概念
网络层对整个通信子网进行管理和控制 。 网络层考虑如何把端结点的信息通过若干个中间结点正确 传送到另一个端结点。 一般要采用分组交换的方法 。 分组信息究竟通过哪些结点才能较快地传输,这就是路由 选择问题 网络层对网络上传输的信息进行整体的控制,也就是全网 的流量控制。 当某处发生拥塞时要及时加以解决。
网络各层的功能
(3)服务质量
服务是网络中各层向紧邻的上层提供的一组操作。 任何服务都有服务质量问题 。 网络层服务质量最主要的指标就是可靠性,包括是否有分组 丢失、重复、失序、连接及释放的时延等 。 根据不同类型的子网服务质量,OSI将传输协议分为5类:
0类协议:简单类,是面向A型网络服务的。其功能只是 建立一个简单的端到端的传输连接和在数据传输阶段具有将 长数据报文分段传输的功能。该类协议没有差错恢复和将多 条传输连接复用到一条网络连接上的功能。
网络各层的功能
(2)网络层的服务
网络层向传输层提供服务 两种服务方式: 面向连接和无连接 网络层的功能和作用是在通信端结点之间可靠地传输分 组 面向连接的服务-虚电路 无连接的服务-数据报
网络各层的功能
1)数据报服务
把报文分成包后,各个包可以分别寻找不同的路由,通过不同的链 路到达目的端 。
网络各层的功能
几个重要的协议
下面介绍的几个协议在网络中是经常使用的,包括物理层、链路 层的、网络层的核传输层的。有些协议是一个多层协议的接口描述。 学习这几个协议的目的一是为在今后实际应用中奠定一个基础;二是 作为学习网络协议的例子,有助于读者更好地学习和理解网络协议的 知识。
(1) RS-232-C (2) HDLC协议 (3) X.25协议 (4) PPP协议 (5) TCP/IP协议 (6) NetBIOS协议
1类协议:基于错误恢复类,面向B类子网。 2类协议:多路复用类,面向A类子网。 3类协议:错误恢复类和多路复用类,面向B类子网。 4类协议:错误检测和恢复类,面向C类子网。
五、高层协议
网络各层的功能
(1) 会话层 会话是在应用进程之间交换信息而按一定规则建立起来的一个 暂时联系 。 会话层通过对两个会话用户间的数据流进行方向的控制。 并且通过增强传输数据流的结构性的手段提供服务 。
网络各层的功能
(4)拥塞控制
信道带宽、结点发送与接收缓冲区、处理机速度等称为网络资源。 一般采取拥塞控制的方法限制网络资源的使用 。 拥塞是因为资源紧缺造成的 。 拥塞是由于进入网络的分组数太多造成的,拥塞的结果最终有可能导致 死锁。 通过拥塞控制,防止出现拥挤和死锁 。 把进入网络分组数看作是负载量 从网络上输出的分组数看作是吞吐量,因有下图:
网络各层的功能
(3)路由选择
在网络中,端结点之间的数据传输可以选择多条路径。 网络层如何为分组的存储转发选择一条较好的路径称路由选择 。 路由选择对网络的传输性能及质量有着极大的影响 。
路由选择的关键是网络中必须有一个比较好的路由选择 算法 ;
路由选择的算法主要可以分为两大类: 自适应式(动态变化的) 非自适应式(静态不变的) 非自适应式的算法其路由基本上都是固定的,路由不随网络上的 现行状态变化 自适应的算法其路由随网络的状况随时进行调整
数据报方式的特点 ➢由于包的传输没有延迟,实时性好 ; ➢数据报方式每个分组都应携带着足够的地址信息 ,寻找 路由灵活 ; ➢分组本身信息量花销大 ; ➢分组走了不同的路径 ; ➢各分组到达目的端的时间可能不按序,所以在目的端要进 行排序 ; ➢一般在数据信息量比较少时使用数据报方式,可以提高传 输效率 。
网络各层的功能
四、传输层
(1)传输层的地位
在网络协议中,传输层是至关重要的一层 。 几乎所有著名的网络体系结构中都留有传输层的一席之地 。 传输层属于资源子网,属于主机范畴。 但从功能来看,传输层是面向通信的 。
传输层的地位如图所示:
网络各层的功能
(2)传输层的作用
网络层的服务并不是很完善的 。 数据报服务的差错控制就是由主机完成 。 为了使通信子网的用户能够得到统一的通信服务,就有必 要设置一个传输层 。 传输层弥补通信子网提供的服务的差异和不足 。 在通信子网提供的服务基础上,利用本身的传输协议,增 加了服务功能,使得对两端的网络用户来说,各通信子网 是透明的 。 链路层使物理链路变成了一条无差错的链路,传输层使得 通信子网变成了一个无差错的网络 。