1.4.1有理数的乘法(第2课时)

合集下载

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。

《有理数的乘法》第2课时 教学设计

《有理数的乘法》第2课时 教学设计

《有理数的乘法》教学设计第 2 课时本节内容是学生在学习了有理数的乘法的基础上,对有理数的运算的进一步深化,同时又为有理数的除法的学习奠定基础.因此,本节内容既是有理数运算的延续,又是有理数除法、乘方等复杂运算的铺垫,起着承上启下的作用.1.理解并掌握多个有理数相乘时积的符号的确定,能利用乘法运算律进行简便计算;2.理解并掌握有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便;3.理解乘法运算律在乘法运算中的作用,适当进行推理训练.【教学重点】乘法的符号法则和乘法的运算律.【教学难点】积的符号的确定.收集相关文本资料,相关图片,相关动画等碎片化资源.◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程知识回顾1.叙述有理数乘法法则.2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3);(3)4×(-1.5); (4)(-5)×(-2.4);(5)29×(-21); (6)(-2.5)×16;(7) 97×0×(-6); (8)(-9.3)×(-7.8)×0;(9)-35×2; (10)(-84)×(-86);(11)0.2×3×(-5);(12)24×(-0.125);(13)(-0.6)×(-1.5);(14)1×2×3×4×(-5);(15)1×2×3×(-4)×(-5);(16)1×2×(-3)×(-4)×(-5);(17)1×(-2)×(-3)×(-4)×(-5);(18)(-1)×(-2)×(-3)×(-4)×(-5).一、探究新知-多个有理数相乘的符号法则1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(14),(16),(18)等题积为负数,负因数的个数是奇数个;(15),(17)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试:(1)3×(-5);(2)3×(-5)×(-2);(3)3×(-5)×(-2)×(-4);同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4);(2) 2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.继而教师强调指出,以后进行有理数乘法运算,必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.二、例题讲解-多个有理数相乘的符号法则例 计算:(1)(-3)××(-)×(-);注意:第一个因数是负数时,可省略括号. (2) (-5)×6×(-)×=5×6××=6通过例题教师小结:在有理数乘法中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子.练习(1)判断下列积的符号(口答):①(-2)×3×4×(-1); ②(-5)×(-6)×3×(-2);③(-2)×(-2)×(-2); ④(-3)×(-3)×(-3)×(-3).(2)计算:①(-5)×8×(-7)×(-0.25);56951445144514(3)计算:②(-1)×(-8)+3×(-2);③1+0×(-1)-(-1)×(-1)-(-1)×0×(-1).三、探究新知-乘法的运算律问题1 计算下列各题,并比较它们的结果,你有什么发现?请再举几个例子验证你的发现.问题2 阅读,并思考:在上述运算过程中,你得到什么规律呢?教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.代数式表达:(ab)c=a(bc).(3)乘法分配律文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 代数式表达:a(b+c)=ab+ac.提问:这里为什么只说“和”呢?3×(5-7)能不能利用分配律?答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律? 答:乘法交换律:abc =cab =bca ,或者说任意交换因数的位置,积不变;乘法结合律:a (bc )d =a (bcd )=……,或者说任意先乘其中几个因数,积不变;分配律:a (b +c +d +…+m )=ab +ac +ad +…+am ,再把所得的积相加.继而教师作如下小结:(1)小学学习的乘法运算律都适用于有理数乘法.(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样.掌握了学习的方法,就掌握了自学的钥匙,希望予以注意.例1 用两种方法计算 (14+16-12)×12.例2.计算:.(多种方法解答)五、课堂练习见课件.六、归纳小结通过本节课的探讨学习,你获得哪些新知识?小结教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.有理数乘法运算律:1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.ab =ba .2.乘法结合律:有理数乘法中,三个数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等.(ab )c =a (bc ).3.乘法分配律:有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a (b +c )=ab +ac .)21(767-⨯。

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版
1.4.1
第二课时《有理数乘法相关运算律》教学设计
课题
数学七年级上册
版本
新人教版
执教者
课标要求
掌握多个有理数相乘的符号法则
学情分析
学生前面已经学习了有理数的加法运算和减法运算,并知道了有理数包括正数、负数和零,或正整数、正分数、负整数、负分数和零,“两负数相乘,积的符号为正”与“两负数相加,和为负”容易混淆.
几个数相乘,如果其中有因数为0,积等于0




内容分析
在上节课学习有理数乘法的基础上,巩固有理数的乘法法则,探索多个有理数相乘时,积的符号的确定方法.




知识与技能目标
掌握有理数相乘的运算顺序及积的符号确定规则
过程与方法目标
发展学生的观察、归纳、猜测、验证等能力.
情感态度与价值观目标
能让学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.
教学资源
多媒体、PPT课件
教学重点
应用符号法则正确地进行有理数乘法运算
教学难点多个有理数相乘时积符号的确定方法教学


教学方法
观察、分析、归纳与练习巩固相结合,两先两后教学法
学习方法
自主探究,先学后教




教学环节
教学内容
教师活动
学生活动
设计意图
一、预习导学
二、学习研讨
(1)自学内容:教材第31页的内容.
几个数相乘,如果其中有一个因数为0,积等于0
例3 计算:
(1) (-3)× ×(- )×(- )
(2)(-5)×6×(- )×

人教版七年级数学上册第一章1.4 第2课时 有理数的乘法运算律

人教版七年级数学上册第一章1.4 第2课时 有理数的乘法运算律

知识点 有理数的乘法运算律
问题1 计算下列各题,并比较它们的结果, 你有什么发现?请再举几个例子验证你的 发现.
(1) 5 (6)
30
(3) 3(4)(5)
60
(2) (6) 5
30
(4) 3(4)(5)
60
乘数交换位置
(1) 5 (6)
(2) (6) 5
30
30
一般地,有理数乘法中,两个数相乘, 交换因数的位置,积相等.
9.在运用分配律计算3.96×(-99)时,下列变形中,较简 便的是( C )
A.(3+0.96)×(-99) B.(4-0.04)×(-99) C.3.96×(-100+1) D.3.96×(-90-9)
*10【. 2019·贺州】计算1×13+3×15+5×17+7×19+…+37×139的
5 3 5 ( 7 ) 1 5 3 5 2 0
即 5 3 ( 7 ) 5 3 5 ( 7 )
在上述运算过程中,你得到什么规律呢?
分配律:
一般地,一个数同两个数的和相乘,等于把 这个数分别同这两个数相乘,再把积相加.
a (b c)_ _ a_ b_ _ _ a_ c_ _
例 用两种方法计算:
( B)
A.加法交换律
B.分配律
C.乘法交换律
D.加法结合律
7 . 在 计 算 ( - 0.125)×15×( - 8)×-45 = [( - 0.125)×( - 8)]×15×-45的过程中,没有运用的运算律是( C ) A.乘法交换律 B.乘法结合律
C.分配律
D.乘法交换律和乘法结合律
8.计算-17×15+-17×45,最简便的方法是( D ) A.利用加法交换律与结合律 B.利用乘法交换律 C.利用乘法结合律 D.逆用分配律

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

数学有理数的乘法法则课件(人教版七年级)上册

数学有理数的乘法法则课件(人教版七年级)上册
1
数a(a≠0)的倒数是什么? (a≠0时,a的倒数是 )
a
练一练
说出下列各数的倒数:
1,-1, 1 ,- 1 ,5,-5,0.75,-2 1
33
3
1 ,-1, 3,
—3,
1, 5
-1, 5
4, 3
-3 7
三 有理数的乘法的应用
例4 用正负数表示气温的变化量,上升为正,下降 为负.登山队攀登一座山峰,每登高1km,气温的变化 量为-6℃,攀登3km后,气温有什么变化?
3 5
(3)8 ( 2) (3.4) 0 0 73
课堂小结
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相 乘.任何数同0相乘,都得0.
2.几个不是零的数相乘,负因数的个数为 奇数时积为负数 偶数时积为正数
3.几个数相乘若有因数为零则积为零.
4.有理数乘法的求解步骤: 有理数相乘,先确定积的符号,再确定积的绝对值.
为了区分方向与时间: 规定:向左为负,向右为正.
现在前为负,现在后为正.
探究1
(1)如果蜗牛一直以每分钟2 cm的速度向右爬行,3分 钟后它在什么位置?
2
l
0
2
4
6
结果:3分钟后在l上点O 右 边 6 cm处
表示: (+2)×(+3)= 6 . (1)
探究2
(2)如果蜗牛一直以每分钟2 cm的速度向左爬行,3分 钟后它在什么位置?
七年级数学上(RJ) 教学课件
第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
第1课时 有理数的乘法法则
导入新课
讲授新课
当堂练习
课堂小结
学习目标

1.4有理数的乘法

有理数的乘除法第一课时 有理数的乘法教学目标:1.了解有理数乘法的意义上,掌握有理数乘法法则。

2.经历探索有理数乘法法则的过程。

教学重难点:重点:有理数乘法的运算. 难点:有理数乘法中的符号法则. 教学过程一、 解决新知: (一) 情境创设 如图,一只蜗牛沿直线爬行,它现在的位置恰在O点。

若我们规定,向右为正,向左为负,为区分时间,我们规定现在前为负,现在后为正。

借助数轴回答下列问题:(1)如果蜗牛一直以每分2厘米的速度向右爬行,3分后它在什么位置?列式:(2)如果蜗牛一直以每分2厘米的速度向左爬行,3分后它在什么位置? 列式:(3)如果蜗牛一直以每分2厘米的速度向右爬行,3分前在什么位置? 列式:(4)如果蜗牛一直以每分2厘米的速度向左爬行,3分前在什么位置? 列式:(5)()02⨯-,30⨯,()30-⨯,02⨯请同学们说说对这四个式子的理解,你能得出结论吗?合作点一:通过以上问题,小组内同学一起归纳总结有理数的乘法法则,每小组有不同的同学起来回答,共同整理。

有理数乘法法则:O 123456O -1-2-3-4-5-6(二) 巩固练习:1.确定下列两个有理数积的符号:①⎪⎭⎫⎝⎛-⨯315 ②()64⨯- ③()()97-⨯- ④7.05.0⨯2.口答:①()96-⨯ ②()()96-⨯- ③()96⨯-④ ()16⨯- ⑤()()16-⨯- ⑥()16-⨯⑦()06⨯- ⑧()60-⨯合作点二:每小组一名同学板演,其余同学独立完成。

3.计算:(-4)×5 (-5)×7 38()()83-⨯- (-3)×(13-)()4431+⨯⎪⎭⎫ ⎝⎛- ⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-56321 ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+263216二.拓展应用:1.登山队攀登一座山峰,每登高1千米气温的变化量为-6℃,攀登3千米后,气温有什么变化?2. 商品降价销售某种商品,每件降5元,售出60件后,与按原件销售同样数量的商品相比,销售额有什么变化?3. 写出下列各数的倒数:1,-1,13,5,-5,23,23-三.小结:四.课后作业:1.计算:(1)6×(-9)(2)210 ()() 53 -⨯+(3)(-6)×0 (4)29 ()() 34 -⨯-第二课时有理数的乘法教学目标:1.了解有理数乘法的意义上,掌握有理数乘法法则,2.熟练判断最后积的符号,教学重难点:重点:有理数乘法的运算.难点:几个有理数相乘最后积的符号. 教学过程一.解决新知: (一)情境创设 有理数的乘法法则:计算下列各式,你能发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯- 错误!未找到引用源。

有理数的乘法与除法(第2课时)

(4)0.25÷(-0.5) (5) (-24 )÷(-6)
【释疑解惑,技巧点拨】
1.能整除时,将商的符号确定后,直接将绝对值相除;
2.不能整除时,将除数变为它的倒数,再用乘法;
【达标测试,反馈矫正】教材第65页。
1.(-32)÷4×(-8)2.17×(-6)÷5
注:有乘除混合运算时,注意运算顺序。先将除法转化为乘法,再进行乘法运算;
(3)(-0.91)÷(-0.13);
(4)0÷(-35 );
(5)(-23)÷(-3)× ;
(6)1.25÷(-0.5)÷(-2 );
(7)(-81)÷(+3 )×(- )÷(-1 );
(8)(-45)÷[(- )÷(- )];
(9)( - + )÷(- );
(10)-3 ÷(- ).
7.列式计算.
问:这周每天上午8时的平均气温是多少?
解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7=?
即:(-14)÷7=?
(除法是乘法的逆运算)什么数乘以7等于-14?
因为_____×7=-14,
所以:(-14)÷7=_______
又因为:(-14)× =_____
所以:(-14)÷7=(-14)×
课题
有理数的乘法与除法(第2课时)
课型
新授
授课时间
2016年月日
执笔人
审稿人
总第课时
相关标准陈述
1.要熟记有理数除法的法则,会进行有理数除法的运算。
2.掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
学习目标
1.能熟练地进行简单的有理数的加减乘除混合运算。

《有理数的乘法》(第2课时)教案 探究版

《有理数乘法的运算律》教案新课标要求知识与技能1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律,结合律和分配律,能用字母表示运算律的内容.3.能较熟练地运用运算律进行乘法运算.过程与方法1.体验乘法运算律在实际运算中的应用.2.能运用有理数的乘法解决问题.情感与态度通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣.教学重点理解和掌握乘法交换律、乘法结合律和乘法分配律.教学难点灵活运用乘法的运算律简化运算.教学过程设计一、合作探究1.计算下列各题,并比较它们的结果,你有什么发现?(1)(-6)×5与5×(-6);(2)59310⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭与95103⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.师生活动:让学生计算,然后在组内交流,验证答案的正确性,讨论两个算式相等有什么发现,最后师生一起总结规律.教师强调a×b也可以写出a·b或ab.当用字母表示乘数时,“×”号可以写成“·”或省略.小结:(1)5×(-6)=-30,(-6)×5=-30,即5×(-6)=(-6)×5.(2)5933102⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,9531032⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,即5995310103⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:ab =ba .设计意图:学生运用有理数的乘法运算计算两个算式和探究其规律,是让学生在解题的过程中有目的性地思考,为下面引出乘法交换律作铺垫.2.计算下列各题,并比较它们的结果,你有什么发现? (1)[(-4)×(-6)] ×5与(-4)×[(-6)×5]; (2)()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦与()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦. 师生活动:学生自主探究,讨论、交流.师生共同归纳乘法结合律的内容并用数学表达式表示.小结:(1)[(-4)×(-6)] ×5=24×5=120, (-4)×[(-6)×5]=(-4)×(-30)=120. 即[(-4)×(-6)] ×5=(-4)×[(-6)×5]. (2)()()177********⎡⎤⎛⎫⎛⎫⨯-⨯-=-⨯-=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()1712814423233⎡⎤⎛⎫⨯-⨯-=⨯= ⎪⎢⎥⎝⎭⎣⎦. 即()()1717442323⎡⎤⎡⎤⎛⎫⎛⎫⨯-⨯-=⨯-⨯- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. 归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).设计意图:通过学生的自主探究,感受有理数乘法结合律的推导,培养学生的观察、归纳、总结能力.3.计算下列各题,并比较它们的结果,你有什么发现? (1)()()3232⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()()()32322⎛⎫-⨯-+-⨯- ⎪⎝⎭;(2)()4575⎡⎤⎛⎫⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()45755⎛⎫⨯-+⨯-⎪⎝⎭.师生活动:让学生独立思考,然后再进行组内的讨论、交流,最后小组长将组内成员的意见、想法汇总,由代表汇报讨论的结果,教师让学生用自己的语言来描述分配律并引导学生用字母来表示分配律.小结:(1)()()()39232922⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()()32326392⎛⎫-⨯-+-⨯-=+= ⎪⎝⎭.即()()()()()332323222⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. (2)()4395753955⎡⎤⎛⎫⎛⎫⨯-+-=⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()()4575354395⎛⎫⨯-+⨯-=-+-=- ⎪⎝⎭.即()()445757555⎡⎤⎛⎫⎛⎫⨯-+-=⨯-+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.归纳:一般地,有理数乘法中,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加.分配律:a (b +c )=ab +ac .设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.4.这里为什么只说“和”呢?3×(5-7)能不能利用分配律?师生活动:四人一小组,小组讨论、交流,小组长收集汇总.教师巡查,关注学生是否认真讨论.小结:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.设计意图:通过举例说明,突破分配律理解和掌握的难点,并且培养学生合作的精神. 5.上面我们做的题中,你发现了什么?在有理数运算律中,乘法的交换律、结合律以及分配律还成立吗?小结:小学学习的乘法运算律都适用于有理数乘法.我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样. 在有理数运算律中,乘法的交换律、结合律以及分配律还成立.设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.二、例题分析 例 计算:(1)()532468⎛⎫-+⨯- ⎪⎝⎭;(2)()457314⎛⎫-⨯-⨯ ⎪⎝⎭. 师生活动:采用大组竞赛的方法,让其中的两个大组采用一般的运算顺序进行计算,另两个大组采用运算律进行计算.教师强调:运算律在运算中有重要作用,它是解决许多数学问题的基础.(1)解法1:()()()53209112424241168242424⎛⎫⎛⎫⎛⎫-+⨯-=-+⨯-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解法2:()()()()5353242424209116868⎛⎫⎛⎫⎛⎫-+⨯-=-⨯-+⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)()()4554541077314143233⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯=-⨯⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设计意图:通过竞赛让学生更深刻地体验到运用运算律可简化运算,同时也增强了学生的竞争意识与集体荣誉感.通过比较,学生会选取用运算律来简化运算,形成知识的正迁移.问题:比较上面(1)中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种运算量小?师生活动:教师提出问题,学生观察、比较,小组讨论,小组长收集、汇总,汇报结果. 小结:解法1先做加法运算,再做乘法运算.解法2先做乘法运算,再做加法运算.解法2用了分配律.解法2的运算量小,因为解法1先要计算两个分数的和.设计意图:通过讨论,加深学生对运算律在运算中有重要作用的认识,培养探究精神. 三、练习巩固 1.计算(1)506⎛⎫⨯- ⎪⎝⎭; (2)133⎛⎫⨯- ⎪⎝⎭; (3)()30.3-⨯; (4)1667⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.解:(1)5006⎛⎫⨯-= ⎪⎝⎭;(2)1133133⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭; (3)()()30.330.30.9-⨯=-⨯=-; (4)1616167677⎛⎫⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.计算:(1)()384⎛⎫-⨯- ⎪⎝⎭; (2)113023⎛⎫⨯- ⎪⎝⎭;(3)()20.25363⎛⎫-⨯- ⎪⎝⎭; (4)418516⎛⎫⨯-⨯ ⎪⎝⎭.解:(1)()3388644⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪⎝⎭⎝⎭;(2)1111303030151052323⎛⎫⨯-=⨯-⨯=-=⎪⎝⎭;(3)()()()()212120.25363636369241534343⎛⎫⎛⎫-⨯-=-⨯-=⨯--⨯-=-+= ⎪ ⎪⎝⎭⎝⎭; (4)41411428885165161655⎛⎫⎛⎫⎛⎫⨯-⨯=-⨯⨯=-⨯⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设计意图:考查了对有理数乘法运算律的理解和掌握. 四、课堂小结 1.乘法交换律:两个数相乘,交换因数的位置,积相等. 符号表示:ab =ba . 2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 符号表示:(ab )c =a (bc ).3.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 符号表示:a (b +c )=ab +ac .设计意图:鼓励学生用自己的语言加以总结,通过知识反馈,优化学生的认知结构. 五、布置作业 1.计算:(1)11124346⎛⎫+-⨯ ⎪⎝⎭; (2)(-4)×(-5)×0.25; (3)100×(-3)×(-5)×0.01; (4)111369618⎛⎫--⨯⎪⎝⎭; (5)111128428⎛⎫--⨯⎪⎝⎭; (6)()1944⎛⎫⨯-⨯-⎡⎤ ⎪⎣⎦⎝⎭; (7)()32.25 2.325⨯-⨯; (8)()32.1 6.57⎛⎫-⨯⨯- ⎪⎝⎭. 设计意图:加深对乘法交换律、乘法结合律、分配律的理解,培养学生的应用意识和能力.2.如果两个数的乘积为负数,你能说出这两个数的符号分别是什么吗?如果两个数的乘积为正数呢?你能推广到多个数相乘的情形吗?3.用“>”“<”“=”填空: (1)若a <0,则a 2a ; (2)若a <c <0<b ,则a ×b ×c 0.参考答案:1.解:(1)1111112424242486410346346⎛⎫+-⨯=⨯+⨯-⨯=+-= ⎪⎝⎭;(2)(-4)×(-5)×0.25=20×0.25=5;(3)100×(-3)×(-5)×0.01=100×3×5×0.01=100×0.01×3×5=15;(4)11111136363636462496189618⎛⎫--⨯=⨯-⨯-⨯=--=-⎪⎝⎭;(5)11111112812812812832641648428428⎛⎫--⨯=⨯-⨯⨯-⨯=--=⎪⎝⎭;(6)()()()111949494919444⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯-=⨯-⨯-=⨯-⨯-=⨯=⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦;(7)()()32.25 2.3 2.25 2.30.120.62125⨯-⨯=-⨯⨯=-; (8)()332.1 6.5 2.1 6.50.9 6.5 5.8577⎛⎫⎛⎫-⨯⨯-=+⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 2.由于“两数相乘,同号得正,异号得负”,所以两数乘积为负数,说明这两数符号是一正一负;如果两数乘积为正数,说明这两数符号或者同时为正,或者同时为负.对于多个数相乘,积的符号由负因数的个数决定:当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正;只要有一个因数为0,积就为0.3.解析:(1)因为1<2,a <0,所以a >2a .(2)因为a <c <0<b ,所以a ,c 为负,b 为正,则a ×b ×c >0. (1)>;(2)>.六、目标检测设计 1.计算:(1)()()()587.2 2.512-×-×-×; (2)-|-0.25|×(-5)×4×125-⎛⎫ ⎪⎝⎭.2.计算:(1)111(8)1248-×-+⎛⎫ ⎪⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭.3.计算:2215130.34(13)0.343737-×-×+×--×.设计意图:考查了对乘法交换律、乘法结合律、分配律的理解与掌握. 目标检测答案:1.(1)53655(8)(7.2)( 2.5)860125212-×-×-×=-×××=-⎛⎫ ⎪⎝⎭; (2)1110.25(5)40.25(5)425255--×-××-=-×-××-=-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.2.(1)111111(8)1(8)(8)1(8)5248248-×-+=-×--×+-×=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭1131(48)(48)(48)(48)123646=-×--×-+×--×-⎛⎫⎪⎝⎭=443683+-+2223=-.3.2215130.34(13)0.343737-×-×+×--× 2125(13)0.343377=-×++×--⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=-13-0.34 =-13.34.。

七年级上册数学1.4.1有理数的乘法法则


第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
讲授新课
一 有理数的乘法运算
合作探究
如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点O.

l
1.如果一只蜗牛向右爬行2cm记为+2cm,那么向
左爬行2cm应该记为 -2cm .
2.如果3分钟以后记为+3分钟,那么3分钟以
前应该记为 -3分钟 .
(3)(-10.8)(- 5 )= 54 5 2; 27 5 27
(125)3.2计算((8)1) ( 2) ( 7) ((2)6 ) 3
3 5 14 2 8 ( 2) (3(.43)) 0 73
2000 3 5
0
4.气象观测统计资料表明,在一般情况下,高 度每上升1km,气温下降6℃.已知甲地现在地面 气温为21℃,求甲地上空9km处的气温大约是多 少?
行,3分钟后它在什么位置? 2
l
-6
-4
-2
0
结果:3分钟后在l上点O 左 边 6 cm处
表示: (-2)×(+3)=-6 .(2)
探究3
(3)如果蜗牛一直以每分钟2 cm的速度向右爬
行,3分钟前它在什么位置?
2
-6
-4
-2
结果:3分钟前在l上点O 左
0
2l
边 6 cm处
表示: (+2)×(-3)= -6 (.3)
再确定 积的绝对值
(4)(-3)×(-4)
= +(3×4)
= 12;
议一议
判断下列各式的积是正的还是负的?
2×3×4×(-5)

2×3×(-4)×(-5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档