数控系统构成与连接概述

合集下载

计算机数控系统的基本概念与组成

计算机数控系统的基本概念与组成

第3章计算机数控系统3.1 计算机数控(CNC)系统的基本概念计算机数控(computerized numerical contro,简称CNC)系统是用计算机控制加工功能,实现数值控制的系统。

CNC系统根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能.由一台计算机完成以前机床数控装置所完成的硬件功能,对机床运动进行实时控制。

CNC系统由程序、输入装置、输出装置、CNC装置、PLC、主轴驱动装置和进给(伺眼)驱动装置组成。

由于使用了CNC装置,使系统具有软件功能,又用PLC取代了传统的机床电器逻辑控制装置,使系统更小巧,灵活性、通用性、可靠性更好,易于实现复杂的数控功能,使用、维修也方便,并且具有与上位机连接及进行远程通信的功能。

3.2 微处理器数控(MNC)系统的组成大多数CNC装置现在都采用微处理器构成的计算机装置,故也可称微处理器数控系统(MNC)。

MNC一般由中央处理单元(CPU)和总线、存储器(ROM,RAM)、输入/输出(I/O)接口电路及相应的外部设备、PLC、主轴控制单元、速度进给控制单元等组成。

图3 .2.1为MNC 的组成原理图。

3.2.1中央处理单元(CPU)和总线(BUS)CPU是微型计算机的核心,由运算器、控制器和内寄存器组组成。

它对系统内的部件及操作进行统一的控制,按程序中指令的要求进行各种运算,使系统成为一个有机整体。

总线(BUS)是信息和电能公共通路的总称,由物理导线构成。

CPU与存储器、I/O 接口及外设间通过总线联系。

总线按功能分为数据总线(DB)、地址总线(AB)和控制总线(CB)。

3.2.2存储器(memory)(1)概述存储器用于存储系统软件(管理软件和控制软件)和零件加工程序等,并将运算的中间结果和处理后的结果(数据)存储起来。

数控系统所用的存储器为半导体存储器。

(2)半导体存储器的分类①随机存取存储器(读写存储器)RAM(random access memory)用来存储零件加工程序,或作为工作单元存放各种输出数据、输入数据、中间计算结果,与外存交换信息以及堆栈用等。

数控系统的组成及工作原理

数控系统的组成及工作原理

数控机床的主轴驱动系统和进给驱动系统,分别采用交、直流主轴电动机、伺 服电动机驱动,这两类电动机调速范围大,并可无级调速,因此使主轴箱、进 给变速及传动系统大为简化,箱体结构简单,齿轮。轴承和轴类零件数量大为 减少甚至不用齿轮,由电动机直接带动主轴或进给丝杠。
4、高传动效率和无间隙传动装置
数控机床在高进给速度下,工作要求平稳,并有高定位精度。因此,对进 给系统中的机械传动装置和元件要求具有高寿命、高刚度、无间隙、高灵 敏度和低摩擦阻力的特点。目前,数控机床进给驱动系统中常用的机械装 置主要有3种:滚珠丝杠副、静压蜗杆——蜗母条机构和预加载荷双齿轮- 齿条。
机床基础部件又叫机床大件,通常是指床身、底座、立柱、横梁、滑座、工作 台等。它是整台机床的基础和框架。机床的其他零、部件,或者固定在基础件 上,或者工作时在它的导轨上运动。
数控机床机械结构的主要特点
1、高刚度和高抗振性
机床刚度时机床的性能之一,它反映了机床结构抵抗变形的能力。 提高数控机床结构刚度的措施 1)提高机床构件的静刚度和固有频率 改善薄弱环节的结构或布局,以 减少所承受的弯曲载荷和转矩负载。 2)改善机床结构的阻尼特性 3)用新材料和钢板焊接结构 2、减少机床的热变形的影响 3、驱动系统机械结构简化
分辨率是指两个相邻的分散细节之间可以分辨的最小间隔。 数控装置每发出一个脉冲,反映到机床坐标轴上的位移量,通常称为脉冲当量
3、效率指标 1)最高主轴转速和最大加速度
2)最大快移速度 4、可靠性指标
1)平均无故障工作时间 2)平均修复时间 3)固有可用度
二、数控机床的功能 1、控制功能
2、插补功能 3、准备功能 4、进给功能
数控机床的工作原理
数控机床加工工件,首先要将被加工工件的几何信息和工艺信息数字化,用 规定的代码格式编写加工程序,并储存到程序载体,然后用相应的输入装置 将所编的程序指令输入到CNC单元,CNC单元将程序译码、运算之后,向机 床各个坐标的伺服系统和辅助控制装置发出信号,以驱动机床的各运动部件, 并控制所需要的辅助动作,最后加工出合格的工件

数控系统(CNC系统)

数控系统(CNC系统)

参考资料:/%C5%C9%BF%CB652/blog/item/040742fc5ab3e50eb17e c577.html一、CNC系统的基本构成CNC系统是一种用计算机执行其存储器内的程序来实现部分或全部数控功能的数字控制系统。

由于采用了计算机,使许多过去难以实现的功能可以通过软件来实现,大大提高了CNC系统的性能和可靠性。

CNC系统的控制过程是根据输入的信息,进行数据处理、插补运算,获得理想的运动轨迹信息,然后输出到执行部件,加工出所需要的工件。

CNC系统由硬件和软件组成,软件和硬件各有不同的特点。

软件设计灵活,适应性强,但处理速度慢;硬件处理速度快,但成本高。

CNC的工作是在硬件的支持下,由软件来实现部分或大部分的数控功能。

二、CNC系统的硬件结构CNC系统的硬件结构可分为单微处理器结构和多微处理器结构两大类。

早期的CNC系统和现有的一些经济型CNC系统采用单微处理器结构。

随着CNC系统功能的增加,机床切削速度的提高,单微处理器结构已不能满足要求,因此许多CNC系统采用了多微处理器结构,以适应机床向高精度、高速度和智能化方向的发展,以及适应计算机网络化及形成FMS和CIMS的更高要求,使CNC系统向更高层次发展。

1.单微处理器结构图6-3CNC系统硬件的组成框图所谓单微处理器结构,即采用一个微处理器来集中控制,分时处理CNC系统的各个任务。

某些CNC系统虽然采用了两个以上的微处理器,但能够控制系统总线的只是其中的一个微处理器,它占有总线资源,其他微处理器作为专用的智能部件,不能控制系统总线,也不能访问存储器,是一种主从结构,故也被归入单微处理器结构中。

单微处理器结构的CNC系统由计算机部分(CPU及存储器)、位置控制部分、数据输入/输出等各种接口及外围设备组成。

CNC系统硬件的组成框图可参见图6-3。

(1)计算机部分计算机部分由微处理器CPU及存储器(EPROM、RAM)等组成。

微处理器执行系统程序,首先读取加工程序,对加工程序段进行译码、预处理计算等,然后根据处理后得到的指令,对该加工程序段进行实时插补和对机床进行位置伺服控制;它还将辅助动作指令通过可编程控制器(PLC)发给机床,同时接收由PLC返回的机床各部分信息并予以处理,以决定下一步的操作。

数控系统的结构和工作原理

数控系统的结构和工作原理
FANUC 0iC FSSB伺服控制:NC上的口为 COP10A,接伺服放大器COP10B,如还有一个
伺服放大器,则再从COP10A 到 COP10B。 FANUC 0iC I/O:I/O Link NC上的口为JD1A, 接I/O单元上JD1B,如再有一个I/O单元,从上一
单元JD1A接至下一个单元JD1B。CB104— CB107为4根扁平电缆,每根50芯,通向机床面板和
机床
FSSB和I/O Link体现 FANUC 公司硬件结构思想, 主运动信息和辅助运动信息分离
四、SIEMENS(西门子)802D系统结构
一、数控系统主要部件
数控控制器 伺服(主轴)放大器、电机(反馈) I/O装置 机床
二、数控机床装配过程
1、机床厂选型购置 2、电器、机械连接 3、PLC编程(辅助功能) 4、参数确定(主运动) 5、联调
三、FANUC 0iC 系统的结构
ቤተ መጻሕፍቲ ባይዱ
FSSB 主运动信息
I/O Link 辅助运动信息

1 《数控机床控制技术基础》概述

1 《数控机床控制技术基础》概述

2、输入/输出 、输入 输出 输出(I/O) 数控系统对加工程序处理后输出的控制信号除了对进给运行轨迹进行连续控制外, 数控系统对加工程序处理后输出的控制信号除了对进给运行轨迹进行连续控制外, 还要对机床的各种状态进行控制,这些状态包括主轴的变速控制,主轴的正、 还要对机床的各种状态进行控制,这些状态包括主轴的变速控制,主轴的正、反转 及停止,冷却和润滑装置的起动和停止,刀具的自动交换, 及停止,冷却和润滑装置的起动和停止,刀具的自动交换,工件夹紧和放松及分度 工作台转位等。 工作台转位等。 第Ⅰ类:与驱动命令有关的连接电路,主要是与坐标轴进给驱动和主轴驱动的连接 电路。 第Ⅱ类:数控装置与测量系统和测量传感器之间的连接电路。 第Ⅰ类和第Ⅱ类接口传送的信息是数控装置与伺服驱动单元、伺服电动机、位置检 测和速度检测之间的控制信息及反馈信息,它们属于数字控制及伺服控制。 第Ⅲ类:电源及保护电路。由数控机床强电线路中的电源控制电路构成。强电线路 由电源变压器、控制变压器、各种断路器、保护开关、接触器、熔断器等连接而成, 以便为辅助交流电动机(如冷却泵电动机、润滑泵电动机等)、电磁铁、离合器、 电磁阀等功率执行元件供电。强电线路不能与低压下工作的控制电路或弱电线路直 接连接,只有通过断路器、中间继电器等器件,转换成直流低电压下工作的触点的 开合动作,才能成为继电器逻辑电路和PLC可接收的电信号,反之亦然。 第Ⅳ类:开/关信号和代码信号连接电路。是数控装置与外部传送的输入、输出控 制信号。当数控机床不带PLC时,这些信号直接在数控装置和机床间传送。当数控 装置带有PLC时,这些信号除极少数的高速信号外,均通过PLC传送。
三、数控机床控制系统的构成
数控机床进行加工时, 数控机床进行加工时,首先必须将工件的几何数据和工艺数据按规定的代码和格式编 制成数控加工程序,并用适当的方法将加工程序输入数控系统。 制成数控加工程序,并用适当的方法将加工程序输入数控系统。数控系统对输入的加 工程序进行数据处理,输出各种信息和指令,控制机床各部分按规定有序地动作。 工程序进行数据处理,输出各种信息和指令,控制机床各部分按规定有序地动作。 数控机床有以下优点: (1)数控系统取代了普通机床的手工操纵,具有充分的柔性,只要编制成零件程 序就能加工出零件。 (2)零件加工精度一致性好,避免了普通机床加工时人为因素的影响。 (3)生产周期较短,特别适合小批量、单件的加工。 (4)可加工复杂形状的零件,如二维轮廓或三维轮廓加工。 (5)易于调整机床,与其他制造方法(如自动机床、自动生产线)相比,所需调 整时间较少。 数控机床的任务主要有以下方面内容: 1、主轴运动 主轴运动和普通车床一样,主运动主要完成切削任务,其动力约占整台机床动力的 70~80%。基本控制是主轴的正、反转和停止,可自动换档及无级调速;对加工中 心和有些数控车床还必须具有定向控制和C轴控制。

数控系统的基本构成与分类

数控系统的基本构成与分类

数控系统的基本构成与分类一、数控系统的基本构成数控系统是由硬件和软件两个部分组成。

硬件部分主要包括机床、数控器、伺服电机、传感器、工具刀具与刀库等;软件部分包括编程软件、数控编程语言、加工参数及伺服调节等方面。

具体来讲,数控机床通常由主轴系统、伺服系统、定位系统、冷却系统、切削力测量系统、部件传动及辅助系统等几个部分构成,其中主轴系统可以控制工件的旋转速度以及方向,伺服系统可以控制机床在XYZ三个方向上的运动,而定位系统则可以让加工过程中的位置精确到微米级别。

数控系统中的数控器是控制整个系统的中枢,其核心部分通常由控制芯片、存储芯片、输入输出模块、运行模式切换模块、数据输入输出模块和通信模块等六大模块构成。

其中控制芯片是负责输入加工参数及加工程序,存储芯片用于存储数控程序和加工参数等,输入输出模块用于数据的输入与输出,而数据输入输出模块则是将加工参数及程序传输到数控器中进行转换,以便让数控机床作出正确的加工运动。

对于重要的加工参数,数控系统中还配备了一些传感器,如电力压力传感器、速度传感器、角度传感器以及温度传感器等。

这些传感器可以监测机床的状态,从而实时反馈给数控器,以保证整个加工过程中的运动精度和安全性。

二、数控系统的分类按照数控编程语言的不同类型,数控系统可以分为以下几大类:1.绝对式数控系统:绝对式数控系统通常使用绝对坐标系来表示机床的位置,程序中运动的起点固定不变,因此非常适合于多品种、小批量生产的加工过程。

与之相对应的是相对式数控系统,相对式数控系统通常使用相对坐标系来表示机床的位置,程序中的起点则可以任意改变。

2.坐标式数控系统:坐标式数控系统是指使用坐标系表示工件加工位置的数控系统,其常用的编程语言为G码,主要适用于平面零件的加工。

3.直线式数控系统:直线式数控系统是指加工路径为直线的高速加工系统,可以实现快速的直线加工,降低了加工时间,提高了加工效率。

4.插补式数控系统:插补式数控系统是指依据给定的坐标指令,进行加工路径和运动轨迹自动插补的加工系统,明显提高了加工精度和效率。

数控系统基本组成课件

数控系统基本组成课件

求信号以获取所需要的数据,从而完成某一辅助功能,
该结构称为主从结构,也可归为单机结构。
.
多微处理器系统的组成
多微处理器系统的CNC装置中有两个或两个 以上带CPU的功能部件可对系统资源(存储器、 总线)有控制权和使用权。它们又分为多主结 构和分布式结构。多主结构是指带CPU的功能 部件之间采用紧耦合方式联结, 有集中的操作 系统用总线仲裁器解决总线争用通过公共存储 器交换系统信息。
.
.
.
手摇脉冲发生 器
.
⑶通信接口
通常数控系统均具有标准的RS232C串行
通信接口, 因此与外设以及上级计算机连
接很方便。
.
⑷进给轴控制接口
实现进给轴的位置控制包括三方面 的内容: 进给速度控制、插补运算和 位置闭环控制。插补方法分为基准脉 冲法与数据采式提供给位置控制单元,这种插 补方法进给速度与控制精度较低,主
.
⑶速度控制程序
速度控制程序根据给定的速度值控制插补 运算的频率, 以保预定的进给速度。在速度变 化较大时, 需要进行自动加减速控制, 以避免因 速度突变而造成驱动系统失步。
.
⑷管理程序
管理程序负责对数据输入、数据处理、插补运算 等为加工过程服务的各种程序进行调度管理。管理程 序还要对面板命令、时钟信号、故障信号等引起的中 断进行处理。
.
3. 多微处理机CNC装置的典型结构
(1)共享总线结构 (2)共享存储器结构
.
数控软件的特点及关键技术
1.多任务与并行处理技术
(1). 数控装置的多任务性
图4-11 数控装置的任务及分类框图
.
这些任务中有些可以顺序执行,有些必须同时执行,如: (1) 显示和控制任务必须同时执行,以便操作人员及时了解

2.1数控系统硬件的连接

2.1数控系统硬件的连接

1
任务引入
2
任务目标
3
任务实施
4
知识内容
5
任务拓展
6
任务巩固
FANUC i系列机箱共有两种形式,一种是内装式,另
一种是分离式。
内装式CNC与LCD的实装
FANUC i系列分离式系统
FANUC 0i-TD系统结构示意图
数控系统主机硬件
发那科0iD 数控系统主机方框图
FANUC 0i系统各板插接位置图
SP
FANUC 0i系统与计算机通信连接图
(1)远程缓冲器接口
远程缓冲器接口及原理图
电缆接线图
(2)与电池单元的连接
与电池单元的连接
二、典型故障——电源不能接通的维修
故障现象:按电源ON按钮后,数控系统不启动,实际上没有 系统电源接入CNC。
FANUC i 系 列仅接受DC 24V电源
结构图
数控机床电气系统装调与维修一体化教程
I/O连接图
4.远程缓冲器接口
远程缓冲器类型印刷电路板
类型
名称
备注
连接槽
包括在多轴卡中,第5和
SUB CPU卡
A
第6轴可作为PMC轴控制。 SUB
控制单元B的远程缓冲器 不能连接第5和第6轴。
B 控制单元A的远程缓冲器 也可用于DNC2接口
扩展接器 JA1和JA2
C 控制单元B的远程缓冲器 也可用于DNC2接口
FANUC 0i系统控制单元
数控机床电气系统装调与维修一体化教程
一、数控系统硬件的连接
基本版
FANUC Oi系统连接
选项版
1.CRT/MDI单元 (1)视频信号接口
图形卡(GR)的接线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 FANUC 数控系统结构及特点1第一讲 FANUC 数控系统结构及特点 ..................................... 2 1-1 FANUC 数控系统简介 ......................................... 2 1-2 FANUC 系统构成............................................... 4 1-3 与其它系统地区别 ............................................ 7 1-3-1 西门子硬件结构......................................... 7 1-3-2 FANUC 系统与西门子系统的差异.......................... 162第一讲 FANUC 数控系统结构及特点 1-1 FANUC 数控系统简介 目前在国内市场上的常见的 FANUC 数控系统有: FANUC 0C/D 系列 FANUC 0i 系列-A/B/C FANUC-21/21i 系列 FANUC-16/16i FANUC-18/18i 系列 FANUC-15/15i 系列 FANUC- 30i/31i/32i 系列 FANUC Power-Mate 系列 FANUC Open CNC(FANUC 00/210/160/180/150/320 等) 总体上讲 FANUC 0 C/D 系列、FANUC 0i A/B/C 系列以及 FANUC21i 系列 数控系统是用于 4(数控)轴以下的普及型数控机床。

FANUC 0 C/D 系列是上个世纪 90 年代的产品,早已停产,但目前在国内有 一定的保有量,因为 FANUC 0 D 是由北京-FANUC 生产的早期产品,硬件结构 是双列直插型的芯片, 大板结构, CPU 是 Intel-486 系列, 驱动采用全数字伺服。

图 1-1 FANUC 0C/D 系统FANUC 0i A/B/C 系列是 2000 后北京-FANUC 的新一代产品, 硬件采用 SMT ——表面贴装, 驱动采用 α 及 αi 系列或 β 及 βi 系列全数字伺服, 特别是 αi 系列 采用 FSSB——FANUC Series Servo Bus 总线结构,光缆传输,具有 HRV1~3 ——High Response Vector(高精度矢量控制)功能,可以实现高速高精度轮廓 加工。

第一讲 FANUC 数控系统结构及特点3图 1-2FANUC 0i-A/B/C 系统FANUC-21/21i 系列数控系统与 0i-C 基本上是同类系统,FANUC 公司本土 生产,主要在海外市场销售。

图 1-3FANUC 21 系统FANUC-16i/18i 系列数控系统属于 FANUC 中档系统, 适用于 5 轴以上的卧 式加工中心、龙门镗铣床,龙门式加工中心等。

图 1-4FANUC 16i/18M 系统FANUC-15/15i 系列数控系统是 FANUC 公司的全功能系统,主要体现在软 件丰富,可扩充联动轴数多。

4图 1-5FANUC 15 系统FANUC 30i/31i/32i 系列是新一代数控系统,采用新一代数控系统 HRV4, 可以实现纳米级加工,被用于医疗器械、大规模集成电路芯片模具加工等。

而 FANUC Power-Mate 系列一般与上述系统 Link 线相连接,用于上下料、 刀库、鼠牙盘等非插补轴。

FANUC Open CNC(FANUC 00/210/160/180/150/320 等)就是在上述系 统系列标志后面“加上 O”表示 Open CNC——开放式数控系统。

所谓开放式 数控系统,就是可以在 FANUC 公司产品平台之外,灵活挂接非 FANUC 公司产 品,如工业 PC 机 + Windows 软件平台 + FANUC NC 硬件+FANUC 驱动,或 FANUC 硬件平台 + Windows 软件平台,便于机床制造厂开发工艺软件和操作 界面。

图 1-6FANUC Open CNC 结构FANUC 数控系统在电气结构上主要由: ① CNC——Computer Numerical Control 即计算机数字控制系统 ② 内置 PMC——Programmable Machine Control 及接口电路。

③ 主轴及伺服驱动装置 1-2 FANUC 系统构成 通用型 FANUC 数控系统(OPEN CNC 除外) ,其 CNC 系统平台及软件完 全由 FANUC 公司开发, 没有 Windows 界面, 硬件采用 F-BUS (FANUC 总线) 。

整个数控系统由 CNC、伺服及主轴驱动、PMC(programmable machine tools control)及 I/O 电路组成和外围开关组成。

(参见下图 1-7~图 1-12)第一讲 FANUC 数控系统结构及特点5图 1-7FANUC i 系列系统图 1-8FANUC βi 系列伺服图 1-9 内置 PMC 梯形图图 1-10I/O 单元(接口电路)以及继电气电路、电磁阀、接近开关等外部设备。

图 1-11 三位四通液压阀图 1-12接近开关上述各组成部分详细说明请参见第三讲。

6图 1-13 FANUC i 系列连接图第一讲 FANUC 数控系统结构及特点71-3 与其它系统地区别 目前在市场上的主流数控系统 西门子 802s、802d(base line) 、802d-sl、810D、840D(power line) FANUC 0i 系列-A/B/C、FANUC-16i/18i21i、FANUC15 系统等。

三菱数控 M60S 系列-M64A、M64SM、M50、E60、C6、C64、系列等。

OKUMA 大隈数控等 由于目前在企业中用量最大的数控系统是 FANUC 和西门子, 所以本讲座主 要讨论这两种数控系统的结构差异。

1-3-1 西门子硬件结构 ⑴ 西门子 840D(power line)结构 其中:主要组成部分: NCU — — Numerical Control 单 元 , 数 控 系 统 单 元 , 含 不 同 版 本 的 NC-CPU 组件。

MCP 单元——Machine Control panel 机床操作面板。

Operator panels(operator panel front + PCU) ,operator panel front— —液晶显示器及 MDA 键盘,PCU 单元硬件,包括 CPU,硬盘等。

PCU ——Personal Computer 单元,PCU 又由 HMI——Human Machine Interface 人机界面(西门子开发的适宜操作者编程操作、维修管理人员 诊断故障、调整参数的人机对话操作画面) 。

HHU——HandHeld Unit 手持单元。

S7-300 I/O with IM 361 interface module —— 西门子 PLC 接口模块及 I/O 模块。

Single I/O module —— 独立 I/O 模块 主连接图如下:8图 1-14 西门子 840D 连接MS——Main Supply 主要为NCU和驱动部分提供电源、为电机提供直 流动力(DC600V)电源、为驱动部分提供再生制动 Regenerative braking(I/RF)。

MSD——Main Spindle Driver 主轴电机驱动控制模块。

FDD——Feed Driver 伺服电机(同步电机)驱动控制模块。

SIMATIC STEP-7 I/O devices —— PLC 接口模块及 I/O 装置。

PCU 与外围设备的连接第一讲 FANUC 数控系统结构及特点9图 1-15 西门子 840D PCU 及 NCK 连接其中 MPI bus cable——Multi Point Interface 多点接口总线,速率187.5kbaud。

DP——Profibus DP 欧洲工业标准总线。

HHU——HandHeld Unit 手持单元。

⑵ 西门子 802D-sl(solution-line)结构10图 1-16 西门子 802D-sl 的连接802D-sl 与 802d 最大的不同点,是采用西门子公司 SINAMICS S120 新的 一代驱动系统,又称 solution-line 总线结构(802d 采用的是 base-line 总线)。

S120 驱动系统的采用了最先进的硬件技术、软件技术以及通讯技术。

采用 高速驱动接口,配套的 1FK7 永磁同步伺服电机具有电子名牌,系统可以自动识 别所配置的驱动系统。

具有更高的控制精度和动态控制特性,更高的可靠性。

机 床制造厂应首先根据其机床选择合适的进给电机和主轴电机, 然后选择适合于该 电机的电机模块以满足电机的输出功率, 最后根据各个电机模块选出匹配的进线 电源模块。

滤波器和电抗器应根据进线电源模块的功率来选择,所有的进线电源 模块应该配置电抗器。

SINAMICS S120的电源模块全部采用馈能制动方式,其配置分为调节型电 源模块(Active Line Module缩写为ALM) 和非调节型电源模块(Smart Line Module缩写为SLM) 无论选用ALM或SLM, 。

均需要配置电抗器。

电机模块 (Motor Module缩写为MM)。

SINAMICS 的电源模块、电机模块均需要24V直流供电。

驱动器由进线电源模块和电机模块组成。

进线电源模块的作用是将380V三 相交流电源变为600V直流电源,为电机模块供电。

进线电源模块分为调节型和第一讲 FANUC 数控系统结构及特点11非调节型两种。

调节型的母线电压为直流600V。

非调节型的母线电压与进线的 交流电压有关。

不论是调节型的进线电源模块, 还是非调节型的电源进线模块均采用馈电制 动方式–制动的能量馈回电网。

调节型进线电源模块(Active Line Module 缩写为ALM) ALM 具有DRIVE CLiQ 接口,由802D sl X1接口引出的驱动控制电缆 DRIVE CLIQ连接到ALM的X200接口,由ALM的X201连接到相邻的电机模块的 X200,然后由此电机模块的X201连接至下一相邻电机模块的X200,按此规律连 接所有电机模块。

图 1-17 西门子 802D-sl 调节型驱动连接图 1-18 802D-sl 动力线与反馈线非调节型进线电源模块(Smart Line Module 缩写为SLM) SLM 没有DRIVE CLiQ接口, 由802D sl X1接口引出的驱动控制电缆DRIVE CLIQ直接连接到第一个电机模块的X200接口, 由电机模块的X201连接到下一个 相邻的电机模块的X200,按此规律连接所有电机模块。

相关文档
最新文档