《数学史》课程教学大纲

合集下载

数学史教学大纲(修改2)

数学史教学大纲(修改2)

数学系数学与应用数学(师范类)本科专业数学史教学大纲一、课程基本信息课程编号:课程类别:专业限选课适应专业:数学与应用数学(师范类)课程简介:数学史是高等师范院校数学系高年级的限定选修课。

掌握数学史的基本理论和基本知识是数学系毕业生的必备修养。

数学史课程在整个数学系的教学计划中占有重要的地位。

数学史是数学的一个分支,也是自然科学史的一个分支。

数学史研究所使用的方法主要是历史科学的方法,因此,数学史与历史学和数学关系密切。

课程总的教学时数:36学时授课教材:数学史概论,李文林,高等教育出版社,2004年6月。

吴文俊院士对数学史概论评价说:“我认为此书可作为置诸案头随时翻阅的精品之一。

不论是专业的数学家,还是数学的业余爱好者,甚至是其它领域的非数学工作者,翻阅此书都会开卷有益并感到乐趣。

”参考书目20世纪数学经纬,张奠宙著,华东师范大学出版社,2002年3月。

二、课程教育目标通过数学史的教学,使学生掌握数学发展的历史及其发展的基本规律,懂得一些数学方法论的知识,了解一些数学家的简历及其数学思想,从中吸取经验和教训,并得到启迪,为以后从事科学研究工作和教育教学工作打下坚实的基础。

三、教学内容与要求第一章绪论数学史,数学史的分期,数学史的研究状况,学习数学史的意义和学习方法。

2 本章重点是使学生掌握学习数学史的意义和学习方法。

第二章 数学的萌芽与常量数学时期古代埃及、巴比伦、印度的数学,中国古代数学,古希腊数学。

算术和代数。

通过本章教学,使学生了解古代埃及、巴比伦、印度的数学,中国古代数学,古希腊数学的基本概况,了解算术和代数发展的一般情况。

本章重点是使学生掌握《九章算术》和《几何原本》的有关内容。

第三章 变量数学与近代数学数学发展的新时期,解析几何的产生与发展,微积分的孕育、产生和发展,数论及其猜想的意义,线性代数的产生与发展,常微分方程、偏微分方程、积分方程、概率论的产生与发展,射影几何学、微分几何学、非欧几何学的产生与发展,复变函数论、实变函数论的产生与发展,拓扑学、泛函分析、抽象代数的产生与发展,中国数学事业的复苏。

《数学史》教学大纲

《数学史》教学大纲

《数学史》教学大纲课程编号:学分:总学时:54适用专业:数学与应用数学开课学期:先修专业:无后续课程:无一、课程的性质、目的和要求(一)课程的性质:选修课程。

(二)课程教学目的:能够以数学的、历史的眼光分析数学发展的内在原因,运用辩证唯物主义的哲学方法剖析数学发展史。

(三)课程基本要求:全面了解数学历史的发展过程,了解各个时期主要数学家的生平事迹和对数学发展的贡献,掌握重要的数学事件,理解主要的数学理论的形成过程以及历史文化背景。

二、本课程主要教学内容及时间安排第一章:综述(8学时)1、教学基本要求:分三阶段综合叙述数学历史发展过程,掌握各阶段的框架和脉络,理解中外各主要数学中心发展、转移、变化的过程。

2、教学重点:在教学上要求把握一个整体、三个阶段的特点(古典数学、近代数学和现代数学)。

3、教学难点:4、本章知识点:⒈数学历史发展过程(5学时),作业量:1。

⒉主要数学中心发展、转移、变化的过程(3学时),作业量:1。

第二章:东、西方初等数学的代表作(4学时)1、教学基本要求:通过全面了解东、西方初等数学的代表作,即中国的《九章算术》和古希腊的《几何原本》的内容、背景和特点,把握两者的深刻的思想内涵和学术文化特征。

2、教学重点:把握《九章算术》和《几何原本》深刻的思想内涵和学术文化特征。

3、教学难点:4、本章知识点:⒈数学历史发展过程(2学时),作业量:1。

⒉主要数学中心发展、转移、变化的过程(2学时),作业量:1。

第三章:作图工具与计算工具(2学时)1、教学基本要求:通过中、西方古代作图工具、计算工具的形成、发展过程的介绍,重点把握古希腊作图手段——尺规作图法,以及中国古代著名的计算工具——算筹的具体情况和历史背景。

2、教学重点:把握古希腊作图手段——尺规作图法,以及中国古代著名的计算工具——算筹的具体情况和历史背景。

3、教学难点:尺规作图法。

4、本章知识点:⒈尺规作图法及算筹的具体情况和历史背景。

《数学史与数学文化》教学大纲

《数学史与数学文化》教学大纲

《数学史与数学文化》教学大纲
《数学史与数学文化》课程教学大纲
【教学方法】课堂讲授
【教学内容】1、三、四次方程求根公式的发现
2、高次方程可解性问题的解决
3、伽罗瓦与群伦
4、古希腊三大几何问题的解决
第八讲对无穷的深入思考
【教学目的】使学生了解有限和无限的辩证关系【教学重点】康托儿的集合论
【教学难点】消除集合悖论
【教学方法】课堂讲授
【教学内容】1、古代的无穷观念
2、无穷集合论的创立
3、集合论的进一步发展与完善
第九讲中国现代数学的开拓与发展
【教学目的】使学生了解现代数学发展概观【教学重点】中国现代数学发展状况
【教学难点】现代数学的最新进展
【教学方法】课堂讲授
【教学内容】1、中国现代数学发展概观
2、人民的数学家—华罗庚
3、当代几何大师—陈省身
2018.1.31 4/4。

数学史专题教学大纲(最新)

数学史专题教学大纲(最新)

数学史专题教学大纲(最新)数学史专题教学大纲数学史专题教学大纲是指关于数学史的课程大纲,它通常包括以下内容:1.课程简介:介绍该课程的名称、目的、学时、学分以及授课教师。

2.学科概述:介绍数学史的基本概念、历史背景以及数学学科的发展历程。

3.古代数学:介绍古代数学的发展,包括古埃及、古巴比伦、古印度和中国等文明中的数学成就。

4.中世纪数学:介绍中世纪欧洲数学的发展,包括阿拉伯数学的影响和文艺复兴时期数学革命的兴起。

5.现代数学:介绍现代数学的发展,包括科学革命和工业革命对数学的需求以及20世纪数学的各个分支的崛起和发展。

6.重要人物和思想:介绍数学史上的重要人物和思想,包括牛顿、莱布尼茨、欧拉、高斯、布尔巴基等。

7.重要理论和思想:介绍数学史上的重要理论和思想,包括算术、几何、微积分、概率论等。

8.数学在现实生活中的应用:介绍数学在现实生活中的应用,包括计算机科学、物理学、经济学等领域的广泛应用。

9.课程评估:介绍该课程的评估方式,包括作业、考试和论文等评估方式。

具体的教学大纲可以根据不同的学校和教师进行调整和设计。

数学启航班教学大纲数学启航班的教学大纲主要包括以下几个方面:1.教学内容:__基础知识:学生将学习基础数学知识,如整数、分数、小数、比例、百分数等。

__数学应用:学生将学习简单的数学应用,如购物、时间管理、计数等。

__数学概念:学生将学习基本的数学概念,如加法、减法、乘法、除法、分数、小数等。

2.教学方法:__启发式教学:以启发式为主线,从学生的实际出发,通过直观、操作、观察、比较、分析等手段,启发诱导学生,鼓励学生独立思考,教师主要起引导作用。

__问题导向教学:以问题为引导,促使学生去思考、去分析、去解决,在解决问题的过程中,让学生主动掌握知识。

3.教学目标:__知识目标:学生能够掌握基本的数学知识,能够应用数学知识解决实际问题。

__能力目标:学生能够独立思考,具有分析问题和解决问题的能力。

数学史课程教学大纲

数学史课程教学大纲

《数学史》课程教学大纲学时数:48学分数:3适用专业:数学与应用数学、信息与计算数学、数学教育一、课程的性质、目的和任务数学史是师范本科数学专业必修的重要基础课程之一。

任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。

它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。

数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。

数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。

这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。

讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。

二、本课程与其它课程的关系本课程是线性代数、数学分析、微分方程、高等几何、概率统计等学科的基础课程。

不学数学史,在很大程度上数学知识体系是不健全的。

不了解数学史就不能全面的了解数学学科。

数学科学是一个不可分割的整体,它的生命力正是在于各个部分之间的联系,数学史是对数学各课程的高度综合与概括,是将数学各课程联系起来的一门综合性的数学课程,是研究数学各课程的相互关系的课程,所以学习数学史对于学习数学其它课程能产生非常巨大的积极影响。

三、课程教学要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。

该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。

通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。

数学史校本课程纲要

数学史校本课程纲要

“数学史”校本课程纲要一般项目1、研发教师:胡青2、课程类型:科学素养类3、科目名称:数学史4、授课时间:一学期5、授课对象:初一具体内容(一)课程目标以全面贯彻落实课改精神为宗旨,以开展校本课程为契机,在对学生进行科学知识教育的同时普及数学史方面所应基本具备的知识,全面推进素质教育,为培养多方面发展的学生奠定基础。

1.通过教学,让学生了解数学经历的发展进程;2.通过教学,培养学生发现问题、解决问题等自主学习的能力;3.通过教学,增强学生的数学思想意识,体会数学与其它学科的联系;4.通过教学,增强学生热爱数学的情感,体会数学学习中的乐趣,并能较好的将数学运用到实际生活当中解决实际问题。

(二)课程内容本课程根据学生需求、发展目标共安排六方面11项内容第1次走进美妙的数学数学史话概述数学的起源与早期发展第2次古代希腊数学1.论证数学的发端2.泰勒斯与毕达哥拉斯3.雅典时期的希腊数学4.欧几里德与《数学原本》5.阿基米德的数学成就第3次中世纪的中国数学1.《周髀算经》与《九章算术》2.从刘徽到祖冲之3.从“贾宪三角”到“正负开方”术4.中国剩余定理第4次印度与阿拉伯数学第5次近代数学的兴起走近大师第6次数学奖(数学诺贝尔)简介第7次代数学的诞生第8次几何学的变革1.欧几里德平行公设2.几何学的统一第9次现代数学成果十例第10次历次国际数学家大会简介第11次费马大定理的证明以及若干未决猜想的进程(三)课程实施建议1、实施方法:本专题的内容安排可以采取多种形式。

既可以由古至今,追寻数学发展的历史;也可以从现实的,学生熟悉的数学问题出发,追根溯源,回眸数学发展中的重要事件和人物。

2、实施方式:“数学史选讲”课的“教学方式应灵活多样,可采取讲故事、讨论交流、查阅资料、撰写报告等方式进行。

教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件和人物,写出自己的研究报告。

”在教学的时间安排上,可考虑教师的课堂讲授与学生课外阅读、查阅资料相结合。

《数学史概论》教学大纲

《数学史概论》教学大纲

《数学史概论》教学大纲
一、教学内容
本课程旨在使学生熟悉数学史的概念,系统地学习数学史发展的主要
进程,以及数学史上一些重要的历史人物对数学发展的影响。

二、教学目标
1.掌握数学史的概念;
2.了解数学史发展的主要进程;
3.学习数学史上的重要历史人物及其影响;
4.能够通过比较历史和现代数学思想,增强对数学发展中变化的认识。

三、教学内容
1.数学史的概念:数学史的内容,历史的意义和价值,数学的概念,
数学发展的历史演进;
2.两河流域文明时期的数学发展:古埃及数学,古狄克斯数学,古希
腊数学,古巴比伦数学,古印度数学;
3.中世纪数学发展:阿拉伯数学,拉丁数学,中世纪欧洲数学;
4.文艺复兴时期的数学发展:新古典数学,新的科学运动;
5.十八世纪数学发展:意大利的数学,英国的数学,法国的数学,德
国的数学;
6.十九世纪数学发展:逻辑学,国际数学会的建立,德国数学的发展;
7.二十世纪数学发展:数学分支学科的发展,新领域的开拓;
8.数学史的重要人物:古代的数学家、十八世纪的数学家、十九世纪的数学家、二十世纪的数学家及其贡献。

四、教学方法
1.以讲授与讨论相结合的方式。

数学史教学大纲

数学史教学大纲

《数学史》教学大纲第一部分课程性质与目的要求一、课程性质:《数学史教程》是我系数学与应用数学专业的一门选修课。

二、课程目的要求目的要求:本课程主要讲述数学思想是怎样经过漫长的历史岁月,经过多个朝代、多个地区、多个民族发展而成,要揭示人民和数学家们用怎样卓越的思想方法攻克数学难题,以无畏的胆略和远见卓识的精神推动数学史发展的。

从教育工作者的角度掌握数学教育的根本方法,开阔眼界,激发兴趣,提高文化素养。

第二部分教学时数本课程学分为2学分。

教学时间具体分配见下表:教学内容教学时数第0章数学史─人类文明史的重要篇章第1章数学的起源与早期发展2第2章古代希腊数学4第3章中世纪的中国数学4第4章印度与阿拉伯的数学2第5章近代数学的兴起2第6章微积分的创立4第7章分析时代2第8章代数的新生2第9章几何学的变革2第10章分析的严格化2第11章20世纪数学概观(1)纯粹数学的主要趋势2第12章20世纪数学概观(2)空前发展的应用数学2第13章20世纪数学概观(3)现代数学成果10例2第14章数学与社会2合计36第三部分教学内容与要求一、教学内容:第0章数学史--人类文明史的重要篇章数学史的意义、什么是数学--历史的理解、关于数学史的分期第1章数学的起源与早期发展数与形概念的产生、河谷文明与早期数学第2章古代希腊数学论证数学的发端、黄金时代--亚历山大学派、亚历山大后期和希腊数学的衰落第3章中世纪的中国数学《周髀算经》与《九章算术》、从刘徽到祖冲之、宋元数学第4章印度与阿拉伯的数学印度数学、阿拉伯数学第5章近代数学的兴起中世纪的欧洲、向近代数学的过渡、解析几何的诞生第6章微积分的创立半个世纪的酝酿、牛顿的"流数术"、莱布尼茨的微积分、牛顿与莱布尼茨第7章分析时代微积分的发展、微积分的应用与新分支的形成、18世纪的几何与代数第8章代数的新生代数方程的可解性与群的发现、从四元数到超复数、布尔代数、代数数论第9章几何学的变革欧几里德平行公设、非欧几何的诞生、射影几何的繁荣、几何学的统一第10章分析的严格化柯西与分析基础、分析的算术化、分析的扩展第11章20世纪数学概观(Ⅰ)纯粹数学的主要趋势新世纪的序幕、更高的抽象、数学的统一化、对基础的深入探讨第12章20世纪数学概观(Ⅱ)空前发展的应用数学应用数学的新时代、数学向其他科学的渗透、独立的应用学科、计算机与现代数学第13章20世纪数学概观(Ⅲ)现代数学成果10例哥德尔不完全性定理、高斯-博内公式的推广、米尔诺怪球、阿蒂亚-辛格指标定理、孤立子与非线性偏微分方程、四色问题、分形与混沌、有限单群分类、费马大定理的证明、若干著名未决猜想的进展第14章数学与社会数学与社会进步、数学发展中心的迁移、数学的社会化二、教学要求:了解教材中所介绍的数学概念、数学方法的起源与发展,掌握数学思想的起源与发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学史》课程教学大纲课程名称:数学史英文名称:History of Mathematics学时数:32适用专业:数学与应用数学一、课程的性质、目的和任务数学史是数学与应用数学专业必修的重要基础课程之一。

任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。

它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。

数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。

数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。

这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。

讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。

二、本课程与其它课程的关系本课程是线性代数、数学分析、微分方程、高等几何、概率统计等学科的基础课程。

不学数学史,在很大程度上数学知识体系是不健全的。

不了解数学史就不能全面的了解数学学科。

数学科学是一个不可分割的整体,它的生命力正是在于各个部分之间的联系,数学史是对数学各课程的高度综合与概括,是将数学各课程联系起来的一门综合性的数学课程,是研究数学各课程的相互关系的课程,所以学习数学史对于学习数学其它课程能产生积极影响。

三、课程教学要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。

该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。

通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。

基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。

四、建议使用的教材及参考书目使用教材:朱家生,数学史[M],北京:高等教育出版社,2011年第二版参考书目:1、李文林,数学史教程[M],北京:高等教育出版社,20002、李文林,数学史概论[M],北京:高等教育出版社,2011年第三版3、袁向东冯绪宁,数学及其历史[M],北京:高等教育出版社,20114、斯科特(英),数学史,北京:中国人民大学出版社,2010五、课程教学目标本课程的教学目标讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,在教学方法上要彻底改革,做到:( 1 )让学生系统掌握数学的基本思想方法;( 2 )启迪学生“数学”的思想,并培养学生努力提高自己的创新能力;( 3 )加强对知识重点与难点的讲解,组织学生进行课堂讨论,促使学生对重点及难点的牢固掌握;( 4)加强对学生自学能力的指导与培养;( 5 )加强对学生能力的训练。

绪论数学史─人类文明史的重要篇章(讲解1学时)一、目的要求教学要求:通过“绪论”的学习,要求学生必须掌握关于数学史的研究对象、研究内容、研究方法,以及数学史分期的标准;熟悉关于中外国数学史具体的分期模式,了解数学史与数学教育的关系和数学史研究的概况;逐步学会运用数学史的资料、数学史的研究成果于数学研究和数学教育之中。

二、主要内容1、学习数学史的目的和意义。

2、什么是数学——历史的理解。

3、关于数学史的分期。

三、重点与难点重点:数学史的分期;难点:数学史与数学教育。

第1章源自河谷的古老文明——数学的萌芽(讲解1学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于数概念的形成、数域的扩展的一般规律;掌握古埃及和古巴比伦数学产生的依据,及其在算术、代数、几何等不同学科中的重要成果,进位制的不同导致学科发展的不同倾向。

二、主要内容1、数与形概念的产生2、河谷文明与早期数学3、古埃及的数学4、古巴比伦的数学5、古巴比伦的天文学三、重点与难点重点:识数、记数、进位制;难点:正四棱台体积公式推导的猜测。

第2章地中海的灿烂阳光——希腊的数学(讲解6学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于数学公理化方法产生、发展的重要历史进程和一般规律;了解古希腊不同的数学学派对数学产生的影响;了解阿基米德、欧几里得和阿波罗尼奥斯的主要数学贡献,了解《几何原本》的内容、结构及其特色,明确《几何原本》诞生的重大意义。

了解关于数的科学(即数论)的发展历程,了解丢番图方程的特色,学会运用于教学之中。

二、主要内容1、论证数学的发端2、泰勒斯与毕达哥拉斯3、雅典时期的希腊数学4、欧几里得与《几何原本》5、阿基米德的数学成就6、阿波罗尼奥斯与圆锥曲线论7、亚历山大后期和希腊数学的衰落三、重点与难点重点:公理化方法,毕达哥拉斯学派,《几何原本》;难点:古希腊的哲学思想对数学的深刻影响第3章来自东方的继承者与传播者——印度与阿拉伯的数学(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于印度和阿拉伯数学的特色,及其在现代数学中的重要影响;初步了解阿拉伯在保存和传播希腊、印度甚至中国的文化,最终为近代欧洲的文艺复兴准备学术前提方面做出了巨大贡献。

二、主要内容1、印度的数学2、古代《绳法经》3、“巴克沙利手稿”与零号4、“悉檀多”时期的印度数学5、印度的位值制记数和三角学6、阿拉伯的数学7、花拉子米的数学贡献三、重点与难点重点:花拉子米对代数学的贡献,阿拉伯数学的传承作用;难点:“悉檀多”时期的印度数学。

第4章源远流长、成就卓著的中国古代数学(讲解4学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于中国传统数学的特色,及其在现代数学中的重要影响;初步学会翻译中国古代数学文献,要求准确地用现代数学的术语、符号表示古代典型的算法模型,并能分析其天元术原理;加强弘扬中华古代文明的意识。

二、主要内容1、《周髀算经》与《九章算术》2、古代背景3、《周髀算经》4、《九章算术》5、从刘徽到祖冲之6、刘徽的数学成就7、祖冲之与祖暅8、《算经十书》9、宋元时期数学的兴盛10、从“贾宪三角”到“正负开方”术11、中国剩余定理12、内插法与垛积术13、“天元术”与“四元术”14、明清时期中国数学的衰落与复苏15、中国传统数学的特点三、重点与难点重点:刘徽、祖冲之等中国古代数学家的突出贡献,中国古算技法;难点:古算法的注释。

第5章希望的曙光——欧洲文艺复兴时期的数学(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于代数学形成、发展的一般规律;熟悉用几何学解释代数学法则的方法、原理及其历史由来;代数的独立对数学发展的影响。

二、主要内容1、中世纪的欧洲数学2、向近代数学的过渡3、透视理论的创立与三角学的独立4、三、四次方程的解法5、韦达与符号代数6、对数的发明三、重点与难点重点:代数学的发展;难点:对数原理。

第6章数学转折点——解析几何的产生(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生掌握关于解析几何形成、发展的一般规律;认识变量数学产生在数学发展过程中的重要意义;熟悉笛卡儿、费马等数学家的重要工作,能从中悟出人生的哲理,并运用于今后的教学之中。

二、主要内容1、解析几何学产生的背景2、笛卡儿与他的《几何学》3、费马与他的解析几何4、解析几何的进一步完善和发展三、重点与难点重点:解析几何产生的重大意义;难点:笛卡尔和费马创立解析几何的理念。

第7章巨人的杰作——微积分的创立(讲解3学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于微积分学形成、发展的历史进程和一般规律;熟悉牛顿和莱布尼兹不同的推导过程,以及相关数学家的重要工作;了解分析学进一步发展的趋势。

二、主要内容1、微积分产生的背景2、先驱们的探索3、牛顿的《原理》与微积分4、莱布尼茨的微积分5、莱布尼茨微积分的发表6、牛顿与莱布尼茨优先权之争三、重点与难点重点:牛顿和莱布尼兹的突出贡献,穷竭法、不可分量、微积分方法;难点:牛顿和莱布尼兹的分析推导。

第8章赌徒的难题——概率论的产生与发展(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于概率论形成、发展的历史进程;熟悉古典概型的成因,并能分析其中的利弊;知道概率论的公理化过程;了解统计学进一步发展的趋势,加强在基础教育中进行概率统计教学的观念。

二、主要内容1、赌徒的难题2、来自保险业的推动3、概率论的进一步发展4、概率论的应用三、重点与难点重点:概率论的产生,帕斯卡的贡献;难点:概率论的公理化。

第9章分析时代——微积分的进一步发展(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生熟悉分析基础严密化的历史进程,微积分的进一步发展刺激和推动了许多数学分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。

了解随着分析学的严格化及扩展所产生的新分支——复分析、解析数论和数学物理方程的建立。

二、主要内容1、来自物理学的问题——微分方程2、欧拉对分析基础严密化的重要作用2、伯努利兄弟的变分法3、柯西与分析基础4、魏尔斯特拉斯对分析的算术化的贡献5、微积分的应用与新分支的形成三、重点与难点重点:欧拉和柯西等数学家的贡献,常微分方程、偏微分方程和变分法的产生背景;难点:变分法和摄动理论。

第10章痛苦的分娩——几何学的革命(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握非欧几何学形成、发展的一般规律;熟悉用射影几何学中如何剔除“度量”观念的方法、原理及其历史由来;熟悉关于几何学统一的发展历程和几何学的分类。

二、主要内容1、欧几里得平行公设2、高斯、波尔约和罗巴切夫斯基的突破性工作2、非欧几何的诞生3、非欧几何的发展与确认4、黎曼对非欧几何的贡献5、几何学的统一三、重点与难点重点:非欧几何产生的数学文化背景,罗巴切夫斯基突出贡献;难点:非欧几何的模型。

第11章年轻人的事业——代数学的解放(讲解2学时)一、目的要求教学要求:通过本章学习,要求学生必须掌握关于代数方程的可解性;了解关于群论和环论的发展历程;知道四元数产生的数学背景,了解伽罗瓦的故事和哈密顿的事迹,能从中悟出人生的哲理。

相关文档
最新文档