UGNX运动仿真应用于机械结构设计说明
UG NX CAE 高级仿真 实例练习

UG NX CAE 高级仿真实例练习简介UG NX 是一款专业的计算机辅助工程(CAE)软件,它提供了强大的仿真功能,可用于实现各种工程问题的分析和优化。
本文将以实例练习的方式介绍 UG NX CAE 的高级仿真功能,以帮助读者更好地理解和应用该软件。
实例练习一:结构强度分析问题描述在该实例练习中,我们将对一个机械零件进行结构强度分析。
零件的模型数据已经准备好,我们需要使用 UG NX CAE 对该零件进行有限元分析,确定其在工作载荷下的应力分布,并评估其结构强度。
实施步骤1.导入模型:打开 UG NX CAE,导入机械零件的模型文件(可以是 STEP、IGES 或其他支持的格式)。
2.设置边界条件:根据实际工作载荷和约束条件,设定零件的边界条件,如约束支点、施加载荷等。
3.网格划分:对零件进行网格划分,将其划分为适合有限元分析的小单元,例如四面体或六面体单元。
4.材料属性:指定零件的材料属性,如弹性模量、泊松比、密度等。
5.有限元分析:运行有限元分析,得到零件在工作载荷下的应力分布。
6.结果评估:对仿真结果进行评估,比较应力值与材料强度的比较,判断零件的结构强度是否满足设计要求。
结果展示以下是该机械零件在应力分析后的结果展示。
可以通过颜色图或等值线图来直观地展示零件不同区域的应力水平。
应力分布图应力分布图结果分析根据应力分布图可以看出,机械零件的主要应力集中在连接孔附近的区域,这是由于该区域受到了最大的载荷作用。
通过与材料强度的比较,我们可以判断该零件的结构强度是否满足要求。
如果存在强度不足的问题,可以通过优化设计来改进零件的结构。
实例练习二:流体力学分析问题描述在该实例练习中,我们将对一个导流罩进行流体力学分析。
导流罩的模型数据已经准备好,我们需要使用 UG NX CAE 对导流罩内的流体行为进行模拟,以评估其气流特性。
实施步骤1.导入模型:打开 UG NX CAE,导入导流罩的模型文件。
2.定义流体域:根据导流罩内的流体行为和边界条件,定义流体域,并设置气流的入口和出口。
基于UG的升降机构的建模及运动仿真

基于UG的升降机构的建模及运动仿真升降机是工业自动化生产中非常重要的机构,广泛应用于各种机械设备的升降装置。
在升降机的构造中,升降机构是起到关键作用的部分之一。
本文将基于UG软件对升降机构进行建模和运动仿真。
首先,在UG软件中绘制出升降机构的三维模型。
升降机构主要由支架、升降柱、伸缩杆、导轨、保护套等零件组成。
在绘图过程中,需要根据具体的工程要求进行尺寸和配比的设计。
其次,根据升降机的工作原理和运动规律,建立升降机构的动力学模型,并对其进行运动仿真。
升降机的运动状态可以分为升降、下降、伸出和收回四种类型。
在每种状态下,升降机的运动规律都是不同的,需要针对性地进行建模和仿真。
在进行运动仿真时,需要当前升降机状态的初始参数,例如各个零部件的初始位置、速度、加速度等,同时还需要给定的系统参数,例如负载重量、电动机的功率等。
调整这些参数可以让仿真结果更加贴近实际。
最后,通过实际测量和仿真结果的对比,对升降机构进行优化改进。
对不合理的部分进行修正和调整,使其在升降、下降、伸出和收回等不同工况下均能保持良好的性能和稳定性,从而保证升降机的正常运转和安全性。
综上所述,通过UG软件对升降机构进行建模和运动仿真,可以充分了解升降机的结构和运动规律,有助于发现潜在的问题并加以优化改进,提高升降机的精度和有效性,提高生产效率和安全性,从而更好地满足工业自动化生产的需求。
数据分析是一个非常有效的方法,可以用来研究各种信息。
无论是个人还是公司,皆可以从数据分析中受益。
这里,我们将列出一些数据,并进行分析,以展示数据分析的价值和实际意义。
以一个假设的数据集为例:一家服装公司在过去三个月内销售了1000件女装,其中450件为裙子,300件为上衣,250件为外套。
以下是对该数据集的分析结果:1.销售额分析这家服装公司在过去三个月总共获得了销售额1500万美元。
从销售额来看,裙子销售额为675万美元,上衣销售额为450万美元,外套销售额为375万美元。
案例3 基于UG机械动力学分析-运动仿真

2018/11/7
1.1
打开运动仿真主界面
菜单命令:
【开始】→【运动仿真】
2018/11/7
环境设置
运动学分析:分析仿真机构的运动并 决定机构在约束状态下的位移、速度 、加速度的值的范围
运动学求解需注意以下几点:
软件根据求解时输入的时间与步长的值对模型做动画仿真
外部的载荷与内部的力影响反作用力但不影响运动 连杆和运动付假定都是刚性的 自由度为0 注意:运动学分析时,对有自由度或有初始力的机构结算器不进行求解 ,这类机构需要做动力学分析
2018/11/7
1)旋转副 (Revolute)
可以实现两个相连件绕同一轴作相对的转动
2)滑动副(Slider)
滑块连接是两个相连件互相接触并保持着相对的滑动
3)圆柱副(Cylindrical)
实现了一个部件绕另一个部件(或机架)的相对转动
4)螺纹副(Screw)
实现了一个部件绕另一个部件(或机架)作相对的螺旋运动
副(Joint)相联接,组成运动机构。
2018/11/7
2.1
连杆特性的建立
点击运动仿真工具栏区的连杆特性和
运动副模块中的图标 (Link),系
统将会打开【连杆特性创建】对话框
。 同一对象不能属于两个连杆
2018/11/7
2.2
连杆特性参数的编辑
对各项参数 的编辑与连 杆建立时的 参数设置操
作完全相同
2018/11/7
环境设置
动态分析:如果模型有一个或多个自 由度,必须做动力学分析,在动力学 仿真中,可以在求解方案对话框中选 择静力平衡选项。
静力平衡分析将模型移动到一个平衡 的状态。
UG运动仿真教程

UG运动仿真教程一、UG运动仿真的基本概念UG软件中的运动仿真功能包括创建几何体、定义运动约束、添加动力学参数等。
通过对运动过程中的力学、动力学以及动力学参数的计算和模拟,可以预测物体的运动轨迹、速度、加速度等运动特性。
二、UG运动仿真的基本步骤1.创建几何模型:在UG软件中,首先需要创建物体的几何模型。
可以通过绘制、拉伸等工具创建物体的几何形状,也可以导入外部模型。
2.设置运动约束:在创建几何模型后,需要为物体设定运动约束。
运动约束包括位置约束、角度约束等,用于定义物体的运动范围和限制。
3.添加动力学参数:在建立几何模型和设置运动约束后,需要为物体添加动力学参数。
动力学参数包括质量、惯性矩阵、摩擦系数等,用于计算物体在运动中的力学特性。
4.运动仿真计算:完成上述步骤后,可以进行运动仿真计算。
UG软件会根据设定的运动约束和动力学参数,计算物体的运动轨迹、速度、加速度等参数,并在三维环境中实时显示物体的运动过程。
5.优化设计:通过观察和分析运动仿真的结果,可以对产品设计进行优化。
根据物体的运动特性,可以调整运动约束、改变动力学参数等,以达到更好的设计效果。
三、UG运动仿真的应用领域1.机械设计与工艺优化:UG运动仿真可以模拟产品在工作状态下的运动过程,帮助工程师分析零件的运动轨迹、工作效率等,优化设计方案和工艺流程。
2.机器人运动规划与控制:UG运动仿真可以模拟机器人的运动行为,预测机器人的轨迹、速度、加速度等,优化机器人的运动规划和控制算法。
3.汽车碰撞分析与安全设计:UG运动仿真可以模拟车辆在碰撞过程中的变形、速度、受力情况等,帮助汽车制造商减少碰撞事故的危害,提高车辆的安全性能。
4.产品装配与拆卸分析:UG运动仿真可以模拟产品的装配和拆卸过程,分析零部件的运动变形情况,优化产品的装配性能和使用寿命。
四、UG运动仿真的优势1.省时省力:UG运动仿真可以通过计算和模拟代替实际运动过程的试错,减少设计和制造阶段的试验和调整时间和成本。
UG-NX运动仿真应用于机械结构设计

UG-NX运动仿真应用于机械结构设计UG NX运动仿真应用于机械结构设计作者:李凯1 引言NX是计算机辅助设计、制造和分析软件,即CAD/CAM/CAE集成工程软件系统,具有强大的设计、加工、分析能力。
为汽车、机械、航天、航空、家电、医疗仪器和工模具等工业的生产提供了有力软件工具。
传统机械设计中。
设计者仅仅是做出零件的二维或二维的装配图,无法准确地预测出机构在运行过程中各零件是否干涉、驱动力是否满足、运动部件的行程能否达到要求等细书问题。
设计者对机构在运转中的情况停留在理论计算以及自己对机构的分析评估,在此条件下设计的机构不免会存在各种隐患和漏洞。
制造完成的机构在运行中往往面临各种问题,可能需要对机构某部件再次进行设计或改进,影响了工作效率。
在机械设计过程中引入运动仿真功能可以直接避免上述种种问题。
设计者可对仿真中发现的问题进行相应的处理,同时也能够为用户提供更加直观更有说服力的动画产品演示。
2 NX软件设计压铸机取料机械手下面仅以NX软件设计压铸机取料机械手为例,说明运动仿直模拟分析过程(如图1)。
以设计压铸机取料机械手例(图2)、介绍NX 软件在机构设计中的应用,可实现存模块的无缝连接。
它具有强大的实体建模、曲面造型、工程制图以及装配功能,可以进行运动仿真分析。
图2 压铸机取料机械手2.1 步骤1:实体建模NX具有完善的实体建模功能,可根据零件外形先绘制草图,添加尺寸约束,然后通过拉伸、旋转、扫面、放样、倒角、切分、布尔运算、拔模、抽壳等命令完成行零部件的设计,每个部件录用参数化设计,在装配过程中发现问题后可直接修改零件刚中的尺寸参数。
该机构包括旋转装置、水平移动装置、竖直移动装置,涉及到的运动方式是电机驱动、齿轮齿条传动、皮带轮传动、气缸驱动等,建模的零件包括:机架、电机、气缸、齿轮、齿条、卡爪、直线导轨等70个,绘制完成后放入统一的文件夹内(如图3、4、5)。
图3 建模的一般工具图4 零件建模设计设计完成的部分零件模型2.2 步骤2:零件的虚拟装配NX软件提供了3种装配方法,第一种是自底向上装配。
UG软件在机械设计中的应用研究

UG软件在机械设计中的应用研究随着科技的不断发展,计算机辅助设计(CAD)软件在工程设计中的应用越来越广泛。
UG软件作为其中的佼佼者,在机械设计领域有着广泛的应用和深远的影响。
本文将就UG软件在机械设计中的应用进行研究和探讨。
一、UG软件概述UG软件全称为Unigraphics,是美国UGS公司的产品。
UG软件是一种为机械设计制造领域提供专业解决方案的CAD/CAM/CAE集成软件,拥有强大的三维建模、装配设计、机械结构分析、工程图纸、数控加工等功能。
UG软件利用先进的数学建模和仿真技术,可以为工程师和设计师提供更加准确、高效、智能的设计工具。
UG软件支持多种文件格式,可以与其他常见的CAD软件、CAE软件和CAM 软件进行无缝集成,为用户提供更加便捷的设计和制造解决方案。
二、UG软件在机械设计中的应用1. 三维建模UG软件拥有强大的三维建模功能,可以实现复杂机械零件和装配体的快速建模和设计。
通过UG软件,用户可以快速绘制出复杂形状的实体模型,进行形位公差分析,为后续的工程设计和制造提供可靠的基础。
在实际的机械设计过程中,UG软件的三维建模功能可以大大提高设计效率和精度,减少设计过程中的反复修改和调整,提升工程师的设计水平。
2. 装配设计UG软件可以实现机械装配体的设计和分析,具有出色的装配约束管理和运动模拟功能。
通过UG软件,用户可以对复杂的机械装配体进行拆装、运动和碰撞分析,确保设计的合理性和可行性。
UG软件的装配设计功能可以帮助工程师快速完成装配体的设计和分析,发现潜在的问题和冲突,提高装配效率和设计质量。
3. 工程图纸UG软件可以自动生成符合国际标准的工程图纸,并支持图纸的定制化和批量输出。
工程师可以通过UG软件快速生成零件图、装配图、工艺图等各种工程图纸,为制造部门提供准确的制造指导和加工依据。
UG软件的工程图纸功能可以大大减少图纸设计的时间和成本,提高图纸的准确性和一致性,为制造过程提供全面的技术支持。
基于ug的曲柄连杆机构的运动仿真

摘要: 三维模型虚拟设计是机械设计的必然趋势。
该文简述了三维设计软件UG NX5.0的强大功能,并且结合发动机曲柄连杆机构实现了模型的虚拟设计、虚拟装配及三维动态真。
关键词:虚拟设计;虚拟装配;三维动态仿真Engine Crank and Link Mechanism Motion Animation Based on UGAbstract: Three - dimentional model virtual design is the tendency of mechanic design. The paper simply state its powerful function of UG NX5.0 with three dimentional design soft, and realize model virtual design、virtual assembly and three - dimentional dynamic animation combined with engine crank and link mechanism.Key words: virtual design; virtual assembly; three - dimentional dynamic animation目录序言 (1)第1章基于UG的曲柄连杆机构的运动仿真的简介 (3)1.1 发动机曲柄连杆机构的虚拟设计 (3)1.2 虚拟装配 (4)1.3 运动仿真 (4)第2章曲柄连杆机构的拆装和零件的测绘 (6)2.1曲柄连杆机构的拆卸 (6)2.3 零件的测绘 (9)2.3.1 游标卡尺的读数原理和读数方法 (9)2.3.2 直径和孔深尺寸的测量 (10)2.4 测绘零件时的注意事项 (10)第 3章曲柄连杆机构的三维造型 (12)3.1曲柄的绘制过程 (14)3.2连杆的三维造型 (22)3.3 活塞的三维造型 (27)第4章曲柄连杆机构的虚拟装配 (33)4.1 装配综述 (33)4.2 曲柄连杆机构的装配实例 (34)第5章曲柄连杆机构的运动仿真 (38)5.1运动仿真综述 (38)5.2 运动仿真创建实例 (40)参考文献 (46)致谢 (47)曲柄连杆机构运动仿真设计(基于UG)序言虚拟技术是近年来随着计算机辅助设计技术发展起来的一种新型技术。
ug运动仿真基本步骤

ug运动仿真基本步骤运动仿真是一种模拟运动过程的方法,通过计算机模型来预测和分析运动的行为和性能。
它在众多领域中得到广泛应用,如机械工程、航空航天工程、汽车工程等。
下面将介绍UG软件中运动仿真的基本步骤。
一、构建模型运动仿真的第一步是构建模型。
在UG软件中,可以使用多种方式创建模型,如实体建模、曲面建模等。
在进行运动仿真时,需要将模型的各个部件组装到一起,并确保它们之间的连接正确。
通过拖拽和旋转等操作,可以将部件装配到正确的位置。
在装配过程中,可以使用约束来定义部件之间的运动关系,如旋转关节、滑动关节等。
二、定义驱动器和约束在完成模型的构建后,需要为模型添加驱动器和约束。
驱动器是指作为运动仿真输入的外部力或运动,可以是电机驱动、液压驱动等。
在UG软件中,可以通过定义位移、速度或力矩等参数来模拟驱动器的作用。
约束是指限制模型运动的规则,可以是固定、对称、平行等。
在UG软件中,可以通过选择部件上的面、边或点来添加约束。
约束可以保持部件的相对位置固定,也可以限制部件的运动范围。
通过添加约束,可以模拟实际系统中的各种约束条件,如静摩擦、动摩擦、间隙等。
三、定义边界条件边界条件是指模型的初始状态或边界条件。
在进行运动仿真时,需要定义模型的初始位置、速度和加速度等。
在UG软件中,可以通过设置初始条件来定义模型的初始状态。
边界条件还包括模型与外界的交互,如模型与地面的接触、模型与空气的流动等。
通过定义边界条件,可以模拟系统在不同环境下的运动行为。
四、设置运动仿真参数在进行运动仿真之前,还需要设置一些仿真参数,如仿真时间、时间步长等。
在UG软件中,可以通过设置仿真参数来控制仿真的精度和计算速度。
较小的时间步长可以提高仿真的精度,但会增加计算时间。
较长的仿真时间可以模拟长时间的运动,但需要更多的计算资源。
五、运行仿真完成上述步骤后,可以开始进行运动仿真。
在UG软件中,可以选择“运动模拟”功能,在仿真过程中,UG会根据模型、驱动器、约束和边界条件进行计算,并生成动画和结果数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UG NX运动仿真应用于机械结构设计
作者:凯
1 引言
NX是计算机辅助设计、制造和分析软件,即CAD/CAM/CAE集成工程软件系统,具有强大的设计、加工、分析能力。
为汽车、机械、航天、航空、家电、医疗仪器和工模具等工业的生产提供了有力软件工具。
传统机械设计中。
设计者仅仅是做出零件的二维或二维的装配图,无法准确地预测出机构在运行过程中各零件是否干涉、驱动力是否满足、运动部件的行程能否达到要求等细书问题。
设计者对机构在运转中的情况停留在理论计算以及自己对机构的分析评估,在此条件下设计的机构不免会存在各种隐患和漏洞。
制造完成的机构在运行中往往面临各种问题,可能需要对机构某部件再次进行设计或改进,影响了工作效率。
在机械设计过程中引入运动仿真功能可以直接避免上述种种问题。
设计者可对仿真中发现的问题进行相应的处理,同时也能够为用户提供更加直观更有说服力的动画产品演示。
2 NX软件设计压铸机取料机械手
下面仅以NX软件设计压铸机取料机械手为例,说明运动仿直模拟分析过程(如图1)。
以设计压铸机取料机械手例(图2)、介绍NX软件在机构设计中的应用,可实现存模块的无缝连接。
它具有强大的实体建模、曲面造型、工程制图以及装配功能,可以进行运动仿真分析。
图2 压铸机取料机械手
2.1 步骤1:实体建模
NX具有完善的实体建模功能,可根据零件外形先绘制草图,添加尺寸约束,然后通过拉伸、旋转、扫面、放样、倒角、切分、布尔运算、拔模、抽壳等命令完成行零部件的设计,每个部件录用参数化设计,在装配过程中发现问题后可直接修改零件刚中的尺寸参数。
该机构包括旋转装置、水平移动装置、竖直移动装置,涉及到的运动方式是电机驱动、齿轮齿条传动、皮带轮传动、气缸驱动等,建模的零件包括:机架、电机、气缸、齿轮、齿条、卡爪、直线导轨等70个,绘制完成后放入统一的文件夹(如图3、4、5)。
图3 建模的一般工具
图4 零件建模设计
设计完成的部分零件模型
2.2 步骤2:零件的虚拟装配
NX软件提供了3种装配方法,第一种是自底向上装配。
就是先创建部件几何模型,再组合成子装配,最后生成装配部件的装配方法,这是最常用的一种方法(如图6);第二种是自顶向下装配。
直接在装配层建立零件模型,然后边装配边建立其他部件模型,也就是在装配文件中创建模型。
第三种是混合装配。
即根据装配设计的需要,进行自底向上装配和自顶向下装配混合使用的装配方法。
本文所涉及的机构采用混合装配方式,装配完成后为每个部件着色。
图6 装配完成
2.3 步骤3:机构运动仿真
了解了机构运动的原理及需要设定的运动副情况后,可以进行运动仿真。
在NX主界而中选捧菜单开始/运动仿真,即可进入NX“运动仿真”主界面。
新建一个运动学仿真,并在弹出的“主模型到仿真的配对条件转换”对话框中选择“否”。
步骤:
(1)创建连杆,即相对运动部件集合,本例中根据各部件相互运动方式需建立7个连杆,包括固定机架部分、水平横移部分,竖直运动部分、机械手水平旋转部分、机械手竖直旋转部分、卡爪开闭部分。
(2)在零件的外观模理建立好以后,需要对模型的材料特性进行加载,包括材料力学特性、弹性模量、泊松比、密度等(如图7)
(3)根据机构动作设定运动副,本例中用到的运动副包括滑动副、旋转副、齿轮副、齿轮齿条副。
(4)定位每个运动副的时间函数,在一个周期完成所有的运动。
2.4 步骤4:添加机构载荷
向机构添加一定的外载荷,使整个机构工作在真实的工程状态下,尽可能地使其运动状态与真实的情况相吻合。
一个被应用的力设置在机构的两连杆之间、运动副上或者是连轩与机架之间,可以被用来模拟两个零件之间的弹性连接,模拟弹簧和阻尼的状态,以及传动力与原动力等多种零件之间的相互作用(如图8)。
2.5 步骤5:运动驱动、关节运动和运动仿真
运动驱动是机构产生运动的原动力,根据运动驱动的形式,机构将产生相应的运动形式。
NX运动的驱动有多种打式:恒定驱动,简谐运动驱动、运动函数、关节运动驱动。
取料机械手采用恒定转速驱动,电机的调速系统采用恒转速调速,在设定时需要设置转速,我们的机构为低速机构,齿轮转速为10r/min。
NX/Motion的运动分析类型有两类:静态分析和动力学分析(如图9、10)所示。
在设置分析结算参数时,需要设定运动时间和解算步数,解算步数越多,分析结果越准确,但需要的时间也就越长。
2.6 步骤6:仿真结果输出
当机构做运动仿真分析时,部将生成一组输出数据表,表里面记录了整个仿真过程中各个零件的位移、速度、加速度和受力信息。
分析完成后,可以将这些信息以Excel表格和图形的方式输出;根据这些结果,分析机构的力学性能,并作出改进(如图11、12、13)。
3 结论
借助NX软件强大的实体建模功能进行建模,并利用装配功能完成了虚拟模型的创建,然后进行了详细的运动仿真分析,主要对此机构进行运动学分析。
利用NX软件的运动仿真功能,可以得出机构的运动动画,更加形象地了解其运动方式,并可以输出仿真的结果,可以生成所有运动副位移、速度随时间的变化情况。
通过这些工作为进一步进行动力学分析奠定了基础,对缩短产品开发周期,提高产品质量和性能有积极的作用。