高考函数对称轴对称中心压轴题专题

合集下载

压轴题01 函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01  函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01函数性质的综合运用函数是高中数学的主干,也是高考考查的重点,而函数的性质是函数的灵魂,它对函数概念的理解以及利用函数性质来解决相关函数问题起到十分重要的作用.此外在高考试题的考查中函数的性质也是常见题型.考向一:利用奇偶性、单调性解函数不等式考向二:奇函数+M 模型与奇函数+函数模型考向三:周期运用的综合运用1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x ;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x是增函数,则()f x-为减函数;若()f x是减函数,则()f x-为增函数;②若()f x和()g x均为增(或减)函数,则在()f x和()g x的公共定义域上()()f xg x+为增(或减)函数;③若()0f x>且()f x为增函数,1()f x为减函数;④若()0f x>且()f x为减函数,1()f x为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x是偶函数⇔函数()f x的图象关于y轴对称;函数()f x是奇函数⇔函数()f x的图象关于原点中心对称.(3)若奇函数()y f x=在0x=处有意义,则有(0)0f=;偶函数()y f x=必满足()(||)f x f x=.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x的定义域关于原点对称,则函数()f x能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x=+-,1()()()]2h x f x f x=--,则()()()f xg xh x=+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f xg x f x g x f x g x f x g x+-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x=的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1xm f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(2023·河北唐山·开滦第二中学校考一模)已知函数()222e e 287x x f x x x --=++-+则不等式()()232f x f x +>+的解集为()A.1(1)3--,B.1(,1)(,)3-∞--+∞ C.1(1)3-,D.1(,(1,)3-∞-⋃+∞2.(2023·安徽宣城·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若()3f x +为奇函数,322g x ⎛⎫+ ⎪⎝⎭为偶函数,且()03g =-,()12g =,则()20231i g i ==∑()A.670B.672C.674D.6763.(2023·甘肃定西·统考一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x >时,()0f x <,则不等式()()22530f x f x x -+-<的解集为()A.5,3⎛⎫-∞ ⎪⎝⎭B.51,2⎛⎫- ⎪⎝⎭C.()5,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.5,3⎛⎫+∞ ⎪⎝⎭4.(2023·吉林通化·梅河口市第五中学校考一模)已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A.()(),11,-∞-⋃+∞B.()2,1--C.()(),21,-∞-+∞ D.()()1,1,3-∞-⋃+∞5.(2023·内蒙古·模拟预测)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为()A.(),1-∞B.()1,+∞C.(]1,7D.(]1,26.(2023·广西梧州·统考一模)已知定义在R 上的函数()f x 在(,1]-∞上单调递增,若函数(1)f x +为偶函数,且(3)0f =,则不等式()0xf x >的解集为()A.(1,3)-B.(,1)(3,)-∞-⋃+∞C.(,1)(0,3)-∞-⋃D.(1,0)(3,)-+∞ 7.(2023·河南·开封高中校考模拟预测)已知()f x 是定义域为R 的奇函数,当0x >时,()()2ln 1f x x x =++,则不等式()211ln2f x +>+的解集为()A.{1}∣<x x B.{0}x x <∣C.{1}xx >∣D.{0}xx >∣8.(2023·福建泉州·校考模拟预测)已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为()A.](2-∞,B.[)2,+∞C.[]24-,D.[]14,9.(2023·陕西西安·高三西北工业大学附属中学校考阶段练习)已知函数()(32e log e 1xx f x x =++在[],(0)k k k ->上的最大值与最小值分别为M 和m ,则M m +=()A.2-B.0C.2D.410.(2023·江西南昌·统考一模)已知函数()()35112=-+f x x ,若对于任意的[]2,3x ∈,不等式()()21+-≤f x f a x 恒成立,则实数a 的取值范围是()A.(),2-∞B.(],2-∞C.(),4-∞D.(],4∞-11.(2023·全国·高三专题练习)已知函数()e e 2x xf x x x -=-++在区间[]22-,上的最大值与最小值分别为,M N ,则M N +的值为()A.2-B.0C.2D.412.(2023·全国·高三专题练习)若对x ∀,R y ∈.有()()()4f x y f x f y +=+-,则函数22()()1xg x f x x =++在[2018-,2018]上的最大值和最小值的和为()A.4B.8C.6D.1213.(多选题)(2023·浙江杭州·统考二模)已知函数()f x (x ∈R )是奇函数,()()2f x f x +=-且()12f =,()f x '是()f x 的导函数,则()A.()20232f =B.()f x '的一个周期是4C.()f x '是偶函数D.()11f '=14.(多选题)(2023·安徽滁州·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若12f x ⎛⎫- ⎪⎝⎭,()1g x +均为奇函数,则()A.()00f =B.()00g =C.()()14f f -=D.()()14g g -=15.(多选题)(2023·吉林·统考三模)设定义在R 上的可导函数()f x 与()g x 导函数分别为()f x '和()g x ',若()()212f x g x x =-+,()1f x +与()g x 均为偶函数,则()A.()11g '=B.()20220323g =-'C.()24f '=-D.991198100i f i =⎛⎫= ⎪⎝'⎭∑16.(多选题)(2023·海南海口·校考模拟预测)已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称中心为()2,0B.()f x 的对称轴为直线2x =C.()()14f f -<D.不等式()()34f x f x +>的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭ 17.(多选题)(2023·广东佛山·佛山一中校考一模)设函数()y f x =的定义域为R ,且满足(1)(1)f x f x +=-,(2)()0f x f x -+-=,当[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A.()1y f x =+是偶函数B.()3y f x =+为奇函数C.函数()lg =-y f x x 有8个不同的零点D.()202311k f k ==∑18.(2023·江西吉安·统考一模)已知函数()f x 的定义域为R ,其导函数为()g x ,若函数(22)f x +为偶函数,函数(1)g x -为偶函数,则下列说法正确的序号有___________.①函数()f x 关于2x =轴对称;②函数()f x 关于(1,0)-中心对称;③若(2)1,(5)1f f -==-,则(26)(16)=3g f +-;④若当12x -≤≤时,1()e 1x f x +=-,则当1417x ≤≤时,17()e 1x f x -=-.19.(2023·陕西榆林·统考一模)已知函数()f x 是定义在()2,2-上的增函数,且()f x 的图象关于点()0,2-对称,则关于x 的不等式()()240f x f x +++>的解集为__________.20.(2023·全国·校联考模拟预测)已知定义在R 上的函数()f x 满足:对任意实数a ,b 都有()()()1a a b b f f f +=+-,且当0x >时,()1f x >.若()23f =,则不等式()212f x x --<的解集为______.21.(2023·江西赣州·高三统考阶段练习)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为______.22.(2023·湖南湘潭·高三湘钢一中校考开学考试)已知()f x 是定义在()5,5-上的增函数,且()f x 的图象关于点()0,1-对称,则关于x 的不等式()()211320f x f x x ++-++>的解集为_________.23.(2023·江苏常州·高三校联考开学考试)已知函数()2e e e ex xx x f x x ---=++,则不等式()()21122f x f x x ++-<+的解集为__________.24.(2023·辽宁·鞍山一中校联考模拟预测)已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()12f x g x -+=,()()32f x g x +-=,则下列结论正确的是______.(只填序号)①()f x 为偶函数;②()g x 为奇函数;③()20140k f k ==∑;④()20140k g k ==∑.25.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知函数()(32e log e 1xxf x x =++在[](),0k k k ->上的最大值与最小值分别为M 和m ,则函数()()()31g x M m x M m x -=+++-⎡⎤⎣⎦的图象的对称中心是___________.26.(2023·全国·高三专题练习)设函数()())221ln1x xf x x ++=+的最大值为M ,最小值为N ,则M N +的值为________。

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

专题03 函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . 2.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称;一般的,若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0恒成立,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (a +x )+f (a -x )=2b 恒成立,则y =f (x )的图象关于点(a ,b )对称. 3. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.(注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)4. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化.【典型题示例】例1 (2022·全国乙·理·T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D.24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【解析】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()2211235(1)2k f f f f f f k =⎡⎤++++++⎣⎦=∑()()()4622f f f ⎡⎤+++⎣⎦13101024=----=-.故选:D例2 (2022·新高考Ⅱ卷·T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【解析】因为()()()()f x y f x y f x f y ++-=, 令1,0x y ==可得,()()()2110f f f =,所以()02f =, 令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-, 所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--, 故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .例3 (2021·新高考全国Ⅱ卷·8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A. 102f ⎛⎫-= ⎪⎝⎭B. ()10f -=C. ()20f =D.()40f =【答案】B【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.例4 (2021·全国甲卷·理·12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .例5 已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________. 【答案】4【分析】由f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12==,由函数 f (x +1)是奇函数,f (x )关于点(1,0)中心==,根据函数对称性、周期性间关系,知函数f (x )====2,====f (x )===即可.【解析】====f (x =1)=======f (=x =1)==f (x =1)====f ⎝⎛⎭⎫12=x = f ⎝⎛⎭⎫12=x ===f (1=x )=f (x )===f (x =1)==f (x )==f (x =2)==f (x =1)=f (x )= == ==f (x )====2========x =12=======f (x )========由图象可得 f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例6 已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( )A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【分析】根据题意,利用特殊值法求出f (2)的值,进而分析可得1x =是函数()f x 的一条对称轴,函数()f x 是周期为4的周期函数和()f x 在区间[1-,1]上为增函数,据此分析选项即可得答案.【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数, 当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数; 据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=,f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确; 对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D正确; 故选:ABD . 例7 已知函数()111123f x x x x =++---,()2g x x =-,则关于x 的方程()()f x g x =的实数根之和为______;定义区间(),a b ,[),a b ,(],a b ,[],a b 长度均为b a -,则()1111123f x x x x =++≥---解集全部区间长度之和为______. 【答案】①8 ②3【分析】根据题意得以函数()f x 关于点()2,0对称,进而利用导数研究函数()f x 性质,作出简图,树形结合求解即可得关于x 的方程()()f x g x =的实数根之和;令()1111123f x x x x =++=---整理得方程的实数根123,,x x x 满足1239x x x ++=,再数形结合得()1f x ≥解集为(](](]1231,2,3,x x x ,最后根据定义求解区间长度的和即可.【解析】因为()()1114321f x f x x x x-=++=----, 所以函数()f x 关于点()2,0对称, 由于()()()()222111'0123f x x x x =---<---,所以函数()f x 在()()()(),1,1,2,2,3,3,-∞+∞上单调递减,由于1x <时,()0f x <,(),0x f x →-∞→,()1,x f x -→→-∞,()1,x f x +→→+∞,()2,x f x -→→-∞,()2,x f x +→→+∞,()3,x f x -→→-∞,()3,x f x +→→+∞,(),0x f x →+∞→,且3x >时,()0f x >.故作出函数简图如图: 根据图像可知,函数()111123f x x x x =++---与函数()2g x x =-图像共有4个交点,且关于点()2,0对称,所以()()f x g x =的实数根之和为8;令()1111123f x x x x =++=---,整理得32923170x x x -+-=, 由图像知方程有三个实数解,不妨设为123,,x x x , 所以由三次方程的韦达定理得1239x x x ++=, 由函数图像得()1f x ≥解集为(](](]1231,2,3,x x x所以全部区间长度之和为12312312363x x x x x x -+-+-=++-=. 故答案为:8;3.【巩固训练】1.已知函数()1()2x af x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg4xg x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4. 已知f (x )是定义域为R 的函数,满足f (x +1)=f (x -3),f (1+x )=f (3-x ),当0≤x ≤2时,f (x )=x 2-x ,则下列说法正确的是( ) A.函数f (x )的周期为4B.函数f (x )图象关于直线x =2对称C.当0≤x ≤4时,函数f (x )的最大值为2D.当6≤x ≤8时,函数f (x )的最小值为-125.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则6.(多选题)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( ) A.f (x )为奇函数B.f (x )为周期函数C.f (x +3)为奇函数D.f (x +4)为偶函数7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断:①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称; ③()f x 是偶函数; ④()f x 的图象经过点()2,0-; 其中正确论断的个数是______________.8. (多选题)已知定义在R 上的函数f (x )满足f (x )=2-f (2-x ),且f (x )是偶函数,下列说法正确的是( )A.f (x )的图象关于点(1,1)对称B.f (x )是周期为4的函数C.若f (x )满足对任意的x ∈[0,1],都有f (x 2)-f (x 1)x 1-x 2<0,则f (x )在[-3,-2]上单调递增D.若f (x )在[1,2]上的解析式为f (x )=ln x +1,则f (x )在[2,3]上的解析式为f (x )=1-ln(x -2) 9. (2022·江苏常州·模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )等于( ) A.0B.mC.2mD.4m)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=10.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5011.已知函数y kx b =+与函数11x x y e e --=-的图象交于A ,B ,C ,且|AB |=|BC |=2211e e+-,则实数k = .【答案与提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭,则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8【解析】()lg 4x g x x =-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(25)f f ∴==+ .4. 【答案】ABC【解析】 由f (x +1)=f (x -3),得f (x )=f [(x -1)+1]=f [(x -1)-3]=f (x -4),所以函数f (x )的周期为4,A 正确.由f (1+x )=f (3-x ),得f (2+x )=f (2-x ),所以函数f (x )的图象关于直线x =2对称,B 正确.当0≤x ≤2时,函数f (x )在⎣⎡⎭⎫0,12上单调递减,在⎝⎛⎦⎤12,2上单调递增.所以当x =12时,函数f (x )在[0,2]上取得极小值-14,且f (0)=0,f (2)=2.作出函数f (x )在[0,8]上的大致图象,如图.由图可知,当0≤x ≤4时,函数f (x )的最大值为f (2)=2,C 正确;当6≤x ≤8时,函数f (x )的最小值为f ⎝⎛⎭⎫152=f ⎝⎛⎭⎫12=-14,D 错误.故选ABC.5. 【答案】-8【提示】四个根分别关于直线2x =,6x =-对称.【命题立意】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.6.【答案】ABC【解析】法一 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (-x )+f (2+x )=0,f (-x )+f (4+x )=0,所以f (2+x )=f (4+x ),即f (x )=f (2+x ),-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0)所以f (x )是以2为周期的周期函数.又f (x +1)与f (x +2)都为奇函数,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.法二 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (x )的周期为2|2-1|=2,所以f (x )与f (x +2),f (x +4)的奇偶性相同,f (x +1)与f (x +3)的奇偶性相同,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--,又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=,所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.8. 【答案】ABC【解析】根据题意,f (x )的图象关于点(1,1)对称,A 正确;又f (x )的图象关于y 轴对称,所以f (x )=f (-x ),则2-f (2-x )=f (-x ),f (x )=2-f (x +2),从而f (x +2)=2-f (x +4),所以f (x )=f (x +4),B 正确;由f (x 2)-f (x 1)x 1-x 2<0可知f (x )在[0,1]上单调递增,又f (x )的图象关于点(1,1)对称,所以f (x )在[1,2]上单调递增,因为f (x )的周期为4,所以f (x )在[-3,-2]上单调递增,C 正确;因为f (x )=f (-x ),x ∈[-2,-1]时,-x ∈[1,2],所以f (x )=f (-x )=ln(-x )+1,x ∈[-2,-1],因为f (x )的周期为4,f (x )=f (x -4),x ∈[2,3]时,x -4∈[-2,-1],所以f (x )=f (x -4)=ln(4-x )+1,x ∈[2,3],D 错误.综上,正确的是ABC.9.【答案】 B【解析】 ∵f (x )+f (-x )=2,y =x +1x =1+1x. ∴函数y =f (x )与y =x +1x的图象都关于点(0,1)对称, ∴∑m i =1x i =0,∑mi =1y i =m 2×2=m . 10.【答案】C【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.11.【答案】1e e- 【解析】设()x x f x e e -=-,则()f x 为定义在R 上的单增的奇函数而11(1)x x y e e f x --=-=-,故其图象关于点(1,0)中心对称又因为|AB |=|BC |,所以B 的坐标为(1,0)为使运算更简单,问题可转化为过坐标原点的直线y kx =与()x x f x e e -=-交于一点D ,且k 的值 不妨设()000,x x D x e e --(00x >),== 解之得01x =,()11,D e e --,所以1k e e -=-.。

高中数学函数压轴题

高中数学函数压轴题

高考数学函数压轴题:1. 已知函数 f (x) 1x 3 ax b(a,b3(1) 求 f (x) 的单调递增区间;2. 某造船公司年最高造船量是 20艘. 已知造船 x 艘的产值函数 R (x)=3700x + 45x 2– 10x 3(单位:万元), 成本函数为 C (x) = 460x + 5000 ( 单位:万元 ). 又在经济学中,函数 f(x) 的边际函数 Mf (x) 定义为 : Mf (x) = f (x+1) – f (x). 求 : (提示:利 润 = 产值 –成本)(1) 利润函数 P(x) 及边际利润函数 MP(x);(2) 年造船量安排多少艘时 , 可使公司造船的年利润最大(3) 边际利润函数 MP(x) 的单调递减区间 , 并说明单调递减在本题中的实际意义是什么213. 已知函数 (x) 5x 2 5x 1(x R),函数 y f (x)的图象与 ( x)的图象关于点 (0, )中心对称。

2( 1)求函数 y f(x) 的解析式;(2)如果 g 1(x) f(x),g n (x) f[g n 1(x)](n N,n 2) ,试求出使 g 2(x) 0成 立的 x 取值范围;( 3)是否存在区间 E ,使 E x f(x) 0 对于区间内的任意实数 x ,只要 n N ,且 n 2 时,都有(2)若 x [ 4,3] 时,有 f (x)10恒成立,求实数3m 的取值范围R) 在 x 2 处取得的极小值是g n(x) 0 恒成立x 1 a4.已知函数:f (x) (a R且x a) axⅠ)证明:f(x)+2+f(2a -x)=0 对定义域内的所有x 都成立.1Ⅱ)当f(x) 的定义域为[a+ ,a+1]时,求证:f(x) 的值域为[-3,-2];2Ⅲ)设函数g(x)=x 2+|(x-a)f(x)| , 求g(x) 的最小值.5. 设f (x)是定义在[0,1]上的函数,若存在x* (0,1) ,使得f (x)在[0, x*]上单调递增,在[ x* ,1]上单调递减,则称f(x)为[ 0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间. 对任意的[ 0,1]上的单峰函数f(x) ,下面研究缩短其含峰区间长度的方法.(1) 证明:对任意的x1,x2 (0,1) ,x1 x2,若f(x1) f(x2),则(0, x2)为含峰区间;若f(x1) f(x2),则( x1,1) 为含峰区间;(2)对给定的r(0 r 0.5) ,证明:存在x1,x2 (0,1) ,满足x2 x1 2r ,使得由( 1)所确定的含峰区间的长度不大于0.5 r ;6. 设关于x的方程2x2 ax 2 0的两根分别为、,函数f(x) 4x2ax1(1)证明f (x) 在区间, 上是增函数;( 2)当a 为何值时,f (x) 在区间, 上的最大值与最小值之差最小7. 甲乙两公司生产同一种新产品,经测算,对于函数f x x 8,g x x 12 ,及任意的x 0,当甲公司投入x 万元作宣传时,乙公司投入的宣传费若小于f x 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入x 万元作宣传时,甲公司投入的宣传费若小于g x 万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释f 0 ,g 0 ;甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入a1 12万元,乙在上述策略下,投入最少费用b1;而甲根据乙的情况,调整宣传费为a2 ;同样,乙再根据甲的情况,调整宣传费为b2 , , 如此得当甲调整宣传费为a n 时,乙调整宣传费为b n ;试问是否存在lim a n,lim b n的值,若存在写出此极限值(不必证明) ,若不存在,说明理由.nn n8. 设 f (x)是定义域在[ 1, 1] 上的奇函数,且其图象上任意两点连线的斜率均小于零.(l)求证f(x)在[ 1, 1]上是减函数;(ll )如果f (x c),f (x c2)的定义域的交集为空集,求实数c的取值范围;2(lll )证明若1 c 2,则f(x c),f(x c2)存在公共的定义域,并求这个公共的空义域9. 已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。

2025高考数学专项复习运用“对称变换”的思想方法解题含答案

2025高考数学专项复习运用“对称变换”的思想方法解题含答案

运用“对称变换”的思想方法解题在中学数学中,对称的问题主要有以下4种形式:1.中心对称:①点关于点的对称;②曲线关于点的对称。

2.轴对称:①点关于直线的对称;②曲线关于直线的对称。

3.平面对称:①点关于平面的对称;②曲线关于平面的对称。

4.多项式对称:①一般轮换对称;②顺序轮换对称。

几何中的轴(面)对称和中心对称是最直观的对称,平面图形绕其内一定点旋转2πnn ∈N *的变换,也是常见的对称变换。

典型例题1定理一:函数y =f x 满足f a +x =f a -x 的充要条件是y =f x 的图像关于直线x =a 对称。

定理二:函数y =f x 满足f a +x -b =b -f a -x 的充要条件是y =f x 的图像关于点a ,b 成中心对称。

定理三:函数y =f x 满足F x =f x +a -f a 为奇函数的充要条件是y =f x 的图像关于点a ,f a 成中心对称(注:若a 不属于x 的定义域,则f a 不存在.依次解答如下问题:(1)设函数y =f x 的图像关于直线x =1对称,若x ≤1时,y =x 2+1,求x >1时y 的解析式;(2)若函数y =x 2+mx +1x的图像关于点0,1 中心对称,求m 的值;(3)已知函数f x 在-∞,0 ∪0,+∞ 上的图像关于点0,1 中心对称,且当x ∈0,+∞ 时f x =x 2+x +1.根据定理二求出f x 在-∞,0 上的解析式;(4)设函数y =f x ,y =g x 在定义域R 上的图像都是关于点a ,b 中心对称,则对于函数y =f x +g x ,y =f x -g x ,y =f x ⋅g x 及y =f xg x ,指出其中一个函数的图像一定关于点成中心对称,再指出其中一个函数的图像可以不关于点中心对称,并分别说明理由;(5)讨论函数f x =x -23 x +53 +x -3 -2x -83的图像的对称性。

高考函数对称轴对称中心基本知识及题型

高考函数对称轴对称中心基本知识及题型

高考函数对称轴对称中心基本知识及题型一、对称性的概念及常见函数的对称性1、对称性的概念函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。

反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。

指数函数:既不是轴对称,也不是中心对称。

对数函数:既不是轴对称,也不是中心对称。

幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。

正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。

正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。

余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心。

正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。

对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。

高考函数对称轴对称中心压轴题专题

高考函数对称轴对称中心压轴题专题

对称性与周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.(2)关于函数周期性常用的结论①若满足,则,所以是函数的一个周期();②若满足,则 =,所以是函数的一个周期();③若函数满足,同理可得是函数的一个周期().④如果是R 上的周期函数,且一个周期为T ,那么.⑤函数图像关于轴对称.⑥函数图像关于中心对称.⑦函数图像关于轴对称,关于中心对称.(3)函数()y f x =的图象的对称性结论①若函数)(x f y =关于x a =对称⇔对定义域内任意x 都有()f a x +=()f a x -⇔对定义域内任意x 都有()f x =(2)f a x -⇔()y f x a =+是偶函数;②函数)(x f y =关于点(a ,0)⇔对定义域内任意x 都有()f a x -=-()f a x +⇔(2)f a x -=-()f x ⇔()y f x a =+是奇函数;③若函数)(x f y =对定义域内任意x 都有)()(x b f a x f -=+,则函数)(x f 的对称轴是2b a x +=; ④若函数)(x f y =对定义域内任意x 都有()()f x a f b x +=--,则函数)(x f 的对称轴中心为(,0)2a b +; 改编:若函数)(x f y =对定义域内任意x 都有f(a+x)+f(b-x)=c 则函数)(x f 的对称轴中心为________⑤函数(||)y f x a =-关于x a =对称.例1 2016 (12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(A)0 (B)m (C) 2m (D) 4m例2 (2016年全国II 高考)已知函数满足,若函数与图像的交点为 则( )(A )0 (B ) (C ) (D )例3(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1 例4【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【命题意图探究】本题主要考查函数的单调性、对称性,是中档题. 【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .例 5 【2018全国卷Ⅱ】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=f A .50- B .0 C .2 D .50例6 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( ) (A ) 1- (B )1 (C )2 (D )4例7【2015高考湖南,文14】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是 . 例8 【2015高考福建,文15】若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.例9 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.例10 (2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D .D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 例11 (2016山东)已知函数f (x )的定义域为R .当x <0时, ;当 时,;当 时,,则f (6)=A .−2B .−1C .0D .2 D 【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .2018高考函数专题(2018全国卷 理数-1)5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.(2018全国卷 理数-2)3.函数()2e e x xf x x --=的图像大致为6.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50(2018 全国卷 理数-3)4.若,则A .B .C .D .12. (2018鄂尔多斯市模拟卷)若定义在R 上的函数f(x)满足f(-x)=-f(x),f(1-x)=f(1+x),且当x є(0,1]时,f(x)=1-x,则方程()1[7,1]x f x e =--在区间上的实数根的数为( )。

专题12 三角函数(全题型压轴题)-2024年高考数学压轴专题复习(学生版)

专题12 三角函数(全题型压轴题)-2024年高考数学压轴专题复习(学生版)

.
6.(2023 春·上海普陀·高一上海市宜川中学校考期中)将函数 y 3sin 2x+ 0 π 的图像向左平移 π 个
6
单位后得到函数 y g x ,若函数 y g x 是 R 上的偶函数,则

③三角函数零点问题(解答题)
1.(2023 春·四川绵阳·高一绵阳南山中学实验学校校考阶段练习)已知函数
4.(2023 春·四川成都·高一统考期末)已知函数 f x 3 sin x cos x 1 sin 4 x cos4 x 1 x R ,函数 2
y f x 的图象向左平移 π 个单位,再向上平移 1 个单位得到 y g x 的图象,
6
h x cos x cos x 3m mmR .
3
sin
x
π 6
0
的图象上相邻两个最高点
的距离为 π .
(1)求函数 f x 的图象的对称轴;
(2)若函数
y
f
x
m

0,
π 2
内有两个零点
x1
,
x2
,求
m
的取值范围及 cos x1
x2
的值.
7.(2023
春·江西·高一统考期末)已知函数
f
x 2cos2xcos cos
2sinxcosxsin
B.
π 2
,
17π 24
C.
7π 24
,
19π 24
D.
7π 24
,
17π 24
5.(2023·海南海口·校考模拟预测)已知定义在
R
上的奇函数
f
(x)
与偶函数
g(x)
满足
f
(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考函数对称轴对称中心压轴题专题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高考函数压轴题专题
1.3对称性与周期性
(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.
最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. (2)关于函数周期性常用的结论
①若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以
2a 是函数的一个周期(0a ≠); ②若满足1()()f x a f x +=
,则(2)[()]f x a f x a a +=++= 1
()
f x a +=()f x ,所以2a 是函数的一个周期(0a ≠); ③若函数满足1
()()
f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). ④如果)(x f y =是R 上的周期函数,且一个周期为T ,那么
))(()(Z n x f nT x f ∈=±.
⑤函数图像关于b x a x ==,轴对称)(2b a T -=⇒. ⑥函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.
⑦函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒. (3)函数()y f x =的图象的对称性结论
①若函数)(x f y =关于x a =对称⇔对定义域内任意x 都有
()f a x +=()f a x -⇔对定义域内任意x 都有()f x =(2)f a x -⇔()y f x a =+是
偶函数;
②函数)(x f y =关于点(a ,0)⇔对定义域内任意x 都有()f a x -=-
()f a x +⇔(2)f a x -=-()f x ⇔()y f x a =+是奇函数;
③若函数)(x f y =对定义域内任意x 都有)()(x b f a x f -=+,则函数)(x f 的对称轴是2
b
a x +=
; ④若函数)(x f y =对定义域内任意x 都有()()f x a f b x +=--,则函数)(x f 的对称轴中心为(
,0)2
a b
+; 改编:若函数)(x f y =对定义域内任意x 都有f(a+x)+f(b-x)=c 则函数)(x f 的对称轴中心为________
⑤函数(||)y f x a =-关于x a =对称.
例1 2016 (12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=
m
i i x =∑
(A)0 (B)m (C) 2m (D) 4m
例 2 (2016年全国II 高考)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数
1x y x +=与()y f x =图像的交点为 1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1
()m
i i i x y =+=∑( )
(A )0 (B )m (C )2m (D )4m 例3(2017新课标Ⅲ)已知函数2
1
1()2()x x f x x x a e
e --+=-++有唯一零点,则a =
A .12-
B .13
C .1
2
D .1
例4【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单
调递减
C .y =()f x 的图像关于直线x =1对称
D .y =()f x 的图像关于点
(1,0)对称
【命题意图探究】本题主要考查函数的单调性、对称性,是中档题. 【答案】C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线
1x =对称,C 正确,D 错误;又112(1)'()2(2)
x f x x x x x -=
-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .
例5 【2018全国卷Ⅱ】已知()f x 是定义域为(,)-∞+∞的奇函数,满足
(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)+
+=f
A .50-
B .0
C .2
D .50
例6 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( ) (A ) 1- (B )1 (C )2 (D )4
例7【2015高考湖南,文14】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是 .
例8 【2015高考福建,文15】若函数()2()x a
f x a R -=∈满足
(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于
_______.
例9 【2015高考湖北,文13】函数2π()2sin sin()2
f x x x x =+-的零点个数为
_________.
例10 (2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若
(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是
A .
B .
C .
D .
D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,
不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,
又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 例11 (2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当
11x -≤≤ 时,
()()f x f x -=-;当12x >
时,11
()()22
f x f x +=-,则f (6)= A .−2 B .−1
C .0
D .2
D 【解析】当1
1x -时,()f x 为奇函数,且当1
2
x >
时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .
2018高考函数专题
(2018全国卷 理数-1)
5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点
(0,0)处的切线方程为
A .2y x =-
B .y x =-
C .2y x =
D .y x =
9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨
>⎩,,
,,
()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是
A .[–1,0)
B .[0,+∞)
C .[–1,+∞)
D .[1,+∞)
16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. (2018全国卷 理数-2)
3.函数()
2
e e x x
f x x --=
的图像大致为
6.在ABC △中,5
cos
2C =
1BC =,5AC =,则AB = A .2B .30C 29 D .2510.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是
A .π
4
B .π2
C .
3π4
D .π
11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,

(1)(2)(3)(50)f f f f ++++=…
A .50-
B .0
C .2
D .50
(2018 全国卷 理数-3) 4.若1
sin 3α=,则cos2α=
A.8
9
B.7
9
C.7
9
-D.
8
9
-
12.(2018鄂尔多斯市模拟卷)
若定义在R上的函数f(x)满足f(-x)=-f(x),f(1-x)=f(1+x),且当xє(0,1]时,f(x)=1-x,
则方程
()1[7,1]
x
f x e
=--
在区间上的实数根的数为( )
A.7
B.6
C.5
D.4。

相关文档
最新文档