高考理科解三角形大题40道
完整版)高考解三角形大题(30道)

完整版)高考解三角形大题(30道)1.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且有以下等式:frac{\cos A - 2\cos C}{2c-a} = \frac{\cos B b}{\sin C}$$求该等式右侧的值,以及:2)若$\cos B=\frac{1}{4}$,$b=2$,求三角形ABC的面积S。
2.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin C+\cos C=1$,求:1)$\sin C$的值;2)若$a+b=4a-8$,求边c的值。
3.在三角形ABC中,角A,B,C的对边分别为a,b,c。
1)若$\sin(A+\frac{2}{3}\pi)=2\cos A$,求角A的值;2)若$\cos A=\frac{3}{c}$,求$\sin C$的值。
4.在三角形ABC中,D为边BC上的一点,且$BD=\frac{3}{3}$,$\sin B=\frac{5}{3}$,$\cos\angleADC=\frac{\sqrt{3}}{5}$,求AD。
5.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$a=1$,$b=2$,$\cos C=-\frac{1}{4}$,求:1)三角形ABC的周长;2)$\cos(A-C)$的值。
6.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin A+\sin C=\frac{1}{2}\sin B$,且$ac=\frac{1}{2}b$。
1)求a,c的值;2)若角B为锐角,求p的取值范围,其中$p=\frac{1}{5}$,$b=1$。
7.在三角形ABC中,角A,B,C的对边分别为a,b,c,且$2a\sin A=(2b+c)\sin B+(2c+b)\sin C$。
1)求角A的值;2)求$\sin B+\sin C$的最大值。
8.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\cos 2C=-\frac{1}{4}$。
解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以62cos cos(4530)4CBE +=-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE=-+.故2sin 30cos15AE =122624⨯=+62=-. 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
高考解三角形面积大题(30道)

高考解三角形面积大题(30道)1. 题目描述题目:计算三角形的面积。
2. 解题思路解题思路如下:1. 确定三个顶点的坐标;2. 根据三个顶点的坐标,计算两条边的长度;3. 根据两条边的长度,使用海伦公式计算三角形的半周长;4. 根据半周长和两条边的长度,计算三角形的面积。
3. 解题步骤具体解题步骤如下:1. 读取三个顶点的坐标;2. 计算边的长度,如$AB$的长度为$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$;3. 计算另外两条边的长度$BC$和$CA$;4. 计算半周长$s$,即$s = \frac{1}{2}(AB + BC + CA)$;5. 计算三角形的面积,如$S = \sqrt{s(s - AB)(s - BC)(s - CA)}$;6. 输出三角形的面积。
4. 注意事项注意事项如下:- 在计算边长时,需要考虑顶点的坐标顺序;- 在计算面积时,需要根据实际情况选择合适的计算方法。
5. 示例代码以下是一个计算三角形面积的示例代码:def calculate_triangle_area(x1, y1, x2, y2, x3, y3):计算边的长度AB = ((x1 - x2)2 + (y1 - y2)2)**0.52 + (y1 - y2)2)**0.5BC = ((x2 - x3)2 + (y2 - y3)2)**0.52 + (y2 - y3)2)**0.5CA = ((x3 - x1)2 + (y3 - y1)2)**0.52 + (y3 - y1)2)**0.5计算半周长s = (AB + BC + CA) / 2计算面积area = (s * (s - AB) * (s - BC) * (s - CA))**0.5return area输入三个顶点的坐标x1, y1 = 1, 1x2, y2 = 3, 4x3, y3 = 6, 2计算面积triangle_area = calculate_triangle_area(x1, y1, x2, y2, x3, y3)输出结果print("三角形的面积为:", triangle_area)6. 总结通过以上解题步骤和示例代码,可以方便地计算三角形的面积。
解三角形高考大题-带答案.docx

解二角形咼考大题,带答案1.(宁夏17)(本小题满分12分)如图,△ ACD 是等边三角形,△ ABC 是等腰直角三角形,所以 ∠ CBE -15/ 0 0所以 cos ∠ CBE =cos(45 -30 ) (∏)在△ ABE 中,AB =2 , 由正弦定理Sin(45「一 15 ) Sin(90 +15 )42.(江苏 17) (14 分)某地有三家工厂,分别位于矩形 ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20 km , BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与 等距离的一点O 处建造一个污水处理厂,并铺设排污管道 AO 、BO 、OP ,设排污管道的总长为ykm 。
(1) 按下列要求写出函数关系式:① 设∠ BAO= θ (rad ),将y 表示成θ的函数关系式; ② 设OP=x (km ),将y 表示成X 的函数关系式;(2) 请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度10 10又 OP =10 -10ta ,所以 y =OA OB OP=——-τ CoS 日∠ ACB = 90 , BD 交 AC 于 E ,AB =2 .(I)求 (∏)求cos ∠ CAE 的值;AE解:(I )因为 ∠ BCD =9060 =150,CB= AC =CD ,AE故AE=沁cos15 一 .6 辽"'6^2.12分10 -10taCoSrCB所求函数关系式为 y = 2°"°Sinr 10(0)CoS 日4②若 0P=x(km),贝y OQ=IQ-X ,所以 OA=OB= (10二x)2~IO 2 二 一 χ2 —2OX 200 所求函数关系式为 y = X ∙ 2∙∙, X 2二20χ-200(0空X 乞10) (2)选择函数模型①,y,10COSBC O S日-(20-10S in 巧(-si n日)_10(2s in日-1,COS 2 日COS 2 θATrTr令 y'=0 得Sin0_246当"(0,—)时y' :::0 , y 是θ的减函数;当•(―,二)时y' • 0 , y 是θ的增函数;6 6 43.(辽宁17)(本小题满分12分)在厶ABC 中,内角A, B ,C 对边的边长分别是 (I)若 △ ABC 的面积等于,3 ,求a ,b ; (∏)若 Sin B =2si n A ,求△ ABC 的面积. 解: (I)由余弦定理得,a 2 ∙b 2-ab=4 ,又因为△ ABC 的面积等于√3 ,所以1absin C=J3 ,得ab=4 . .............................................•分2P- 2 2a +b — ab = 4联立方程组J'解得a =2 , b=2 ..................................................... •分Iab= 4,(∏)由正弦定理,已知条件化为 b=2a , ...................................................................... •分『b 2 一 ab = 4,解得 a=二,b=心b=2a,3 -4.(全国I 17)(本小题满分12分)设厶ABC 的内角A , B , C 所对的边长分别为 a , b, c ,且acosB=3 , bsi nA = 4 . (I)求边长a ;(∏)若 △ ABC 的面积S =10 ,求△ ABC 的周长丨. 解:(1)由a cos B =3与bsi nA =4两式相除,有:3 a cos B a cos B b cos B I—= = ---- = =Cot B所以当—时,Y min610 = 10 一 3 10此时点O 位于线段 AB 的中垂线上,且距离AB边山km 处。
高考解三角形大题(30道)(精选.)

专题精选习题----解三角形1.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知bac B C A -=-2cos cos 2cos . (1)求ACsin sin 的值; (2)若2,41cos ==b B ,求ABC ∆的面积S .2.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin C C C -=+. (1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.3.在ABC ∆中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π,求A 的值; (2)若c b A 3,31cos ==,求C sin 的值.4.ABC ∆中,D 为边BC 上的一点,53cos ,135sin ,33=∠==ADC B BD ,求AD .5.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知41cos ,2,1===C b a . (1)求ABC ∆的周长; (2)求)cos(C A -的值.6.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241b ac =. (1)当1,45==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.7.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值;(2)求C B sin sin +的最大值.8.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知412cos -=C . (1)求C sin 的值;(2)当C A a sin sin 2,2==时,求c b ,的长.ABC ∆b c C a =+21cos 9.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足3,5522cos =⋅=AC AB A . (1)求ABC ∆的面积;(2)若6=+c b ,求a 的值.10.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,22)4cos()4cos(=-++ππC C . (1)求角C 的大小;(2)若32=c ,B A sin 2sin =,求b a ,.11.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且. (1)求角A 的大小;(2)若1=a ,求ABC ∆的周长l 的取值范围.12.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(=--C a A c b . (1)求角A 的大小;(2)若3=a ,433=∆ABC S ,试判断的形状,并说明理由.13.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且.3)(2222ab c b a =-+(1)求2sin2BA +; (2)若2=c ,求ABC ∆面积的最大值.14.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足2222cos 2cos 4c b a B ac B a -+=-. (1)求角B 的大小;(2)设)1,3(),2cos ,2(sin -=-=C A ,求⋅的取值范围.15.已知)0)(cos ,(cos ),cos ,(sin >==ωωωωωx x n x x m ,若函数21)(-⋅=n m x f 的最小正周期为π4.(1)求函数)(x f y =取最值时x 的取值集合;(2)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,求)(A f 的取值范围.16.如图,ABC ∆中,2,332sin ==∠AB ABC ,点D 在线段AC 上,且334,2==BD DC AD . (1)求BC 的长; (2)求DBC ∆的面积.ABDC17.已知向量552sin ,(cos ),sin ,(cos ===b a ββαα. (1)求)cos(βα-的值; (2)若02,20<<-<<βππα,135sin -=β,求αsin .18.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知12cos sin 2sin 2sin 2=+⋅+C C C C ,且5=+b a ,7=c .(1)求角C 的大小; (2)求ABC ∆的面积.19.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足21)cos sin 3(cos =-⋅A A A . (1)求角A 的大小;(2)若32,22==∆ABC S a ,求c b ,的长.20.已知函数)(,cos 21sin 23)(R x x x x f ∈+=ππ,当]1,1[-∈x 时,其图象与x 轴交于N M ,两点,最高点为P .(1)求PN PM ,夹角的余弦值;(2)将函数)(x f 的图象向右平移1个单位,再将所得图像上每点的横坐标扩大为原来的2倍,而得到函数)(x g y =的图象,试画出函数)(x g y =在]38,32[上的图象.3,53sin ,3===b A B π21.已知函数a x x x a x f -+=cos sin 2sin 2)(2(a 为常数)在83π=x 处取得最大值. (1)求a 的值;(2)求)(x f 在],0[π上的增区间.22.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且bc a c b =-+222. (1)求角A 的大小;(2)若函数2cos 2cos 2sin )(2x x x x f +=,当212)(+=B f 时,若3=a ,求b 的值.23.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知. (1)求C sin 的值; (2)求ABC ∆的面积.24.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且B c a C b cos )3(cos -=. (1)求B sin 的值;(2)若2=b ,且c a =,求ABC ∆的面积.25.已知函数212cos 2cos 2sin3)(2++=x x x x f .(1)求)(x f 的单调区间;(2)在锐角三角形ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足A c C a b cos cos )2(⋅=-,求)(A f 的取值范围.26.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,a A b B A a 2cos sin sin 2=+.(1)求ab ; (2)若2223a b c +=,求角B .27.港口A 北偏东︒30方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站为31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离为21海里,问此时轮船离港口A 还有多远?28.某巡逻艇在A 处发现在北偏东︒45距A 处8海里的B 处有一走私船,正沿东偏南︒15的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以312海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.29.在海岛A 上有一座海拔1km 的山峰,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东︒15、俯角为︒30的B 处,到11:10时,又测得该船在岛北偏西︒45、俯角为︒60的C 处.(1)求船航行速度;(2)求船从B 到C 行驶过程中与观察站P 的最短距离.30.如图所示,甲船由A 岛出发向北偏东︒45的方向做匀速直线航行,速度为215海里/小时,在甲船从A 到出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东θ(21tan =θ)的方向做匀速直线航行,速度为m 海里/小时.(1)求4小时后甲船到B 岛的距离为多少海里; (2)若两船能相遇,求m.最新文件 仅供参考 已改成word 文本 。
大题 解三角形(精选30题)(学生版)-2024届新高考数学大题

大题 解三角形(精选30题)1(2024·江苏·一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos B +1=c a.(1)证明:B =2A ;(2)若sin A =24,b =14,求△ABC 的周长.2(2024·湖南常德·三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A +sin 2B +sin A sin B =sin 2C .(1)求角C ;(2)若a ,b ,c 成等差数列,且△ABC 的面积为1534,求△ABC 的周长.3(2024·江苏·一模)在△ABC 中,sin B -A +2sin A =sin C .(1)求B 的大小;(2)延长BC 至点M ,使得2BC =CM .若∠CAM =π4,求∠BAC 的大小.4(2024·浙江温州·二模)记△ABC的内角A,B,C所对的边分别为a,b,c,已知2c sin B=2b.(1)求C;(2)若tan A=tan B+tan C,a=2,求△ABC的面积.5(2024·浙江嘉兴·二模)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2cos A-3cos2A= 3.(1)求cos A的值;(2)若△ABC为锐角三角形,2b=3c,求sin C的值.6(2023·福建福州·模拟预测)在△ABC中,角A,B,C的对边分别是a,b,c,且a sin C=c sin B,C= 2π3.(1)求B;(2)若△ABC面积为334,求BC边上中线的长.7(2024·山东淄博·一模)如图,在△ABC中,∠BAC=2π3,∠BAC的角平分线交BC于P点,AP=2.(1)若BC=8,求△ABC的面积;(2)若CP=4,求BP的长.8(2024·安徽·模拟预测)如图,在平面四边形ABCD中,AB=AD=4,BC=6.(1)若A=2π3,C=π3,求sin∠BDC的值;(2)若CD=2,cos A=3cos C,求四边形ABCD的面积.9(2024·浙江·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知c2b2+c2-a2=sin Csin B.(1)求角A;(2)设边BC的中点为D,若a=7,且△ABC的面积为334,求AD的长.10(2024·湖北·一模)在△ABC中,已知AB=22,AC=23,C=π4.(1)求B的大小;(2)若BC>AC,求函数f x =sin2x-B-sin2x+A+C在-π,π上的单调递增区间.11(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,△ABC的面积为S,三个内角A、B、C所对的边分别为a,b,c,且sin C=2Sc2-b2.(1)证明:△ABC是倍角三角形;(2)若c=9,当S取最大值时,求tan B.12(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.13(2024·山东济南·二模)如图,在平面四边形ABCD中,BC⊥CD,AB=BC=2,∠ABC=θ,120°≤θ<180°.(1)若θ=120°,AD=3,求∠ADC的大小;(2)若CD=6,求四边形ABCD面积的最大值.14(2024·湖北武汉·模拟预测)已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2 -(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.15(2024·湖南邵阳·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c,且△ABC的周长为a sin Bsin A+sin B-sin C.(1)求C;(2)若a=2,b=4,D为边AB上一点,∠BCD=π6,求△BCD的面积.16(2024·广东梅州·二模)在△ABC中,角A,B,C所对应的边分别为a,b,c,3a cos B-b sin A= 3c,c=2,(1)求A的大小:(2)点D在BC上,(Ⅰ)当AD⊥AB,且AD=1时,求AC的长;(Ⅱ)当BD=2DC,且AD=1时,求△ABC的面积S△ABC.17(2024·广东广州·一模)记△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S.已知S=-34(a2+c2-b2).(1)求B;(2)若点D在边AC上,且∠ABD=π2,AD=2DC=2,求△ABC的周长.18(2024·广东佛山·模拟预测)在△ABC中,角A,B,C所对的边分别为a,b,c,其中a=1,cos A= 2c-12b.(1)求角B的大小;(2)如图,D为△ABC外一点,AB=BD,∠ABC=∠ABD,求sin∠CABsin∠CDB的最大值.19(2024·河北石家庄·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设向量m=(2sin A,3sin A+3cos A),n =(cos A,cos A-sin A),f(A)=m ⋅n ,A∈π6,2π3.(1)求函数f A 的最大值;(2)若f(A)=0,a=3,sin B+sin C=62,求△ABC的面积.20(2024·广东·一模)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知b-c cos A= 2a cos B cos C.(1)求cos B;(2)若点D在AC上(与A,C不重合),且C=π4,∠ADB=2∠CBD,求CDAD的值.21(2024·辽宁·二模)在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.22(2024·黑龙江齐齐哈尔·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知B=π4,4b cos C=2c+2a.(1)求tan C;(2)若△ABC的面积为32,求BC边上的中线长.23(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,∠MCE =16.5°(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角∠MDE =48.5°,楼尖MN 的视角∠MDN =3.5°(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO .参考数据:sin16.5°sin48.5°sin32°≈25,tan16.5°≈827,tan48.5°≈87,40×35≈37.4,24(2024·重庆·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b =2b cos 2π12-A 2 -a sin B 2cos B 2 .(1)求角A 的大小;(2)若BP =PC ,且b +c =2,求AP 的最小值.25(2024·山西朔州·一模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c2的最小值.26(2024·河南开封·二模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos A =2a sin B .(1)求sin A ;(2)若a =3,再从条件①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求△ABC 的面积.条件① :b =6c ;条件② :b =6;条件③ :sin C =13.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.27(2024·河南·一模)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b 2-a 2=ac .(1)求证:B =2A ;(2)若△ABC 为锐角三角形,求sin (C -A )-sin B sin A的取值范围.28(2023·河南·三模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a c =a 2+b 2-c 2b2,且a ≠c .(1)求证:B =2C ;(2)若∠ABC 的平分线交AC 于D ,且a =12,求线段BD 的长度的取值范围.29(2024·湖北·二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c a <b ,c =2a cos A cos B -b cos2A .(1)求A ;(2)者BD =13BC ,AD =2,求b +c 的取值范围.30(2024·河北·二模)若△ABC 内一点P 满足∠PAB =∠PBC =∠PCA =θ,则称点P 为△ABC 的布洛卡点,θ为△ABC 的布洛卡角.如图,已知△ABC 中,BC =a ,AC =b ,AB =c ,点P 为的布洛卡点,θ为△ABC 的布洛卡角.(1)若b =c ,且满足PB PA=3,求∠ABC 的大小.(2)若△ABC 为锐角三角形.(ⅰ)证明:1tan θ=1tan ∠BAC +1tan ∠ABC +1tan ∠ACB .(ⅱ)若PB 平分∠ABC ,证明:b 2=ac .。
解三角形高考大题

解三角形高考大题1.已知三角形ABC中,AB=AC,∠B=∠C,BE为边BC上的高,则下列等式成立:(1) AB^2=BC×BE (2) AC^2=BC×BE(3) BE^2=AB×BC (4) BE^2=AC×BC解析:由已知条件可得AB=AC,∠B=∠C,那么三角形ABC 是一个等腰三角形。
以BE为高,作BD⊥AC,AD⊥BC,则D为三角形ABC的垂心。
根据垂心定理,垂心到三角形三边的距离成正比,即有(1) AC^2=BC×BE,(2) AB^2=BC×BE。
2.在三角形ABC中,AB=AC,∠B=45°,D是AB的中点,E 是BC的中点,连接AE和CD。
若∠AEC=30°,则∠CDE的角度为多少?解析:由已知条件可得AB=AC,∠B=45°,那么三角形ABC 是一个等腰直角三角形。
根据等腰直角三角形的性质,∠C=90°,∠A=45°,∠BAC=90°-45°=45°。
在三角形AEC中,∠AEC=30°,∠ACD=∠AED=60°。
所以,在三角形CDE中,角度之和为180°,代入已知角度可得∠CDE=180°-60°-60°=60°。
3.在三角形ABC中,AB=AC,垂直平分线BD平分∠BAC,垂足为D,则下列等式成立:(1) AD=AC (2) BC=2BD(3) ∠ACB=∠ADB (4) BD=AB×sinB解析:由已知条件可得AB=AC,垂直平分线BD平分∠BAC。
那么根据垂直平分线的性质,(1) AD=AC (2) ∠ACB=∠ADB (3) BD为BC的中线,那么BC=2BD 。
根据正弦定理,有BD/AB=sin∠B,所以BD=AB×sinB。
(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理科解三角形大题(40道)
1. 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知
b
a
c B C A -=-2cos cos 2cos .
(1)求A
C
sin sin 的值; (2)若2,4
1
cos ==b B ,求ABC ∆的面积S .
2.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知2
sin 1cos sin C C C -=+. (1)求C sin 的值;
(2)若8)(42
2-+=+b a b a ,求边c 的值.
3.在ABC ∆中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+
π
,求A 的值;
(2)若c b A 3,3
1
cos ==,求C sin 的值.
4.ABC ∆中,D 为边BC 上的一点,5
3
cos ,135sin ,33=∠==ADC B BD ,求AD .
5.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知4
1cos ,2,1===C b a . (1)求ABC ∆的周长; (2)求)cos(C A -的值.
6.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且24
1b ac =
. (1)当1
,4
5
==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.
7.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值;
(2)求C B sin sin +的最大值.
8.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知4
12cos -=C . (1)求C sin 的值;
(2)当C A a sin sin 2,2==时,求c b ,的长.
ABC ∆b c C a =+2
1cos 9.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足3,5
522cos =⋅=A . (1)求ABC ∆的面积;
(2)若6=+c b ,求a 的值.
10.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,2
2)4cos()4cos(=-++ππ
C C . (1)求角C 的大小;
(2)若32=c ,B A sin 2sin =,求b a ,.
11.在ABC ∆中,
角C B A ,,的对边分别是c b a ,,,且. (1)求角A 的大小;
(2)若1=a ,求ABC ∆的周长l 的取值范围.
12.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(=--C a A c b . (1)求角A 的大小;
(2)若3=a ,4
3
3=∆ABC S ,试判断的形状,并说明理由.
13.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且.3)(22
22ab c b a =-+
(1)求2
sin
2
B
A +; (2)若2=c ,求ABC ∆面积的最大值.
14.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足2
2
2
2
cos 2cos 4c b a B ac B a -+=-. (1)求角B 的大小;
(2)设)1,3(),2cos ,2(sin -=-=n C A m ,求n m ⋅的取值范围.
15.已知)0)(cos ,(cos ),cos ,(sin >==ωωωωωx x n x x m ,若函数2
1
)(-
⋅=x f 的最小正周期为π4.
(1)求函数)(x f y =取最值时x 的取值集合;
(2)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,求)(A f 的取值范围.
16.如图,ABC ∆中,2,332sin ==∠AB ABC ,点D 在线段AC 上,且3
3
4,2==BD DC AD . (1)求BC 的长; (2)求DBC ∆的面积.
A
B
D
C
17.已知向量5
5
2sin ,(cos ),sin ,(cos ===ββαα. (1)求)cos(βα-的值; (2)若02
,2
0<<-
<<βπ
π
α,13
5
sin -
=β,求αsin .
18.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知12cos sin 2sin 2sin 2
=+⋅+C C C C ,且
5=+b a ,7=c .
(1)求角C 的大小; (2)求ABC ∆的面积.
19.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足2
1)cos sin 3(cos =-⋅A A A . (1)求角A 的大小;
(2)若32,22==∆ABC S a ,求c b ,的长.
20.已知函数)(,cos 2
1
sin 23)(R x x x x f ∈+=ππ,当]1,1[-∈x 时,其图象与x 轴交于N M ,两点,最高点为P .
(1)求PN PM ,夹角的余弦值;
(2)将函数)(x f 的图象向右平移1个单位,再将所得图像上每点的横坐标扩大为原来的2倍,而得到函数)(x g y =的图象,试画出函数)(x g y =在]3
8
,32[上的图象.
3,5
3
sin ,3===b A B π
21.已知函数a x x x a x f -+=cos sin 2sin 2)(2
(a 为常数)在8
3π
=x 处取得最大值. (1)求a 的值;
(2)求)(x f 在],0[π上的增区间.
22.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且bc a c b =-+2
22. (1)求角A 的大小;
(2)若函数2
cos 2cos 2sin )(2x x x x f +=,当2
1
2)(+=
B f 时,若3=a ,求b 的值.
23.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知. (1)求C sin 的值; (2)求ABC ∆的面积.
24.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且B c a C b cos )3(cos -=. (1)求B sin 的值;
(2)若2=b ,且c a =,求ABC ∆的面积.
25.已知函数212cos 2cos 2sin
3)(2++=x x x x f .
(1)求)(x f 的单调区间;
(2)在锐角三角形ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足A c C a b cos cos )2(⋅=-,求)(A f 的取值范围.
26.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,a A b B A a 2cos sin sin 2
=+.
(1)求
a
b ; (2)若2
2
2
3a b c +=,求角B .
27.港口A 北偏东︒30方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站为31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离为21海里,问此时轮船离港口A 还有多远?
28.某巡逻艇在A 处发现在北偏东︒45距A 处8海里的B 处有一走私船,正沿东偏南︒15的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以312海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.
29.在海岛A 上有一座海拔1km 的山峰,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东︒15、俯角为︒30的B 处,到11:10时,又测得该船在岛北偏西︒45、俯角为︒60的C 处.
(1)求船航行速度;
(2)求船从B 到C 行驶过程中与观察站P 的最短距离.
30.如图所示,甲船由A 岛出发向北偏东︒45的方向做匀速直线航行,速度为215海里/小时,在甲船从A 到出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东θ(2
1
tan =θ)的方向做匀速直线航行,速度为m 海里/小时.
(1)求4小时后甲船到B 岛的距离为多少海里; (2)若两船能相遇,求m.。