2018-2019学年重庆市荣昌区八年级(上)期末数学试卷(含解析)

合集下载

人教版2018-2019八年级数学上期末试卷【精选3套】

人教版2018-2019八年级数学上期末试卷【精选3套】

初二数学期末复习精品资料人教版2018-2019八年级数学上册期末考试试卷后附答案一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。

)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

2018-2019学年八年级(上)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<63.分式可变形为()A. B.﹣C.D.﹣4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x55.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°6.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+27.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a28.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣29.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.611.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)12.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3 B.1 C.5 D.不能确定13.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°14.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题15.计算:(2a2)3•a4=.16.化简:=.17.若m=2n+1,则m2﹣4mn+4n2的值是.18.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为.19.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.三、解答题20.分解因式:(1)x3y﹣4x2y+4xy;(2)a3+2a2﹣3a.21.计算:(1)(x﹣y)2﹣(y+2x)(y﹣2x);(2)(﹣)÷.22.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD 的度数.23.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)24.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?25.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为.提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.26.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6【考点】三角形三边关系.【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x<8.故选B.【点评】考查了三角形的三边关系,能够熟练解不等式组.3.分式可变形为()A. B.﹣C.D.﹣【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x5【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方、积的乘方、完全平方公式和同底数幂的乘法计算即可.【解答】解:A、(x3)2=x6,错误;B、(2x)2=4x2,错误;C、(x+1)2=x2+2x+1,错误;D、x3•x2=x5,正确;故选D【点评】此题考查幂的乘方、积的乘方、完全平方公式和同底数幂的乘法,关键是根据法则进行计算.5.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.6.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解-提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.7.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】约分.【专题】计算题.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解:==﹣ab.故选:B.【点评】此题主要考查了约分,正确分解因式是解题关键.8.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【考点】平方差公式的几何背景.【专题】几何图形问题.【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.9.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.6【考点】因式分解的应用.【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.11.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)【考点】坐标与图形变化-对称.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选C.【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.12.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3 B.1 C.5 D.不能确定【考点】解分式方程;关于x轴、y轴对称的点的坐标.【专题】计算题;分式方程及应用.【分析】根据P点在第四象限及a为整数,确定出a的值,代入分式方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,∴,即<a<2,∴a=1,代入分式方程得: +=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,故选A【点评】此题考查了解分式方程,以及关于x轴、y轴对称的点的坐标,熟练掌握运算法则是解本题的关键.13.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【考点】全等三角形的判定与性质.【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC 的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.14.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质.【分析】根据已知条件利用HL易证△APR≌△APS,再利用全等三角形的性质可得∠PAR=∠PAS,AR=AS,从而可证(1)、(2)正确;由AQ=PQ,利用等边对等角易得∠1=∠APQ,再利用三角形外角的性质可得∠PQC=2∠1,而(1)中PA是∠BAC的角平分线可得∠BAC=2∠1,等量代换,从而有∠PQC=∠BAC,利用同位角相等两直线平行可得QP∥AR,(3)正确;根据已知条件可知△BRP与△CSP只有一角、一边对应相等,故不能证明两三角形全等,因此(4)不正确.【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.【点评】本题考查了全等三角形的判定和性质;做题时利用了平行线的判定、等边对等角、三角形外角的性质,要熟练掌握这些知识并能灵活应用.二、填空题15.计算:(2a2)3•a4=8a10.【考点】幂的乘方与积的乘方;同底数幂的乘法.【专题】压轴题.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加,计算即可.【解答】解:(2a2)3•a4,=8a6•a4,=8a10.故答案为:8a10.【点评】本题考查积的乘方的性质,同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.16.化简:=x+2.【考点】分式的加减法.【专题】计算题.【分析】先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.【解答】解: +=﹣==x+2.故答案为:x+2.【点评】本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.17.若m=2n+1,则m2﹣4mn+4n2的值是1.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.【解答】解:∵m=2n+1,即m﹣2n=1,∴原式=(m﹣2n)2=1.故答案为:1【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.18.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】如果设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,根据“他骑自行车前往体育馆比乘汽车多用10分钟”,得到等量关系为:骑自行车所用的时间﹣乘汽车所用的时间=,据此列出方程即可.【解答】解:设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,由题意,得﹣=.故答案为﹣=.【点评】本题考查由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到了行程问题中的基本关系式关系:时间=路程÷速度.本题要注意:时间的单位要和所设速度的单位相一致.19.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①②④①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.【考点】全等三角形的判定与性质.【分析】要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.【解答】解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;③若EC=FC条件不够不能得出.错误;④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.故填①②④.【点评】本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题20.分解因式:(1)x3y﹣4x2y+4xy;(2)a3+2a2﹣3a.【考点】提公因式法与公式法的综合运用;因式分解-十字相乘法等.【分析】(1)先提公因式,再根据完全平方公式分解即可;(2)先提公因式,再根据十字相乘法分解即可.【解答】解:(1)x3y﹣4x2y+4xy=xy(x2﹣4x+4)=xy(x﹣2)2;(2)a3+2a2﹣3a=a(a2+2a﹣3)=a(a+3)(a﹣1).【点评】本题考查了分解因式的应用,能熟练地掌握因式分解的方法是解此题的关键.21.计算:(1)(x﹣y)2﹣(y+2x)(y﹣2x);(2)(﹣)÷.【考点】分式的混合运算;完全平方公式;平方差公式.【专题】整式;分式.【分析】(1)原式利用平方差公式及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2﹣2xy+y2﹣y2+4x2=5x2﹣2xy;(2)原式=[﹣]•=•=﹣•=﹣.【点评】此题考查了分式的混合运算,以及完全平方公式、平方差公式,熟练掌握运算法则是解本题的关键.22.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD 的度数.【考点】三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.【解答】解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.【点评】此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.23.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理SSS证得△ACB≌△ADB;(2)由(1)中的全等三角形(△ACB≌△ADB)的对应角相等证得∠CAE=∠DAE,则由全等三角形的判定定理SAS证得△CAE≌△DAE,则对应边CE=DE;(3)同(2),利用全等三角形的对应边相等证得结论.【解答】解:(1)△ACB≌△ADB,理由如下:如图1,∵在△ACB与△ADB中,,∴△ACB≌△ADB(SSS);(2)如图2,∵由(1)知,△ACB≌△ADB,则∠CAE=∠DAE.∴在△CAE与△DAE中,,∴△CAE≌△DAE(SAS),∴CE=DE;(3)如图3,PC=PD.理由同(2),△APC≌△APD(SAS),则PC=PD.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【考点】分式方程的应用.【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.【解答】解:(1)所作图形如图所示:A1(3,1),B1(0,0),C1(1,3);(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,点D坐标为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.26.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据等腰直角三角形的性质求出∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得CD=CE,全等三角形对应角相等可得∠ACE=∠BCD,再求出∠DCE=90°,从而得解;(2)根据等腰三角形两底角相等求出∠AEF=∠AFE=67.5°,再根据直角三角形两锐角互余求出∠ADE=22.5°,然后求出∠ADC=67.5°,利用三角形的内角和定理求出∠ACD=67.5°,从而得到∠ACD=∠ADC,根据等角对等边即可得到AD=AC.【解答】解:(1)△CDE是等腰直角三角形.理由如下:∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵AE⊥AB,∴∠CAE=90°﹣45°=45°,∴∠B=∠CAE,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴CD=CE,∠ACE=∠BCD,∵∠ACD+∠BCD=∠ACB=90°,∴∠DCE=∠ACD+∠ACE=90°,∴△CDE是等腰直角三角形;(2)存在AD=1.理由如下:∵AE=AF,∠CAE=45°,∴∠AEF=∠AFE=(180°﹣45°)=67.5°,∴∠ADE=90°﹣67.5°=22.5°,∵△CDE是等腰直角三角形,∴∠CDE=45°,∴∠ADC=22.5°+45°=67.5°,在△ACD中,∠ACD=180°﹣45°﹣67.5°=67.5°,∴∠ACD=∠ADC,∴AD=AC=1.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.。

重庆市荣昌区八年级上期末数学试卷含答案解析.doc

重庆市荣昌区八年级上期末数学试卷含答案解析.doc

重庆市荣昌区八年级(上)期末数学试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题的下面,都给出了代号为A、B、C、D四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.下列长度的各组线段中,能构成三角形的是()A.3,4,5 B.2,2,4 C.1,2,3 D.2,3,62.计算:m6m3的结果()A.m18B.m9C.m3D.m23.下列式子是分式的是()A.B.C.D.4.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°5.把分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值()A.不改变B.缩小10倍C.扩大10倍D.改变为原来的6.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.87.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()1A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形8.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对9.若3x=2,3y=4,则32x﹣y等于()A.1 B.2 C.4 D.810.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±1611.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第六个图形中三角形的个数是()A.20 B.26 C.32 D.3812.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()2A.80°B.90°C.100°D.130°二、填空题:本大题共6小题,每小题4分,共24分,在每小题中,请将答案填在提后的横线上.13.近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为.14.分解因式:m2﹣n2=.15.点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是.16.已知:如图,△ABC≌△DFE,若∠A=60°,∠E=90°,DE=6cm,则AB=cm.17.三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是.318.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ADB=度.三、解答题:本大题共2小题,每小题7分,共14分,解答时每小题必须给出必要的演算过程或推理步骤.19.(1)计算:(2x﹣3)(x+4)(2)解方程:.20.已知:如图,E、F在AC上,AD∥CB,且∠D=∠B,AD=CB,求证:DF=BE.四、解答题:本大题共4小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(),其中|2x﹣1|+y2+4y+4=0.422.如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.23.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?24.如图,E、F分别是等边三角形ABC的边AB、AC上的点,且BE=AF,CE、BF交于点P,且EG⊥BF,垂足为G.(1)求证:∠BCE=∠ABF;(2)求证:PE=2PG.五、解答题:本大题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或演算步骤.525.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.26.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.6重庆市荣昌区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题的下面,都给出了代号为A、B、C、D四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.下列长度的各组线段中,能构成三角形的是()A.3,4,5 B.2,2,4 C.1,2,3 D.2,3,6【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、3+4>5,能够组成三角形,故此选项正确;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3<6,不能组成三角形,故此选项错误.故选:A.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.计算:m6m3的结果()A.m18B.m9C.m3D.m2【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:m6m3=m9.故选:B.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.73.下列式子是分式的是()A.B.C.D.【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、是单项式,故A错误;B、x2是单项式,故B错误;C、是单项式,故C错误;D、是分式,故D正确;故选:D.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.4.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】等腰三角形的性质.【专题】计算题.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点评】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.85.把分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值()A.不改变B.缩小10倍C.扩大10倍D.改变为原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变,可得答案.【解答】解:分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值不变,故选:A.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变.6.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.8【考点】多边形内角与外角;多边形.【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:=8,故选D.【点评】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题关键.7.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()9A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【考点】翻折变换(折叠问题);矩形的性质.【专题】证明题.【分析】对翻折变换及矩形四个角都是直角和对边相等的性质的理解及运用.【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.8.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,10②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.9.若3x=2,3y=4,则32x﹣y等于()A.1 B.2 C.4 D.8【考点】同底数幂的除法;幂的乘方与积的乘方.【专题】计算题;实数.【分析】原式利用幂的乘方与积的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵3x=2,3y=4,∴原式=(3x)2÷3y=4÷4=1.故选A.【点评】此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±16【考点】完全平方式.【分析】这里首末两项是x和4y这两个数的平方,那么中间一项为加上或减去x和4y积的2倍.【解答】解:∵x2+kxy+16y2是一个完全平方式,∴±2×x×4y=kxy,∴k=±8.故选B.【点评】本题考查的是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.1111.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第六个图形中三角形的个数是()A.20 B.26 C.32 D.38【考点】规律型:图形的变化类.【分析】结合图形可知,每次变化都是将最右下角的平行四边形由图形1变为图形2,即每次增加6个三角形,从而得出第n个图形内中三角形的个数是6n﹣4,代入n=6即可得出结论.【解答】解:结合图形可知,每次变化都是将最右下角的平行四边形由图形1变为图形2,即每次增加6个三角形,故第n个图形内中三角形的个数是6(n﹣1)+2=6n﹣4.将n=6代入可得第六个图形中三角形的个数是6×6﹣4=36﹣4=32(个).故选C.【点评】本题考查图形的变换类,解题的关键是:发现“结合图形可知,每次变化都是将最右下角的平行四边形由图形1变为图形2,即每次增加6个三角形”这一规律.12.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°【考点】轴对称-最短路线问题.12【分析】延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD 分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠NM=2(∠A′+∠A″)即可解决.【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=′MAB,∠A″=∠NAD,∵∠AMN=∠A′+′MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=130°,∴∠A′+∠A″=180°﹣∠BAD=50°M∴∠AMN+∠NM=2×50°=100°.故选C.【点评】本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.二、填空题:本大题共6小题,每小题4分,共24分,在每小题中,请将答案填在提后的横线上.13.近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,13大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为 5.1×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000051=5.1×10﹣7.故答案为:5.1×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:m2﹣n2=(m+n)(m﹣n).【考点】因式分解-运用公式法.【专题】因式分解.【分析】运用a2﹣b2=(a+b)(a﹣b)分解即可.【解答】解:原式=(m+n)(m﹣n),故答案为(m+n)(m﹣n).【点评】考查因式分解的知识;若只有两项,又没有公因式,应考虑用平方差公式分解.15.点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是(6,8).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是(6,8),故答案为:(6,8).14【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.已知:如图,△ABC≌△DFE,若∠A=60°,∠E=90°,DE=6cm,则AB=12cm.【考点】全等三角形的性质.【分析】根据全等三角形的性质得到∠C=∠E=90°,AC=DE=6cm,根据直角三角形的性质得到AB=2AC,计算即可.【解答】解:∵△ABC≌△DFE,∴∠C=∠E=90°,AC=DE=6cm,∵∠A=60°,∴∠B=30°,∴AB=2AC=12cm,故答案为:12.【点评】本题考查的是全等三角形的性质以及直角三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是1<AD<5.【考点】三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=8,在△ABE 中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,15∴BD=CD,在△ADC和△EDB中,∵,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5.【点评】本题考查了全等三角形的性质和判定,三角形的三边关系定理的应用,作出正确辅助线是解题关键.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ADB=108度.【考点】等腰三角形的性质.【分析】根据等边对等角可得∠ABC=∠C,∠A=∠ABD,∠C=∠BDC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BDC=∠A+∠ABD=2∠A,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,16∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,在△ABD中,∠BDC=∠A+∠ABD=2∠A,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了等腰三角形的性质,主要利用了等边对等角的性质,三角形的内角和定理,以及三角形的一个外角大于任何一个与它不相邻的内角的性质.三、解答题:本大题共2小题,每小题7分,共14分,解答时每小题必须给出必要的演算过程或推理步骤.19.(1)计算:(2x﹣3)(x+4)(2)解方程:.【考点】解分式方程;多项式乘多项式.【专题】计算题;整式;分式方程及应用.【分析】(1)原式利用多项式乘多项式法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2x2+8x﹣3x﹣12=2x2+5x﹣12;(2)去分母得:7x=5x﹣10,解得:x=﹣5,经检验x=﹣5是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.1720.已知:如图,E、F在AC上,AD∥CB,且∠D=∠B,AD=CB,求证:DF=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据两直线平行内错角相等即可得出∠A=∠C,再根据全等三角形的判定即可判断出△ADF≌△CBE,根据全等三角形的性质即可得到结论.【解答】证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴DF=BE.【点评】本题考查了平行线的性质以及全等三角形的判定及性质,熟练掌握全等三角形的判定和性质是解题的关键.四、解答题:本大题共4小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(),其中|2x﹣1|+y2+4y+4=0.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x、y的值代入进行计算即可.18【解答】解:原式===﹣xy.∵|2x﹣1|+y2+4y+4=0,即|2x﹣1|+(y+2)2=0,∴2x﹣1=0,y+2=0,∴x=,y=﹣2,∴原式=﹣×(﹣2)=1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.【考点】三角形内角和定理;三角形的面积.【分析】(1)根据三角形的内角和得到∠BAC=50°,根据三角形的外角的性质即可得到结论;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD平分∠BAC,∴,∴∠ADC=∠B+∠BAD=65°;19(2)过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S ABDE=×10×4=20cm2.【点评】本题考查了三角形的内角和,三角形的面积的计算,角平分线的性质,熟练掌握角平分线的性质是解题的关键.23.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【考点】分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.20所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.【点评】本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.24.如图,E、F分别是等边三角形ABC的边AB、AC上的点,且BE=AF,CE、BF交于点P,且EG⊥BF,垂足为G.(1)求证:∠BCE=∠ABF;(2)求证:PE=2PG.【考点】全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.【专题】证明题.【分析】(1)证明△BCE≌△ABF(SAS),即可得到∠BCE=∠ABF;(2)利用由(1)知∠BCE=∠ABF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根据在直角三角形中,30°所对的直角边等于斜边的一半.【解答】解:(1)∵△ABC为等边三角形,∴BC=AB,∠A=∠EBC=60°,在△BCE和△ABF中,21,∴△BCE≌△ABF(SAS),∴∠BCE=∠ABF;(2)∵由(1)知∠BCE=∠ABF,又∠PBC+∠ABF=∠ABC=60°,∴∠PBC+∠PCB=60°,∵∠PBC+∠PCB=∠BPE,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△BCE中,PE=2PG.【点评】本题考查了全等三角形的性质定理与判定定理、直角三角形的性质,解决本题的关键是证明△BCE≌△ABF.五、解答题:本大题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或演算步骤.25.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.22【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察数据找到规律,并以规律解题即可.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.26.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.23【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,24,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.25。

2017-2018学年重庆市荣昌县八年级(上)期末数学试卷(含解析)

2017-2018学年重庆市荣昌县八年级(上)期末数学试卷(含解析)

2017-2018学年重庆市荣昌区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.在“千年古驿镇,一品荣昌陶”为主题的首届荣昌陶文化艺术活动中,小明用相机拍了许多的图片,其中下列这四张图片中是轴对称图形的是()A.B.C.D.2.下列长度的各组线段中,能构成三角形的是()A.1,2,3 B.2,3,4 C.2,3,5 D.2,3,63.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣114.如图,下列条件不能直接证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D5.计算:m6÷m3的结果是()A.m10B.m9C.m3D.m26.分式有意义的条件是()A.x≠﹣1 B.x≠0C.x≠1 D.x为任意实数7.若x2+2(m﹣1)x+16是完全平方式,则m的值等于()A.3 B.﹣3 C.5 D.5或﹣38.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=5cm,△ADC的周长为15cm,则△ABC 的周长是()A.20cm B.24cm C.25cm D.30cm9.一个等腰三角形的一个角是80°,则这个等腰三角形的底角是()A.50°B.20°C.50°或80°D.20°或80°10.如图,用相同的火柴棒拼三角形图案,依次拼图规律,第8个图案中共有()根火柴棒.A.45 B.63 C.84 D.10811.如图,△ABC中,∠C=90°,∠BAC=60°,AD平分∠BAC,若BC=15,则点D到线段AB的距离等于()A.6 B.5 C.8 D.1012.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16 B.﹣12 C.﹣10 D.﹣6二、填空题(每小题4分,共24分)13.计算:20170﹣(﹣1)2018+(﹣)﹣2=.14.一个汽车牌在水中的倒影为,则该车牌照号码.15.若3x=108,3y=6,则3x﹣y等于.16.△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.17.如图,在四边形ABCD中,∠A+∠D=200°,∠ABC的平分线与∠BCD的平分线交于点P,则∠P的为度.18.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转α(0°<α<90°),得到△A1B1C1,连接BB1,设CB1交AB于D,A1B1分别交AB、AC于E、F,当△BB1D是等腰三角形时,则α=度.三、解答题(共78分)19.(8分)完成下列各题:(1)因式分解:2x2y﹣8xy+8y (2)解方程:=20.(8分)如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE,求证:AF=CE.21.(10分)化简下列各式:(1)(x+4y)(x﹣4y)﹣(x﹣2y)2;(2)÷(﹣x+2)22.(10分)已知,△ABC在平面直角坐标系xOy中的位置如图所示,其中A(﹣2,3),B(﹣1,1),C(0,2).(1)先作△ABC关于x轴对称的△A1B1C1,将△A1B1C1向右平移3个单位,再作平移后的△A2B2C2;(2)写出A2、B2、C2三点坐标;(3)在x轴上求作一点P,使PA1+PC2的值最小,并直接写出点P的坐标.23.(10分)高升桥良好湖泊治理工程项目是《荣昌区2017年环境保护重点项目》之一,在这个项目中,某个区域有若干土石方需要运走,租用甲、乙两车合作运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完土石方,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆土石方需运多少车?(2)若单独租用一台车,租用哪台车合算?24.(10分)已知:如图,△ABC是等边三角形,D是BC延长线上一点,连接AD,以AD为边作等边三角形ADE,连接CE.(1)求证:AC+CD=CE;(2)求∠DCE的度数.25.(12分)我们知道,假分数可以化为整数与真分数的和的形式,例如:=1+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:像,,…这样的分式是假分式;像,,…这样的分式是真分式.类似的,假分式也可以化为整数与真分式的和的形式.例如:==+=1+;===x+2+;或===(x﹣2)+4+=x+2+(1)分式是分式(填“真”或“假”);(2)将分式化为整式与真分式的和的形式;(3)如果分式的值为整数,求x的整数值.26.(10分)如图1,在平直直角坐标系中,A(﹣2,0),B(0,﹣4),以A直角为顶点,AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,连接AP,以P为直角顶点,PA为腰作等腰Rt△APD,过D作DE ⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣5,﹣5),点G(0,m),作Rt△FGH,始终保持∠GFH=90°,FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,m+n的和是否为定值?若为定值,请求出其数,若不为定值,请说明理由.1.【解答】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.2.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,故此选项错误;B、3+2>4,能够组成三角形,故此选项正确;C、3+2=5,不能组成三角形,故此选项错误;D、2+3<6,不能组成三角形,故此选项错误.故选:B.3.【解答】解:0.00000000034=3.4×10﹣10,故选:C.4.【解答】解:A、AB=DC,AC=DB,BC=CB,符合全等三角形的判定定理SSS,能推出△ABC≌△DCB,故本选项错误;B、AB=DC,∠ABC=∠DCB,BC=CB,符合全等三角形的判定定理SAS,能推出△ABC≌△DCB,故本选项错误;C、∵OB=OC,∴∠DBC=∠ACB,∵∠A=∠D,∴根据三角形内角和定理得出∠ABC=∠DCB,∠A=∠D,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理AAS,能推出△ABC≌△DCB,故本选项错误;D、AB=DC,BC=CB,∠A=∠D不符合全等三角形的判定定理,不能推出△ABC≌△DCB,故本选项正确;故选:D.5.【解答】解:m6÷m3=m3.故选:C.6.【解答】解:要使有意义,得x+1≠0.解得x≠﹣1,当x≠﹣1时,有意义,故选:A.7.【解答】解:∵x2+2(m﹣1)x+16是完全平方式,而16=42,∴m﹣1=4或m﹣1=﹣4,∴m=5或﹣3.故选:D.8.【解答】解:∵DE是AB的垂直平分线,∴DB=DA,AB=2AE=10cm,∵△ADC的周长为15cm,∴AC+CD+AD=AC+CD+BD=AC+CB=15cm,∴△ABC的周长=AC+BC+AB=25cm,故选:C.9.【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°,底角为(180°﹣80°)=50°当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.∴等腰三角形的底角为50°或80°故选:C.10.【解答】解:第8个图形中共有根火柴棒.故选:D.11.【解答】解:作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC,∵∠C=90°,∠BAC=60°,∴∠B=30°,∴DE=BD,∴CD=BC=5,故选:B.12.【解答】解:解分式方程得x=,因为分式方程的解为正数,所以>0且≠4,解得:a<2且a≠1,解不等式,得:x≤a+5,∵不等式组有解,∴a+5>0,解得:a>﹣5,综上,﹣5<a<2,且a≠1,则满足上述要求的所有整数a的和为﹣4+(﹣3)+(﹣2)+(﹣1)+0=﹣10,故选:C.13.【解答】解:原式=1﹣1+4=4,故答案为:4.14.【解答】解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣M 1 7 9 3 6∴该车的牌照号码是M17936.故答案为:M17936.15.【解答】解:∵3x=108,3y=6,∴3x﹣y=3x÷3y=108÷6=18.故答案为:18.16.【解答】解:如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS)∴AC=EB.∵AC=3,∴EB=3.∴7﹣3<AE∠7+3,∴4<2AD<10,∴2<AD<5.故答案为:2<AD<5.17.【解答】解:∵∠A+∠D=200°,∴∠ABC+∠BCD=360°﹣200°=160°,∵PB、PC为角平分线,∴∠PBC+∠PCB=×160°=80°,∴∠P=180°﹣80°=100°.故答案为:100.18.【解答】解:∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵△ABC绕点C逆时针旋转α(0°<α<90°),得到△A1B1C1,∴∠BCB1=α,CB=CB1,∴∠CBB1=∠CB1B=(180°﹣α)=90°﹣α,∴∠DBB1=90°﹣α﹣45°=45°﹣α,而∠BDB1=α+45°,当BB1=BD,∠BDB1=∠BB1D,即α+45°=90°﹣α,解得α=30°;当BB1=B1D,∠BDB1=∠B1BD,即α+45°=45°﹣α,解得α=0(舍去);当DB1=DB,∠DBB1=∠BB1D,即45°﹣α=90°﹣α,无解;综上所述,α的值为30°.故答案为30.19.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)=,3(70﹣x)=4x,210﹣3x=4x,7x=210,x=30,检验:当x=30时,x(70﹣x)≠0.故原方程的解是x=30.20.【解答】证明:∵DF⊥AC,BE⊥AC,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE.21.【解答】解:(1)原式=x2﹣16y2﹣(x2﹣4xy+4y2)=x2﹣16y2﹣x2+4xy﹣4y2=4xy﹣20y2(2)原式=÷=÷=﹣•=22.【解答】解:(1)如图所示:△A1B1C1,△A2B2C2,即为所求;(2)如图所示:A2(1,﹣3),B2(2,﹣1),C2(3,﹣2);(3)如图所示:使PA1+PC2的值最小,则点P的坐标为:(1,0).23.【解答】解:(1)设甲车单独运完此堆土石方需运x车,则乙车单独运完此堆土石方需运2x车,依题意,得:+=1,解得:x=18,经检验,x=18是原方程的解,且符合题意.∴2x=36.答:甲车单独运完此堆土石方需运18车,乙车单独运完此堆土石方需运36车.(2)设乙车每趟运费为y元,则甲车每趟运费为(y+200)元,依题意,得:12y+12(y+200)=4800,解得:y=100,∴y+200=300.单独租用甲车,所需费用为300×18=5400(元),单独租用乙车,所需费用为100×36=3600(元).∵5400>3600,∴单独租用乙车更合算.24.【解答】(1)证明:∵△ABC和△ADE是等边三角形,∴AB=AC=BC,AD=AE,∠B=∠ACB=60°,∠BAC=∠EAD=60°,∴∠BAD=∠CAE=60°+∠CAD,在△BAD和△CAE中∴△BAD≌△CAE(SAS),∴BD=CE,∵BD=BC+CD=AC+CD,∴AC+CD=CE;(2)解:∵△BAD≌△CAE,∴∠ACE=∠B=60°,∵∠ACB=60°,∴∠DCE=180°﹣60°﹣60°=60°.25.【解答】解:(1)由定义可知:该分式为真分式;(2)原式==1﹣(3)原式==3(x+1)+由题意可知:x﹣1=±1或±2∴x=0或2或3或﹣1故答案为:(1)真26.【解答】解:(1)过C作CM⊥x轴于M点,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,则点C的坐标为(﹣6,﹣2);(2)如图2,过D作DQ⊥OP于Q点,则四边形OQDE是矩形,∴DE=OQ,则OP﹣DE=PQ,∠APO+∠QPD=90°,∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴QP=OA=2,∴OP﹣DE=PQ=OA=2;(3)m+n=﹣10,为定值,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=5,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣5,﹣5),∴OT═OS=5,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣5,HS=OH+OS=n+5,则﹣5﹣m=n+5,则m+n=﹣10.。

2018-2019学年度第二学期八年级(上册)期末数学试卷 (有答案和解析)

2018-2019学年度第二学期八年级(上册)期末数学试卷 (有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案分别是清华、北大、人大、复旦大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列一组数:,,-,,0.080080008…(相邻两个8之间依次增加一个0)其中无理数的个数是()A. 0B. 1C. 2D. 33.蓝鲸是世界上体积最大的动物,有一只蓝鲸的体重约为1.68×105kg,1.68×105这个近似数它精确到()A. 百位B. 百分位C. 千分位D. 千位4.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比()A. 向上平移3个单位B. 向下平移3个单位C. 向右平移3个单位D. 向左平移3个单位5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 7B. 6C. 5D. 46.一次函数y=(a2+1)x-a的图象上有两点A(-1,y1),B(-2,y2),则y1与y2的大小关系为()A. B. C. D. 不能确定7.在同一平面直角坐标系中,直线y=x-2与直线y=-x-b的交点一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,共30.0分)9.分式、的最简公分母是______.10.在函数中,自变量x的取值范围是______.11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:______,使△AEH≌△CEB.12.若m为整数,且<m<,则m=______.13.若直角三角形的两直角边a,b满足+b2-12b+36=0,则斜边c上中线的长为______.14.一个正数a的平方根分别是2m-1和-3m+,则这个正数a为______.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为______.16.已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为______cm.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,则BC=______.18.已知点A(2m-1,4m+2015)、B(-n+,-n+2020)在直线y=kx+b上,则k+b值为______.三、计算题(本大题共3小题,共28.0分)19.解分式方程:(1)=+1(2)-=120.先化简代数式(-)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.21.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的函数图象如图.(1)A地与B地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点A时,甲还需多少分钟到达终点B?四、解答题(本大题共7小题,共68.0分)22.()-1-|2-|-(π-3.14)0+23.如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC向右平移3个单位得到△A1B1C1,请画出平移后的△A1B1C1;(2)将△A1B1C1沿x轴翻折得到△A2B2C2,请画出翻折后的△A2B2C2;(3)若点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标______.24.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.25.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.26.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27.在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a-6m+4=0,b+2m-8=0.(1)当a=1时,点P到x轴的距离为______;(2)若点P在第一三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是______.28.如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.(1)求证;△ACD是等边三角形;(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:-,,0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:D.根据无理数的定义即可求出答案.本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.3.【答案】D【解析】解:∵1.68×105=168000,∴近似数1.68×105是精确到千位.故选:D.把数还原后,再看首数1.68的最后一位数字8所在的位数是千位,即精确到千位.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.【答案】C【解析】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选:C.根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.【答案】C【解析】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.【答案】A【解析】∵函数y=(a2+1)x-a是一次函数,∴a2+1=1,解得:a=0,即该函数的解析式为:y=x,∵函数y=x的图象上的点y随着x的增大而增大,又∵点A(-1,y1),B(-2,y2)在该函数图象上,且-1>-2,∴y1>y2,故选:A.根据“y=(a2+1)x-a是一次函数”,得到关于a的方程,解之,得到该函数的解析式,根据该函数图象的增减性,结合点A和点B横坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】B【解析】解:∵直线y=x-2经过第一、三、四象限,直线y=-x-b,当b>0时,该直线经过第二、三、四象限,当b<0时,该直线经过第一、二、四象限,∴直线y=x-2与直线y=-x-b的交点一定不在第二象限,故选:B.根据题目中的函数解析式和一次函数的性质,可以判断直线y=x-2与直线y=-x-b的交点一定不在哪个象限,本题得以解决.本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=D5B,BD6=CD6∵△ABC是直角三角形,∴D3,D5重合,故能得到符合题意的等腰三角形5个.故选:C.首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.9.【答案】12a3b3【解析】解:分式、的最简公分母是12a3b3;故答案为:12a3b3.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,求解即可.本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.10.【答案】x≥4【解析】解:根据题意,知,解得:x≥4,故答案为:x≥4.根据被开方数为非负数及分母不能为0列不等式组求解可得.本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.【答案】AH=CB等(只要符合要求即可)【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.【答案】3【解析】解:∵4<5<9<10<16,∴2<<3<<4,则整数m=3.故答案为:3.依据2<<3<<4,即可确定出m的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.13.【答案】5【解析】解:∵+b2-12b+36=0,∴a-8=0,b-6=0,∴a=8,b=6,∴c==10,∴斜边c上的中线长为5,故答案为:5根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边长,根据斜边中线长为斜边的一半计算斜边中线长.本题考查了直角三角形中勾股定理,考查了斜边中线为斜边长的一半的性质,本题中正确的运用非负数的性质是解题的关键.14.【答案】4【解析】解:根据题意,得:2m-1+(-3m+)=0,解得:m=,∴正数a=(2×-1)2=4,故答案为:4.直接利用平方根的定义得出2m-1+(-3m+)=0,进而求出m的值,即可得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.15.【答案】9【解析】解:∵点A(m-1,-5)和点B(2,m+1),直线AB∥x轴,∴m+1=-5,解得m=-6.∴2-(-6-1)=9,故答案为:9.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.16.【答案】6【解析】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.17.【答案】1.5【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE,设BC=BE=x,∴AB=1+x,∵AC2+BC2=AB2,∴22+x2=(1+x)2,解得:x=1.5,故答案为:1.5.根据余角的性质得到∠BCD=∠A.根据角平分线的定义得到∠ACE=∠DCE.根据三角形的外角的性质得到∠BEC=∠BCE,求得BC=BE,设BC=BE=x,根据勾股定理列方程即可得到结论.本题考查了勾股定理,直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.18.【答案】2019【解析】解:把点A(2m-1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m-1)+b ①,把点B(-,-n+2020)代入直线y=kx+b得:-n+2020=k(-+)+b ②,①-②得:4m+n-5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m-1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.把点A(2m-1,4m+2015)和点B(-,-n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.19.【答案】解:(1)两边都乘以(x-1)(x+2),得:x(x-1)=2(x+2)+(x-1)(x+2),整理,得:4x+2=0,解得:x=-,经检验:x=-是原分式方程的解,所以原分式方程的解为x=-;(2)两边都乘以(x+1)(x-1),得:(x+1)2-4=(x+1)(x-1),整理,得:2x-2=0,解得:x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,则原分式方程无解.【解析】(1)方程两边都乘以(x-1)(x+2)化分式方程为整式方程,解整式方程求得x的值,再检验即可得;(2)方程两边都乘以(x+1)(x-1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.【答案】解:原式=[-]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=-1.当x=2时,原式=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【答案】24【解析】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是千米/分钟;故答案为:24,.(2)由纵坐标看出AB两地的距离是24千米,设乙的速度是x千米/分钟,由题意,得,解得:x=千米/分钟,∴甲、乙相遇时,乙所行驶的路程:(千米/分钟).(3)相遇后乙到达A地还需:(分钟),相遇后甲到达B站还需:(分钟)当乙到达终点A时,甲还需54-4=50分钟到达终点B.(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是千米/分钟;(2)根据路程与时间的关系,可得乙的速度,再根据甲、乙相遇时,乙所行驶的路程=12×乙的速度,即可解答;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】解:原式=2-(2-)-1+2=2-2+-1+2=1+.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】(m+3,-n)【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标:(m+3,-n).故答案为:(m+3,-n).(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)直接利用平移的性质以及轴对称的性质得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.【答案】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°-62°-62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【解析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=-6,即点A的坐标为:(-6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,-6-8=-14,-6+8=2,即点C的坐标为:(-14,0)或(2,0).【解析】(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.本题考查了一次函数图象上点的坐标特征,解题的关键:(1)正确掌握代入法和三角形的面积公式,(2)正确掌握三角形的面积公式.26.【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A 车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.【答案】6 m<2【解析】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.28.【答案】(1)证明:由旋转变换的性质可知,AC=AD,∠CAD=60°,∴ACD是等边三角形;(2)解:存在,a=2,理由如下:∵△OAB和△ACD都是等边三角形,∴AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAB-∠CAB=∠CAD-∠CAB,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS)∴BD=OC,∴△BCD周长=BC+BD+CD=BC+OC+CD=OB+CD,当CD最小时,△BCD周长最小,∵ACD是等边三角形,∴CD=AC,当AC⊥OB时,即OC=2,AC最小,最小值为=2,∴△BCD周长的最小值为4+2,此时a=2;(3)解:当点C在x轴的负半轴上时,∠BDC=90°,则∠ADB=30°,∵△OAC≌△BAD,∴∠ACO=∠ADB=30°,∴∠BCD=30°,∴BD=BC,∴OC=BC,∴OC=4,则a=-4;当点C在线段OB上时,∠BDC=120°,∴不存在以B、C、D为顶点的三角形是直角三角形,∴a不存在;当点C在点B的右侧时,∠BCD=90°,则∠ACO=30°,∵∠AOC=60°,∴∠OAC=90°,又∠ACO=30°,∴OC=2OA=8,∴a=8.【解析】(1)根据旋转变换的性质、等边三角形的判定定理证明;(2)证明△OAC≌△BAD,根据全等三角形的性质得到BD=OC,根据等边三角形的性质计算即可;(3)分点C在x轴的负半轴上、点C在线段OB上、点C在点B的右侧三种情况,根据直角三角形的性质计算.本题考查的是旋转变换的性质、等边三角形的判定和性质、直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。

人教版2018-2019学年八年级(上册)期末数学试卷及答案

人教版2018-2019学年八年级(上册)期末数学试卷及答案

2018-2019学年八年级(上册)期末数学试卷一、选择题(每小题3分,共24分)1.式子有意义的条件是()A.x≥3 B.x>3 C.x≥﹣3 D.x>﹣32.以下列各线段为边,能组成直角三角形的是()A.2,5,8 B.1,1,2 C.4,6,8 D.3,4,53.已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=()A.8cm B.4cm C.3cm D.2cm4.在△ABC中,BC:AC:AB=1:1:,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形5.用两个全等的等边三角形拼成的四边形是()A.正方形B.矩形 C.菱形 D.等腰梯形6.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.一组数据:6,0,4,6.这组数据的众数、中位数、平均数分别是()A.6,6,4 B.4,2,4 C.6,4,2 D.6,5,48.四个班各选10名同学参加学校1500米长跑比赛,各班选手平均用时及方差如下表:班A班B班C班D班平均用时(分钟) 5 5 5 5方差0.15 0.16 0.17 0.14各班选手用时波动性最小的是()A.A班 B.B班C.C班 D.D班二、填空题(每小题3分,共24分)9.=1﹣2x成立的x的取值范围是.10.若点(3,a)在一次函数y=2x﹣1上,则a=.11.已知a、b为两个连续的整数,且a<﹣3<b,则=.12.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是度.13.若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是.14.一场暴雨过后,垂直于地面的一棵大树在距地面1m处折断,树尖恰好碰到地面,距树的底部2m,则这棵树高.15.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=.16.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.三、解答题(共52分)17.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.18.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.19.如图所示,直线L1的解析表达式为y=﹣3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求直线L2的解析表达式;(2)求△ADC的面积;(3)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.20.如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.21.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.22.某中学八年级(8)班同学全部参加课外活动情况统计如图:(1)请你根据以上统计中的信息,填写下表:该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数(2)补全条形统计图;(3)若该学校八年级共有600名学生,根据统计图结果估计八年级参加排球活动项目的学生共有名.23.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.2018-2019学年八年级(上册)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.式子有意义的条件是()A.x≥3 B.x>3 C.x≥﹣3 D.x>﹣3【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x+3≥0,解得,x≥﹣3,故选:C.2.以下列各线段为边,能组成直角三角形的是()A.2,5,8 B.1,1,2 C.4,6,8 D.3,4,5【考点】勾股定理的逆定理;三角形三边关系.【分析】先根据三角形三边关系定理判断能否组成三角形,再根据勾股定理的逆定理判断能否组成直角三角形,即可得出选项.【解答】解:A、∵2+5<8,∴以2、5、8为边不能组成三角形,更不能组成直角三角形,故本选项错误;B、∵1+1=2,∴以1、1、2为边不能组成三角形,更不能组成直角三角形,故本选项错误;C、∵42+62≠82,∴以4、6、8为边不能组成直角三角形,故本选项错误;D、∵32+42=52,∴以3、4、5为边能组成直角三角形,故本选项正确;故选D.3.已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=()A.8cm B.4cm C.3cm D.2cm【考点】平行四边形的性质.【分析】首先由平行四边形ABCD的周长为32cm,求得AB+BC=16cm,又由△ABC的周长为20cm,即可求得AC的长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为32cm,即AB+BC+CD+AD=2AB+2BC=32cm,∴AB+BC=16cm,∵△ABC的周长为20cm,即AB+AC+BC=20cm,∴AC=4cm.故选B.4.在△ABC中,BC:AC:AB=1:1:,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形【考点】等腰直角三角形.【分析】根据题意设出三边分别为k、k、k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.【解答】解:设BC、AC、AB分别为k,k,k,∵k2+k2=(k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故选D.5.用两个全等的等边三角形拼成的四边形是()A.正方形B.矩形 C.菱形 D.等腰梯形【考点】菱形的判定.【分析】由题可知,得到的四边形的四条边也相等,得到的图形是菱形.【解答】解:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.故选:C.6.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、三、四象限,又由k>0时,直线必经过一、三象限,故知k>0.再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选B.7.一组数据:6,0,4,6.这组数据的众数、中位数、平均数分别是()A.6,6,4 B.4,2,4 C.6,4,2 D.6,5,4【考点】众数;算术平均数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列(0,4,6,6),处于中间位置的两个数的平均数是,那么由中位数的定义可知,这组数据的中位数是5;平均数是.故选D.8.四个班各选10名同学参加学校1500米长跑比赛,各班选手平均用时及方差如下表:班A班B班C班D班平均用时(分钟) 5 5 5 5方差0.15 0.16 0.17 0.14各班选手用时波动性最小的是()A.A班 B.B班C.C班 D.D班【考点】方差.【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【解答】解:由于S2D<S2A<S2B<S2C,故D班的方差小,波动小,故选D.二、填空题(每小题3分,共24分)9.=1﹣2x成立的x的取值范围是x≤.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出1﹣2x的取值范围,进而得出答案.【解答】解:∵=1﹣2x,∴1﹣2x≥0,解得:x≤.故答案为:x≤.10.若点(3,a)在一次函数y=2x﹣1上,则a=5.【考点】一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的特征代入函数关系式求出答案.【解答】解:∵点(3,a)在一次函数y=2x﹣1上,∴a=2×3﹣1=5.则a=5.故答案为:5.11.已知a、b为两个连续的整数,且a<﹣3<b,则=.【考点】估算无理数的大小.【分析】先估算出的大小,从而可得到a、b的值,然后再化简即可.【解答】解:∵25<28<36,∴5<<6.∴5﹣3<﹣3<36﹣3,即2<﹣3<3.∴a=2,b=3.∴==.故答案为:.12.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是65度.【考点】平行四边形的性质.【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°﹣130°=50°,∵DE=DC,∴∠ECD==65°,∴∠ECB=130°﹣65°=65°.故答案为65°.13.若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是a>.【考点】一次函数的性质.【分析】根据一次函数的性质得3a﹣2>0,然后解不等式即可.【解答】解:根据题意得3a﹣2>0,解得a>.故答案为a>.14.一场暴雨过后,垂直于地面的一棵大树在距地面1m处折断,树尖恰好碰到地面,距树的底部2m,则这棵树高(1+)m.【考点】勾股定理的应用.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,∵AC2+AB2=BC2,则12+22=BC2,∴BC=,则树高为:(1+)m.故答案为:(1+)m.15.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=5.【考点】菱形的性质;数轴.【分析】根据数轴上A,B在数轴上对应的数分别为﹣4和1,得出AB的长度,再根据BC=AB 即可得出答案.【解答】解:∵菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则AB=1﹣(﹣4)=5,∴AB=BC=5.故答案为:5.16.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【考点】正方形的判定;矩形的判定与性质.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或AC⊥BD等.三、解答题(共52分)17.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,进而合并同类二次根式求出答案;(2)直接利用乘法公式化简,进而求出答案.【解答】解:(1)9+7﹣5+2=9+14﹣20+=;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.18.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法求出一次函数解析式即可;(2)根据图象与函数坐标轴交点坐标求法得出a的值.【解答】解:(1)由题意得,解得.∴k,b的值分别是1和2;(2)将k=1,b=2代入y=kx+b中得y=x+2.∵点A(a,0)在y=x+2的图象上,∴0=a+2,即a=﹣2.19.如图所示,直线L1的解析表达式为y=﹣3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求直线L2的解析表达式;(2)求△ADC的面积;(3)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)利用待定系数法求直线L2的解析表达式;(2)先解方程组确定C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点P与点C到AD的距离相等,则P点的纵坐标为3,对于函数y=x﹣6,计算出函数值为3所对应的自变量的值即可得到P点坐标.【解答】解:(1)设直线L2的解析表达式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线L2的解析表达式为y=x﹣6;(2)解方程组得,则C(2,﹣3);当y=0时,﹣3x+3=0,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;(3)因为点P与点C到AD的距离相等,所以P点的纵坐标为3,当y=3时,x﹣6=3,解得x=6,所以P点坐标为(6,3).20.如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.【考点】平行四边形的性质;全等三角形的判定.【分析】根据平行四边形的性质结合题目条件可得出AE=DF及∠EAF=∠D,AF=CD,利用SAS即可证明两三角形的全等.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴AF=CD,∠EAF=∠ADC,又∵AF=AB,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.21.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.【考点】矩形的判定与性质;翻折变换(折叠问题).【分析】(1)根据翻折变换的对称性可知AE=AB,在△ADE中,利用勾股定理逆定理证明三角形为直角三角形,再根据有一个角是直角的平行四边形是矩形证明即可;(2)设BF为x,分别表示出EF、EC、FC,然后在△EFC中利用勾股定理列式进行计算即可;(3)在Rt△ABF中,利用勾股定理求解即可.【解答】(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.22.某中学八年级(8)班同学全部参加课外活动情况统计如图:(1)请你根据以上统计中的信息,填写下表:该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数50910(2)补全条形统计图;(3)若该学校八年级共有600名学生,根据统计图结果估计八年级参加排球活动项目的学生共有168名.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)根据足球16人占总体的32%,可以求得该班人数,结合条形统计图进一步求得排球人数,从而根据中位数的概念和平均数的计算方法进行求解;(2)根据(1)中求得的数据进一步补全即可;(3)先求出样本中参加排球活动项目的学生所占的百分比,再乘以600即可.【解答】解:(1)该班人数:16÷32%=50人;排球人数:50﹣9﹣16﹣7﹣4=14人;五个数据从小到大排列,即4,7,9,14,16,则中位数为9;平均数=50÷5=10;该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数50 9 10(2)条形统计图补充如下:(3)600×=168(名).故答案为50,9,10;168.23.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形.【分析】(1)连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【解答】(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BDP+∠ADP=90°∴∠ADP+∠ADQ=90°,即∠PDQ=90°,∴△PDQ为等腰直角三角形;(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形(邻边相等的矩形为正方形).2016年8月27日。

2018-2019学年人教版八年级数学上学期学期期末考试试题含解答

2018-2019学年人教版八年级数学上学期学期期末考试试题含解答

2018-2019学年人教版八年级数学上学期学期期末考试试题一、选择题:本题共10小题,共30分。

1. 下列运算正确的是( )A .m 6÷m 2=m3B .3m 3﹣2m 2=mC .(3m 2)3=27m6D . m •2m 2=m 22. 把a 2﹣4a 多项式分解因式,结果正确的是( )A .a (a ﹣4)B .(a +2)(a ﹣2)C .a (a +2)(a ﹣2)D .(a ﹣2)2﹣4 3. 分式12x 有意义,则x 的取值范围是( ) A . x ≠1B . x =1C . x ≠﹣1D . x =﹣14. 如图,AB ∥CD ,∠B =68°,∠E =20°,则∠D 的度数为( )A .28°B .38°C .48°D .88°5. 下列图形中,是轴对称图形的是( )6. 计算a •a 5﹣(2a 3)2的结果为( ) A .a 6﹣2a5 B .﹣a6C .a 6﹣4a5D .﹣3a 67. 如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF8. 如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个9. 某机加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A . =B .×30=×20C .=D .=10. 如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个 二、填空题:本大题共10小题,共30分.11. 一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为 . 12. 计算:82016×(﹣0.125)2017= .13. 使分式112+-x x 的值为0,这时x = .14. 正多边形的一个内角是150°,则这个正多边形的边数为 . 15. 把多项式324my mx -因式分解的结果是 .16. 计算)1(22b a ab a b +-÷-的结果是 .17. 分式方程21311x x x+=--的解是 . 18. 如图所示,小华从A 点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是 .19. 如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是.20. 填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a +b +c = .三、解答题:本大题共6小题,共58分。

重庆市荣昌区2023年数学八年级第一学期期末检测试题【含解析】

重庆市荣昌区2023年数学八年级第一学期期末检测试题【含解析】

重庆市荣昌区2023年数学八年级第一学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图①,在边长为a 的正方形中剪去一个边长为b (b <a )的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是()A .a 2+b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=(a +b )(a -b )2.在ABC ∆和A B C '''∆中,①AB A B ''=,②BC B C ''=,③AC A C ''=,④A A '∠=∠,⑤B B '∠=∠,⑥C C '∠=∠,则下列各组条件中使ABC ∆和A B C '''∆全等的是()A .④⑤⑥B .①②⑥C .①③⑤D .②⑤⑥3.化简(1)b b a a a ⎛⎫-÷ ⎪-⎝⎭的结果是()A .-a-1B .–a+1C .-ab+1D .-ab+b4.如图,在Rt△ABC 中,∠C=90°,∠CAB 的平分线交BC 于D,DE 是AB 的垂直平分线,垂足为E,若BC=3,则DE 的长为()A .1B .2C .3D .45.若代数式13x x +-有意义,则实数x 的取值范围是()A .1x =-B .3x =C .1x ≠-D .3x ≠6.现有两根木棒长度分别是25厘米和35厘米,若再从下列木棒中选出一根与这两根组成一个三角形(3根木棒首尾依次相接),应选的木棒长度为()A .10厘米B .20厘米C .60厘米D .65厘米7.下列命题中为假命题的是()A .无限不循环小数是无理数B .代数式的最小值是1C .若22x ya a >,则x > y D .有三个角和两条边分别相等的两个三角形一定全等8.如果一次函数y kx b =+的图象经过第二第四象限,且与x 轴正半轴相交,那么()A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<9.如图,已知等边三角形ABC 边长为,两顶点A 、B 分别在平面直角坐标系的x 轴负半轴、轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 长的最小值是()A -1B .3C .3D .10.如图是我市某景点6月份内110日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26C ︒出现的频率是()A .3B .0.5C .0.4D .0.311.一个四边形,截一刀后得到的新多边形的内角和将A .增加180°B .减少180°C .不变D .不变或增加180°或减少180°12.已知等腰三角形的一个外角是110〫,则它的底角的度数为()A .110〫B .70〫C .55〫D .70〫或55〫二、填空题(每题4分,共24分)13.分解因式6xy 2-9x 2y -y 3=_____________.14.如图,OP =1,过P 作PP1⊥OP 且PP 1=1,得OP 1;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2017=_______.15.若关于x 的分式方程233x m x x -=--有增根,则m 的值为_____.16.命题“等腰三角形两底角相等”的逆命题是_______的相反数是______.18.如图,如果你从P 点向西直走25米后,向左转,转动的角度为=40α°,再走25米,再向左转40度,如此重复,最终你又回到点P ,则你一共走了__________米.三、解答题(共78分)19.(8分)如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF 平分∠DCE .求证:CF ⊥DE 于点F .20.(8分)材料一:我们可以将任意三位数记为abc ,(其中a 、b 、c 分别表示该数的百位数字,十位数字和个位数字,且0a ≠),显然10010abc a b c =++.材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.(1)求初始数125生成的终止数;(2)若一个初始数abc ,满足a b c >>,且10a b c ++<,记2(x abc acb =-,2()y bca bac =-,2()z cab cba =-,若324x y z +-=,求满足条件的初始数的值.21.(8分)计算:(1)(x +2)(2x ﹣1)(2)()222.(10分)如图,OE 平分AOB ∠,且,EC OA ED OB ⊥⊥,垂足分别是C D 、,连结CD 与OE 交于点F .(1)求证:OE 是线段CD 的垂直平分线;(2)若30,ECD OC ∠==,求OCD ∆的周长和四边形OCED 的面积.23.(10分)某班级组织学生参加研学活动,计划租用一辆客车,租金为1000元,乘车费用进行均摊.出发前部分学生因有事不能参加,实际参加的人数是原计划的45,结果每名学生比原计划多付5元车费,实际有多少名学生参加了研学活动?24.(10分)阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m ﹣n )2+(n ﹣1)2=0,∴(m ﹣n )2=0,(n ﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x 2+2xy+2y 2+2y+1=0,求2x+y 的值;(2)已知a ﹣b=1,ab+c 2﹣6c+13=0,求a+b+c 的值.25.(12分)如图,在ABC ∆中, AD BC ⊥,且AD BD =,点E 是线段AD 上一点,且BE AC =,连接BE.(1)求证:ACD BED∆∆≌(2)若78C ∠=︒,求ABE ∠的度数.26.如图,已知在平面直角坐标系中,△ABC 三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应);(2)通过画图,在x 轴上确定点Q ,使得QA 与QB 之和最小,画出QA 与QB ,并直接写出点Q 的坐标.点Q 的坐标为.参考答案一、选择题(每题4分,共48分)1、D【分析】根据左图中阴影部分的面积是a 2-b 2,右图中梯形的面积是12(2a+2b )(a-b )=(a+b )(a-b ),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a 2-b 2,右图中梯形的面积是12(2a+2b )(a-b )=(a+b )(a-b ),∴a 2-b 2=(a+b )(a-b ).故选D .【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.2、D【解析】根据全等三角形的判定方法对各选项分别进行判断.【详解】A.由④⑤⑥不能判定△ABC≌△A′B′C′;B.由①②⑥不能判定△ABC≌△A′B′C′;C.由①③⑤,不能判定△ABC≌△A′B′C′;D.由②⑤⑥,可根据“ASA”判定△ABC≌△A′B′C′.故选:D.【点睛】考查全等三角形的判定定理,三角形全等的判定定理有:SSS,SAS,ASA,AAS,HL.3、B【解析】将除法转换为乘法,然后约分即可.【详解】解:(1)(1)1(1)b b b a a a a a a a a b-⎛⎫⎛⎫-÷=-⨯=--=-⎪ ⎪-⎝⎭⎝⎭,故选B.【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键.4、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质5、D【分析】分式有意义的条件是分母不为0.【详解】代数式13xx+-有意义,∴30x-≠,∴3x≠故选D.【点睛】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.6、B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.求出第三边的范围就可以求解.【详解】应选取的木棒的长x 的范围是:35252535x -<<+,即1060cm x cm <<.满足条件的只有B .故选:B .【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.7、D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A .无限不循环小数是无理数,故本选项是真命题;B .代数式中根据二次根式有意义的条件可得1020x x -≥⎧⎨-≥⎩解得:2x ≥x 的增大而增大∴当x=2+的值最小,最小值是1,故本选项是真命题;C .若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题;D .有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.8、C【分析】根据一次函数的性质,即可判断k 、b 的范围.【详解】解:∵一次函数y kx b =+的图象经过第二第四象限,∴k 0<,∵直线与x 轴正半轴相交,∴0bk->,∴0b >;故选择:C.【点睛】本题考查了一次函数的图形和性质,解题的关键是根据直线所经过的象限,正确判断k 、b 的取值范围.9、B【解析】利用等边三角形的性质得出C 点位置,进而求出OC 的长.【详解】解:如图所示:过点C 作CE ⊥AB 于点E ,连接OE ,∵△ABC 是等边三角形,∴CE=AC×sin60°=32=,AE=BE ,∵∠AOB=90°,∴EO 12=AB =∴EC-OE≥OC ,∴当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3故选B .【点睛】本题主要考查了勾股定理以及等边三角形的性质,得出当点C ,O ,E 在一条直线上,此时OC 最短是解题关键.10、D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,因而26出现的频率是:3100%10 =0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.11、D【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.12、D【分析】根据等腰三角形的一个外角等于110°,进行讨论可能是底角的外角是110°,也有可能顶角的外角是110°,从而求出答案.【详解】解:①当110°外角是底角的外角时,底角为:180°-110°=70°,②当110°外角是顶角的外角时,顶角为:180°-110°=70°,则底角为:(180°-70°)×12=55°,∴底角为70°或55°.故选:D.【点睛】此题主要考查了等腰三角形的性质,应注意进行分类讨论,熟练应用是解题的关键.二、填空题(每题4分,共24分)13、-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.【详解】解:∵OP=1,OP1,OP2,OP3=2,∴OP4,…,OP2017=..【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.15、1【解析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.16、有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.【解析】直接根据相反数的定义进行解答即可.的相反数是--.-.【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.18、1.α°,结合图我们可以知道,最后形成的正多边形【分析】根据题意转动的角度为=40的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【点睛】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键.三、解答题(共78分)19、证明见解析.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.20、(1)1776(2)432或321.【分析】(1)根据终止数的定义即可求解;(2)根据根据三位数的构成及x ,y,z 的特点表示出a,b,c 的关系,再根据a b c >>,且10a b c ++<即可求出a,b,c 的值.【详解】(1)初始数125可以产生出152,215,251,512,521这5个新初始数,这6个初始数的和为1776,故初始数125生成的终止数为1776(2)∵2()x abc acb =-=()()21001010010a b c a c b ++-++⎡⎤⎣⎦=()299b c -=81()2b c -,同理:2(y bca bac =-=81()2c a -,2()z cab cba =-=81()2a b -∵324x y z +-=∴81()2b c -+81()2c a --81()2a b -=324化简得22c bc ac ab --+=则c (c-b )+a(b-c)=2∴(b-c)(a-c)=2∵a,b,c 为正整数,故21b c a c -=⎧⎨-=⎩或12b c a c -=⎧⎨-=⎩又a b c >>,且10a b c ++<解得a=4,b=3,c=2或a=3,b=2,c=1故满足条件的初始数的值为432或321.【点睛】此题主要考查新定义运算的应用,解题的关键是熟知完全平方公式的应用及方程组的求解.21、(1)2x 2+3x ﹣2;(2)5-.【分析】(1)直接利用多项式乘法运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=2x 2﹣x +4x ﹣2=2x 2+3x ﹣2;(2)原式=3+2﹣=5﹣.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题的关键.22、(1)证明见解析;(2)【分析】(1)根据线段垂直平分线的判定定理证明点E ,点O 都在线段CD 的垂直平分线上,即可得到OE 是线段CD 的垂直平分线;(2)先证明△OCD 是等边三角形,再根据等边三角形的性质即可得出周长及面积.【详解】(1)证明:∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴CE=DE ,∴点E 是在线段CD 的垂直平分线上.在Rt △OCE 和Rt △ODE 中,OE OE EC ED =⎧⎨=⎩,∴Rt △OCE ≌Rt △ODE(HL),∴OC=OD ,∴点O 是在线段CD 的垂直平分线上,∴OE 是线段CD 的垂直平分线.(2)解:∵∠ECD=30°,∠OCE=90°,∴∠OCD=60°.∵OC =OD ,∴△OCD 是等边三角形.∵OC ,∴△OCD 的周长为∵∠OCD =60°,∴∠COE =30°,∴OE =2CE .设CE =x ,则OE =2x .由勾股定理,得(2x )2=x 2+2,解得:x =1,即CE =1,∴四边形OCED 的面积=2S △OCE =2×12·OC ·EC 1【点睛】本题考查了线段垂直平分线的判定、等边三角形的判定及性质,解题的关键是熟记垂直平分线的判定定理及等边三角形的性质.23、实际有40名学生参加了研学活动【分析】设计划有x名学生参加研学活动,根据题意列出分式方程即可求解.【详解】解:设计划有x名学生参加研学活动,由题意得1000100054 5xx-=.解得,50x=.经检验,50x=是原方程的解.所以,440 5x=.答:实际有40名学生参加了研学活动.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列出分式方程. 24、(1)1;(2)2.【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x、y 的值,从而可以得到2x+y的值;(2)根据a-b=1,ab+c2-6c+12=0,可以得到a、b、c 的值,从而可以得到a+b+c的值.【详解】解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=1,∴a=b+1,∴将a=b+1代入ab+c2−6c+12=0,得b2+1b+c2−6c+12=0,∴(b2+1b+1)+(c2−6c+9)=0,∴(b+2)2+(c−2)2=0,∴b+2=0,c−2=0,解得,b=−2,c=2,∴a=b+1=−2+1=2,∴a+b+c=2−2+2=2.【点睛】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.25、(1)见详解;(2)33°【分析】(1)根据题意可得Rt ACD ≌Rt BED (HL );(2)根据Rt ABD △中AD BD =得到ABD △为等腰直角三角形,得到45ABD BAD ∠=∠=,根据Rt ACD ≌Rt BED 得到12DBE ∠=,即可求出答案.【详解】(1)∵ AD BC⊥∴ADC BDE ∠=∠=90°∵在Rt ACD 和Rt BED 中AD BD BE AC=⎧⎨=⎩∴Rt ACD ≌Rt BED (HL )(2)∵Rt ABD △中AD BD=∴45ABD BAD ∠=∠=∵Rt ACD ≌Rt BED∴C BED∠=∠∵78C ∠=︒Rt BED 中,90DBE BED ∠+∠=∴12DBE ∠=∵45ABD ABE DBE ∠=∠+∠=∴ABE ∠=33°.【点睛】此题主要考查了全等三角形的性质和判定及三角形内角度数的计算,熟记概念是解题的关键.26、(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1;(2)作点A关于x轴的对称点A',连接A'B,交x轴于点Q,则QA与QB之和最小.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点Q即为所求,点Q的坐标为(2,0).故答案为:(2,0).【点睛】本题考查了利用轴对称作图以及最短距离的问题,解题的关键是最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年重庆市荣昌区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列各组数据中,能作为一个三角形的三边边长的是()A.5,5.10 B.5,10,20 C.15,25,35 D.10,15,253.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a24.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°5.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣16.小明把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.120°B.150°C.180°D.210°7.如图,在Rt△ABC中,∠BAC=90°.ED是BC的垂直平分线,BD平分∠ABC,AD=3.则CD的长为()A.6 B.5 C.4 D.38.若x,y的值均扩大为原来的2019倍,则下列分式的值保持不变的是()A.B.C.D.9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.10.下列图形都是由相同大小的△按一定规律组成的,其中第①个图形中一共有3个△,第②个图形中一共有8个△,第③个图形中一共有14个△,…,按此规律排列下去,第⑨个图形中的△个数为()A.54 B.61 C.71 D.7711.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=40°,则∠BDE 为()度.A.30°B.40°C.60°D.70°12.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.某种细胞的直径为0.000000019米,将数据0.000000019用科学记数法表示为.14.|﹣1|+20190+(﹣)﹣2=.15.已知:如图,AD是△ABC的边BC上的中线,AB=6.中线AD=4.则AC的取值范围是.16.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.17.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为.18.市场上的红茶由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买15吨纯净水.由于今年以来茶产地连续大旱,茶原液收购价上涨50%,纯净水价也上涨了10%,导致配制的这种茶饮料成本上涨40%,问这种茶饮料中茶原液与纯净水的配制比例为.三、解答题(共78分)19.(8分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.20.(8分)按要求完成下列各题:(l)分解因式:2a3﹣8a (2)解方程:21.(10分)计算:(1)(a+b)2﹣b(2a+b)(2)(+x﹣1)÷.22.(10分)如图,在Rt△ABC中,∠BAC=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC(1)求∠B的度数;(2)若AN=2.求BC的长.23.(10分)随着互联网技术的广泛应用,“天猫”、“京东”、“唯品会”等网络大型“卖场”的日趋完善,网购成了现代入生活的一部分.与此同时,快递行业也随之高速发展.(1)如果每名快递员每月最多完成快递投递量相同,且每月投递完12万件快递量需要快递员比投递完12.6万件快递量需要快递员人数少1人,求每名快递员每月最多完成快递投递量是多少万件;(2)在(1)的条件下,我市某小型快递公司原有员工20名,随着快递投递任务的加大,该快递公司投入部分资金用于改善投递条件,改善后,每人每月投递快递任务量可增加0.5a%,同时该快递公司又增加了2a%的快递员,从而预计每月最大可完成投递快递任务15.12万件,求a的值.24.(10分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC上的任意一点,连接AD,过点C作CE ⊥AD交AD于点E.(l)如图1,若∠BAD=15°,CE=,CD=2,求△ACD的面积;(2)如图2,过C作CF⊥BF,且CF=CE,连接FE并延长FE交AB于M,连接BF,求证:AM=BM.25.(10分)若实数a可以表示成两个连续自然数的倒数差,例如,,所以是第1个“l阶倒差数”倒差数”,,所以是第2个“l阶倒差数”,,所以是第3个“l阶倒差数”……,即a=,那么我们称a是第n个“l阶倒差数”;同理,b=那么我们称b为第n个“2阶倒差数”.(l)判断(填是或不是)“1阶倒差数”,第5个“2阶倒差数”是.(2)若x,y均是由两连续奇数组成的“2阶倒差数”,且=22.求x,y的值.26.(12分)已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.(1)如图1.连接BD,若∠BAD=90°,求证:AD=CD.(2)如图2,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC;(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ 与∠ADC的数量关系,并给出证明过程.1.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.【解答】解:A、5+5=10,不满足三边关系,故不符合题意;B、5+10=15<20,不满足三边关系,故不符合题意;C、15+25>35,满足三边关系,故符合题意;D、10+15=25,不满足三边关系,故不符合题意.故选:C.3.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.4.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.5.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.6.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:D.7.【解答】解:∵BD是∠ABC的平分线,∴∠DBC=∠ABD,∵ED是BC的垂直平分线,∴CD=BD,∴∠C=∠CBD,∵∠A=90°,∴∠C+∠ABC=90°,∴∠C=30°;∵∠C=∠ABD=∠CBD=30°,∠A=90°,AD=3,∴CD=BD=2AD=6,故选:A.8.【解答】解:(A)原式=,故A不选;(B)原式==,故B不选;(C)原式==,故C不选;故选:D.9.【解答】解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,依题意得:.故选:A.10.【解答】解:由图可得,图①中△的个数为:1+2+2×0=3,图②中△的个数为:1+2+3+2×1=8,图③中△的个数为:1+2+3+4+2×2=14,图④中△的个数为:1+2+3+4+5+2×3=21,则第⑨个图形中的△个数为:1+2+3+…+10+2×8=71,故选:C.11.【解答】解:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.故选:D.12.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选:A.13.【解答】解:0.000000019=1.9×10﹣8,故答案为:1.9×10﹣8.14.【解答】解:原式=1+1+4=6.故答案为:6.15.【解答】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,AE﹣EC<AC<AE+EC,∴8﹣6<AC<8+6,即2<AC<14,故答案为:2<AC<14.16.【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.17.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.18.【解答】解:设这种茶饮料中茶原液与纯净水的配制比例为a:b,购买一吨纯净水的价格是x,=(1+40%),=1:5.故答案为:1:5.19.【解答】证明:∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,20.【解答】解:(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)=,方程两边同时乘以x(x+6),得:x+6=4x,解这个方程得x=2,经检验:x=2是方程的解.21.【解答】解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣2ab﹣b2=a2;(2)(+x﹣1)÷=×=×=.22.【解答】解:(1)∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN 平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°;(2)∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12.23.【解答】解:(1)根据题意得:12.6﹣12=0.6,则每名快递员每月最多完成快递投递量是0.6万件;(2)根据题意得:0.6(1+0.5a%)•20(1+2a%)=15.12,令a%=y,整理得0.6(1+0.5y)•20(1+2y)=15.12,即50y2+125y﹣13=0,(10y﹣1)(5y﹣13)=0,解得y1=0.1,y2=﹣(舍去),∴a%=0.1,即a=10.故a的值为10.24.【解答】(1)解:∵∠ACB=90°,AC=BC,∴∠BAC=∠B=45°,∵∠BAD=45°∴∠CAD=45°﹣15°=30°,在Rt△ACD中,CD=2,∴AD=2CD=4,∵CE⊥AD,∴;(2)证明:过点A作AG∥BF交FM的延长线于点G,∵CF⊥BF,AE⊥CE,∴∠ACE=∠CFB=90°,又∵AC=BC,CE=CF,∴Rt△ACE≌△Rt△BCF(HL),∴AE=BF,∠ACE=∠BCF,∴∠ECF=90°,在Rt△ECF中,∠ECF=90°,EC=FC,∴∠CEF=∠CFE=45°,∴∠AEG=180°﹣90°﹣45°=45°,∠BFE=90°﹣45°=45°,∴∠AEG=∠BFE,∵AG∥BF,∴∠G=∠BFE,∠GAM=∠FBM,∴∠AEG=∠G,∴AE=AG∵AE=BF,∴BF=AG,在△AMG和△BMF中,,∴△AMG≌△BMF(ASA),∴AM=BM.25.【解答】解:(1)∵=﹣,∴是“1阶倒数差”,当n=5时,a=﹣=,故答案为:是,.(2)解:设,,(其中m,n为奇数)∵∴∴m2+2m﹣n2﹣2n=44∴(m+n+2)(m﹣n)=44∴(m+n+2)(m﹣n)=44=1×44=2×22=4×11∵m,n为奇数∴m+n+2、m﹣n都是偶数从而可得∴m=11,n=9∴,.26.【解答】(1)证明:∵∠ABC+∠ADC=180°,∠BAD=90°,∴∠BCD=∠BAD=90°,在Rt△BAD和Rt△BCD中,,∴Rt△BAD≌Rt△BCD(HL)∴AD=DC;(2)证明:延长DC至点K,使CK=AP,连接BK,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCK=180°,∴∠BAD=∠BCK,在△BPA和△BCK中,,∴△BPA≌△BCK(SAS)∴∠ABP=∠CBK,BP=BK,∵PQ=AP+CQ,QK=CK+CQ,∴PQ=QK在△PBQ和△BKQ中,,∴△PBQ≌△BKQ(SSS)∴∠PBQ=∠KBQ=∠CBK+∠CBQ=∠ABP+∠CBQ;(3)解:∠PBQ=90°+∠ADC,理由如下:如图3,在CD延长线上找一点K,使得KC=AP,连接BK,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵∠BAD+∠PAB=180°,∴∠PAB=∠BCK,在△BPA和△BCK中,∴△BPA≌△BCK(SAS)∴∠ABP=∠CBK,BP=BK,∴∠PBK=∠ABC,∵PQ=AP+CQ,∴PQ=QK,在△PBQ和△BKQ中,,∴△PBQ≌△BKQ(SSS)∴∠PBQ=∠KBQ,∴2∠PBQ+∠PBK=2∠PBQ+∠ABC=360°,∴2∠PBQ+(1800﹣∠ADC)=360°,∴.。

相关文档
最新文档