20XX年甘肃高考数学考试说明及大纲解读.doc
2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。
一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。
2. 立方根:立方根的概念、立方根的计算、立方根的性质。
3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。
二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。
2. 一次函数:一次函数的定义、一次函数的图象与性质。
3. 二次函数:二次函数的定义、二次函数的图象与性质。
4. 分式函数:分式函数的定义、分式函数的图象与性质。
5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。
6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。
三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。
2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。
3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。
4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。
四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。
2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。
3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。
4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。
全国统一高考数学试卷(大纲版)(含解析版)

全国统一高考数学试卷(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a=()A.9B.6C.﹣9D.﹣611.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C 交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x﹣2,则f(﹣1)=.14.(5分)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.全国统一高考数学试卷(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【考点】1F:补集及其运算.【专题】11:计算题.【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】56:三角函数的求值.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【考点】R5:绝对值不等式的解法.【专题】11:计算题;59:不等式的解法及应用.【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【考点】DA:二项式定理.【专题】5I:概率与统计.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.=C x 8﹣r2 r【解答】解:(x+2)8展开式的通项为T r+1令8﹣r=6得r=2,∴展开式中x6的系数是2 2C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.7.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【考点】89:等比数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题8.(5分)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设椭圆的方程为,根据题意可得=1.再由AB经过右焦点F2且垂直于x轴且|AB|=3算出A、B的坐标,代入椭圆方程得,两式联解即可算出a2=4,b2=3,从而得到椭圆C的方程.【解答】解:设椭圆的方程为,可得c==1,所以a2﹣b2=1…①∵AB经过右焦点F2且垂直于x轴,且|AB|=3∴可得A(1,),B(1,﹣),代入椭圆方程得,…②联解①②,可得a2=4,b2=3∴椭圆C的方程为故选:C.【点评】本题给出椭圆的焦距和通径长,求椭圆的方程.着重考查了椭圆的标准方程和椭圆的简单几何性质等知识,属于基础题.9.(5分)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.2【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;HL:y=Asin(ωx+φ)中参数的物理意义.【专题】11:计算题;57:三角函数的图像与性质.【分析】利用函数图象已知的两点的横坐标的差值,求出函数的周期,然后求解ω.【解答】解:由函数的图象可知,(x0,y0)与,纵坐标相反,而且不是相邻的对称点,所以函数的周期T=2()=,所以T==,所以ω==4.故选:B.【点评】本题考查三角函数解析式以及函数的周期的求法,考查学生的视图用图能力.10.(5分)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a=()A.9B.6C.﹣9D.﹣6【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】先求导函数,再利用导数的几何意义,建立方程,即可求得a的值.【解答】解:∵y=x4+ax2+1,∴y′=4x3+2ax,∵曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,∴﹣4﹣2a=8∴a=﹣6故选:D.【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.11.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【考点】MI:直线与平面所成的角.【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.12.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C 交于A,B两点,若,则k=()A.B.C.D.2【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x﹣2,则f(﹣1)=﹣1.【考点】3T:函数的值.【专题】11:计算题.【分析】利用函数的周期,求出f(﹣1)=f(1),代入函数的解析式求解即可.【解答】解:因设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x﹣2,则f(﹣1)=f(1)=1﹣2=﹣1.故答案为:﹣1.【点评】本题考查函数的周期的应用,函数值的求法,函数的定义域是解题的关键,考查计算能力.14.(5分)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有60种.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】6名选手中决出1名一等奖有种方法,2名二等奖,种方法,利用分步计数原理即可得答案.【解答】解:依题意,可分三步,第一步从6名选手中决出1名一等奖有种方法,第二步,再决出2名二等奖,有种方法,第三步,剩余三人为三等奖,根据分步乘法计数原理得:共有•=60种方法.故答案为:60.【点评】本题考查排列、组合及简单计数问题,掌握分步计数原理是解决问题的关键,属于中档题.15.(5分)若x、y满足约束条件,则z=﹣x+y的最小值为0.【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题;59:不等式的解法及应用.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=﹣x+y对应的直线进行平移,可得当x=y=1时,目标函数z取得最小值,从而得到本题答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(1,1),B(0,),C(0,4)设z=F(x,y)═﹣x+y,将直线l:z=﹣x+y进行平移,当l经过点A时,目标函数z达到最小值=F(1,1)=﹣1+1=0∴z最小值故答案为:0【点评】题给出二元一次不等式组,求目标函数z=﹣x+y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【考点】84:等差数列的通项公式;8E:数列的求和.【专题】11:计算题;54:等差数列与等比数列.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】GP:两角和与差的三角函数;HR:余弦定理.【专题】58:解三角形.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A ﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.【考点】LW:直线与平面垂直;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(I)取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE,证明PB⊥OE,OE∥CD,即可证明PB⊥CD;(II)取PD的中点F,连接OF,证明O到平面PCD的距离OF就是A到平面PCD的距离,即可求得点A到平面PCD的距离.【解答】(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE由△PAB和△PAD都是等边三角形知PA=PB=PD∴OA=OB=OD,即O为正方形ABED对角线的交点∴OE⊥BD,∴PB⊥OE∵O是BD的中点,E是BC的中点,∴OE∥CD∴PB⊥CD;(II)取PD的中点F,连接OF,则OF∥PB由(I)知PB⊥CD,∴OF⊥CD,∵,=∴△POD为等腰三角形,∴OF⊥PD∵PD∩CD=D,∴OF⊥平面PCD∵AE∥CD,CD⊂平面PCD,AE⊈平面PCD,∴AE∥平面PCD∴O到平面PCD的距离OF就是A到平面PCD的距离∵OF=∴点A到平面PCD的距离为1.【点评】本题考查线线垂直,考查点到面的距离的计算,考查学生转化的能力,考查学生分析解决问题的能力,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(I)设A1表示事件“第二局结果为甲胜”,A2表示事件“第三局甲参加比赛结果为甲负”,A表示事件“第四局甲当裁判”,可得A=A1•A2.利用相互独立事件的概率计算公式即可得出;(II)设B1表示事件“第一局比赛结果为乙胜”,B2表示事件“第二局乙参加比赛结果为乙胜”,B3表示事件“第三局乙参加比赛结果为乙胜”,B表示事件“前4局中乙恰好当1次裁判”.可得B=,利用互斥事件和相互独立事件的概率计算公式即可得出.【解答】解:(I)设A1表示事件“第二局结果为甲胜”,A2表示事件“第三局甲参加比赛结果为甲负”,A表示事件“第四局甲当裁判”.则A=A1•A2.P(A)=P(A1•A2)=.(II)设B1表示事件“第一局比赛结果为乙胜”,B2表示事件“第二局乙参加比赛结果为乙胜”,B3表示事件“第三局乙参加比赛结果为乙胜”,B表示事件“前4局中乙恰好当1次裁判”.则B=,则P(B)=P()=+=+=.【点评】正确理解题意和熟练掌握相互独立事件和互斥事件的概率计算公式是解题的关键.21.(12分)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】16:压轴题;53:导数的综合应用.【分析】(I)把a=代入可得函数f(x)的解析式,求导数令其为0可得x=﹣,或x=﹣,判断函数在区间(﹣∞,﹣),(﹣,﹣),(﹣,+∞)的正负可得单调性;(II)由f(2)≥0,可得a≥,当a≥,x∈(2,+∞)时,由不等式的证明方法可得f′(x)>0,可得单调性,进而可得当x∈[2,+∞)时,有f(x)≥f (2)≥0成立,进而可得a的范围.【解答】解:(I)当a=时,f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3,令f′(x)=0,可得x=﹣,或x=﹣,当x∈(﹣∞,﹣)时,f′(x)>0,f(x)单调递增,当x∈(﹣,﹣)时,f′(x)<0,f(x)单调递减,当x∈(﹣,+∞)时,f′(x)>0,f(x)单调递增;(II)由f(2)≥0,可解得a≥,当a≥,x∈(2,+∞)时,f′(x)=3(x2+2ax+1)≥3()=3(x﹣)(x﹣2)>0,所以函数f(x)在(2,+∞)单调递增,于是当x∈[2,+∞)时,f(x)≥f(2)≥0,综上可得,a的取值范围是[,+∞)【点评】本题考查利用导数研究函数的单调性,涉及函数的最值问题,属中档题.22.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】14:证明题;15:综合题;16:压轴题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.第21页(共21页)。
甘肃省普通高中学业水平考试大纲(数学)

甘肃省普通高中学业水平考试数学学科考试大纲(试行)本大纲是依据现行《普通高中数学课程标准(实验)》(以下简称《标准》)和《甘肃省普通高中学业水平考试方案(试行)》,结合普通高中学业水平考试的性质和特点,以及我省普通高中数学学科教学实际制订的。
它是我省普通高中学业水平考试数学学科命题的主要依据。
一、考试的性质和目的普通高中学业水平考试是在教育部领导下,由省级教育行政部门组织实施的国家级考试,它是考核高中毕业生数学学习是否合格的重要手段,也是检查、评估数学学科教学质量的一种重要手段。
普通高中数学学科学业水平考试,力求从全省普通高中高二年级学生的实际数学学习水平出发,着重考查学生的数学基础知识、基本技能和基本的数学思想方法,并注意考查空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力,以及应用意识、创新意识、个性品质和数学探究、数学建模、数学文化的内容。
1、基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的通性通法。
通性通法主要包括下述内容:(1)基本数学方法:换元法、待定系数法、配方法、消元法、坐标法、参数法;(2)数学逻辑方法:综合法、分析法、演绎法、反证法、穷举法;(3)数学思维方法:观察与比较、概括与抽象、特殊与一般、分析与综合、类比与归纳;(4)数学思想方法:函数与方程、数形结合、分类讨论、化归(等价转化)。
基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等。
基本数学思想方法是指:数学知识在更高层次上的抽象和概括,它蕴含在数学知识发生、发展和应用的过程中。
数学思想方法主要包括函数与方程思想、数形结合思想、分类讨论思想、化归思想等。
数学思想方法的考查要与数学知识的考查结合进行,通过对数学知识的考查,反应学生对数学思想方法的理解和掌握程度。
考查时,要从学科整体意义上考虑,注重通性通法,淡化特殊技巧。
2、空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件做出或画出图形;会运用图形与图表等手段形象地揭示问题本质。
2020年新课标高考数学大纲解析

2020 年新课标高考数学大纲剖析由教育部考试中心编写的《 2014 年一般高等学校招生全国一致考试大纲》已新鲜出炉。
此次出炉的新考试大纲与昨年对照可否有变化 ?兰州一中、西北师大附中、兰大附中的高三老师对大纲进行解读为考生支招。
据介绍,今年《考试大纲》与昨年对照,变化较小,高考命题将保持牢固。
数学:提高解题正确性和速度兰大附中教师刘瑞平李虎【大纲剖析】2014 年新课标全国卷高考数学考试大纲和 2013 年《考试大纲》比较,在内容,能力要求,时间 ( 分值 ) ,题型 , 题量,包括考试说明后边的题型示例等都没有发生变化,考生可正常复习,不用注意增减知识点。
【备考建议】一是整合、牢固。
一轮复习方才结束,但二轮复习要注意回归课本,浓缩课本知识,进一步夯实基础,掌握方法,凝练思想,提高解题的正确性和速度。
二是查漏补缺,保强攻弱。
在二轮复习中,对自己的单薄环节要加强学习,平衡发展,加强各章节知识之间的横向联系,依照自己的本质作出合理的安排,每天进步一点。
三是提高运算能力,加强训练。
历年高考中运算题型都占很大比率,高考中的三角函数题,立体几何题,剖析几何题,函数与导数题,都要求很强的运算能力。
在二轮复习中必然要重视运算技巧,粗中有细,提高运算正确性和速度。
四是解题快慢结合,改错反思。
审题拟定解题方案要慢,不要急于解题,要合适地选择好的方案,多想少算,一旦方法选定,解题动作要快要自信,立足一次成功,平时要注意积累错误,特别是易错点纠正要认真,更重要的是搜寻错误原因,及时总结。
取人之长补己之短,把问题解决在高考从前。
五是重视和加强选择题的训练和研究。
对于选择题不仅需答案正确,还要优化解题过程,提高速度。
尽量灵便运用特值法、消除法、数形结合法、估计法等。
(新课标)2020年高考数学考试说明 文

2020年高考文科数考试大纲(新课标)I.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。
德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ.考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2020年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。
数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。
一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实脸)》(以卜简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。
处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次。
(1)了解:要求对所列知识的含义有初步的、感性的认识.知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。
比较、判断,初步应用等。
(3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
数学高考大纲完全解析

数学高考大纲完全解析数学一直被认为是一门重要且难以理解的学科。
对于许多学生而言,高考数学无疑是一个巨大的挑战。
然而,只要我们理解并熟悉数学高考大纲,充分准备,就能够应对各种难题。
在本文中,我们将对数学高考大纲进行全面解析。
一、数与式数学高考大纲的第一部分是“数与式”。
这一部分主要包括数的性质与关系、式子的运算等内容。
在数的性质与关系方面,我们需要了解数的分类、数的运算性质、数的整除性质等知识点。
在式子的运算方面,我们需要掌握加减乘除、分式的运算、带有绝对值的计算等技巧。
此外,我们还需要注意解决问题时的合理估算与四舍五入等方法。
二、函数与方程数学高考大纲的第二部分是“函数与方程”。
函数是现代数学的重要概念,对于高考数学也有很大的分量。
在这一部分中,我们需要了解函数的概念与性质、函数的图像与性质等内容。
另外,我们还需要掌握函数的运算、函数的应用以及方程的解法等技巧。
三、几何与变换数学高考大纲的第三部分是“几何与变换”。
在几何方面,我们需要了解平面图形的基本性质、空间图形的基本性质、平面图形的相似与全等性质等知识点。
在变换方面,我们需要了解平移、旋转、翻折、放缩等基本变换的概念与性质,以及在平面图形与坐标系中的运用。
四、概率与统计数学高考大纲的第四部分是“概率与统计”。
在这一部分中,我们需要了解概率的基本概念与性质,掌握简单事件的概率计算方法,熟悉几何概型和加法定理等。
另外,我们还需要了解统计学的基本概念与性质,包括样本调查、数据的整理与分析等。
总结起来,数学高考大纲涵盖了数与式、函数与方程、几何与变换以及概率与统计等四个部分。
我们需要对每个部分的知识点进行深入理解与掌握。
在备考过程中,我们应该注重基础知识的打牢,掌握解题技巧和应试策略,进行系统的练习和总结。
只有通过不断的学习和实践,才能够在高考中取得满意的成绩。
希望这篇文章能够对你理解数学高考大纲有所帮助。
祝你在高考中取得优异的成绩!。
高考数学考纲

高考数学考纲1. 考试概述高考数学是中国高考(全国统一高考)中的一门必考科目,被广大学生普遍认为是其中的一道难题。
高考数学考纲旨在测试学生的数学基础知识、解决问题的能力和数学思维能力。
2. 考试内容2.1. 知识范围高考数学考纲涵盖了以下知识范围: - 初中阶段的数学知识和技能 - 高中阶段的数学知识和技能2.2. 能力要求高考数学考纲要求学生具备以下能力: - 理解和运用数学概念、原理、定理和公式 - 运用数学方法和技巧解决实际问题- 进行数学推理和证明 - 进行数学模型的建立和分析 - 进行数学思维和创造性思维的运用3. 考试形式3.1. 试题类型高考数学试题主要包括选择题和解答题两种形式。
3.1.1. 选择题选择题要求考生从给定的选项中选择一个正确答案。
选择题通常包括单选题和多选题两种类型。
3.1.2. 解答题解答题要求考生用适当的方法和步骤给出完整的解答过程,包括构造解、证明过程以及解决问题的思路。
3.2. 考试要求高考数学考试要求考生: - 快速准确地解答选择题,注意时间分配; - 理解题意,合理解答解答题,注意解题方法及步骤的严谨性; - 注重解题思路的合理性及创新性; - 注意书写工整、清晰。
4. 考试评分4.1. 分值分布高考数学试卷总分为150分,试题的分值分布如下:•选择题:共80分,每题2分。
其中,单选题40分,每题1分;多选题40分,每题2分。
•解答题:共70分。
其中,一、二、三题(各题5分)和四题(25分),甲卷占50分,乙卷占20分。
4.2. 阅卷方式高考数学试卷的阅卷方式分为人工阅卷和计算机阅卷两种形式。
选择题由计算机自动批阅,解答题由专门的老师进行人工阅卷。
4.3. 题目评分标准高考数学考试的解答题评分标准主要包括解题思路、使用的方法、计算过程的正确性、答案的准确性、答案的简洁性与严谨性。
5. 考试备考建议5.1. 重点复习内容•高中数学相关知识点和公式;•历年高考数学试题,特别是题型和难度相似的题目;•解题的方法和技巧。
高考数学(文科)考试大纲

高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。
二、考试形式本科目考试采取笔试形式。
三、考试时间考试时间为 120 分钟。
四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年甘肃高考数学考试说明及大纲解读考纲解读
2016年全国新课标数学学科大纲和2015年对比没有变化。
复习建议
1。
研考纲—找准方向用力。
考试大纲对考试性质,考试内容,考试形式,都作出了明确的规定。
2。
研课本—立足基础强化。
回归课本,回归基础,是高考复习的起点。
从高考的要求出发,把课本熟化,概念能脱口而出,公式定理能信手拈来,基本方法能左右逢源。
基本题型能借题发挥,从而以扎实的基础为基点,向更深、更活的目标前进。
3。
解题思维—要“优化”。
高考是在限定的时间内完成限定的内容,解题思路要优化选择,解题方法要简捷途径,解题过程要方案,解题失误要最小化,尤其是选择填空题的解答要防止“小题大做”、“一算到底”,这就要在平时的练习过程中注意通过一题多解找解,使解题思维具有灵活性,流畅性,深刻性。