传感器第五章

合集下载

【2024版】新教材-人教版高中物理选择性必修第二册-第五章-传感器-精品教学课件(非图片版可编辑)

【2024版】新教材-人教版高中物理选择性必修第二册-第五章-传感器-精品教学课件(非图片版可编辑)

【典例示范】
(多选)在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理
量的控制。如图所示电路,R1为定值电阻,R2为半导体热敏电阻(温度越高电阻越
小),C为电容器,当环境温度降低时
()
A.电容器C的带电荷量增加
B.电压表的读数增大
C.电容器C两板间的电场强度减小
D.R1消耗的功率增大
【思维建模】
六、电阻应变片 1.电阻应变效应: 金属导体在外力作用下发生_机__械__形__变__(伸长或缩短)时,其 _电__阻__随着它所受机械形变的变化而发生变化的现象。电阻应变片是一种 _力__敏__元件。 2.电阻应变片的原理:当金属丝受到拉力时,长度变_长__、横截面积变_小__,导致 电阻变_大__;当金属丝受到压力时,长度变_短__、横截面积变_大__,导致电阻 变_小__。 3.电阻应变片能够把_物__体__形__变__这个力学量转换为电阻这个电学量。应用有 _电__子__秤__。
一 对传感器的认识 1.传感器的组成和工作流程: (1)传感器的组成。 ①敏感元件:相当于人的感觉器官,是传感器的核心部分,是利用材料的某种敏 感效应(如热敏、光敏、压敏、力敏、湿敏等)制成的。 ②转换元件:将敏感元件输出的与被测物理量成一定关系的非电信号转换成电 信号的电子元件。 ③转换电路:将转换元件输出的不易测量的电学量转换成易于测量的电学量,如 电压、电流、电阻等电学量或电路的通断等。
1.传感器:能够感受诸如力、温度、光、声、化学成分等_被__测__量__,并能把它们 按照一定的规律转换为便于传送和处理的_可__用__信__号__输出的一类器件或装置。 2.非电学量转换为电学量的意义: 把_非__电__学__量__转换成电压、电流等电学量,或转换为电路的_通__断__,可以很方便 地进行测量、传输、处理和_控__制__。

教科版高中物理选择性必修第二册精品课件 第5章 传感器 本章整合

教科版高中物理选择性必修第二册精品课件 第5章 传感器 本章整合
(2)要想测量电压,应将旋钮旋至电压挡位上,电动势为5.0 V,因此应选择
10 V量程,故旋至C点。
(3)若只有b、c间断路,则应发现表笔接入a、b时电表与电源不连接,因此指
针不偏转;而接入a、c时,电表与电源直接连接,故指针发生偏转。
(4)当温度为70 ℃,热敏电阻RT=60 Ω,用电阻箱替代热敏电阻,所以把电阻
箱数值调到60 Ω。
对点演练
(2023广东高二期末)2022年北京冬奥会室内赛场利用温度传感器实时监控赛场
温度,而温度传感器的主要部件是热敏电阻。某探究小组的同学用一个热敏电
阻设计了一个简易的“过热自动报警电路”。
(1)为了测量热敏电阻RT的阻值随温度变化的关系,该小
组设计了如图甲所示的电路,他们的实验步骤如下:

0.06
Ω,由图乙可知,此时t=40 ℃;所以当温度t≥40 ℃时,警铃报警。

3
当考虑电源内阻时,线圈中的电流大于等于60 mA,则 R 总= = 0.06 Ω
=50 Ω,不变,但热敏电阻RT'=R总-R0-r,热敏电阻的阻值变小,温度升高。
加热器停止加热,实现温控。继电器的电
阻为20 Ω,热敏电阻的阻值RT与温度t的关

系如下表所示。
t/℃
30.0
40.0
50.0
60.0
70.0
RT/Ω
230
165
108
82
60
(1)提供的实验器材:电源E(内阻不计)、滑动变阻器R、热敏电阻RT、继电
器、电阻箱(0~999.9 Ω)、开关S、导线若干。
电源的电动势为E=3 V,电源内阻可忽略,继电器线
圈用漆包线绕成,阻值为R0=15 Ω。将热敏电阻RT

人教版2019高中物理选择性必修第二册第五章 传感器40张ppt

人教版2019高中物理选择性必修第二册第五章 传感器40张ppt

压力 F/N
电阻 R/Ω
0 50 100 150 200 250 300 … 300 270 240 210 180 150 120 …
(2)该秤零刻度线(即踏板空载时的刻度线)应标在电流表刻度盘多少毫安处?
答案 15.6 mA
解析 依题意可知,电子秤空载时压力传感器受到的压力为零,电阻R1 =300 Ω,电路中的电流为I1=RU1=43.0608 A=15.6 mA,所以该秤零刻度线 应标在电流表刻度盘的15.6 mA处.
5.有一种测量人体重的电子秤,其原理图如图8所示.它主要由三部分构 成:踏板和压力杠杆ABO、压力传感器R(一个阻值可随压力大小而变化 的电阻器)、显示体重的仪表 (其实质是电流表).其中AO∶BO=5∶1.已 知压力传感器的电阻与其所受压力的关系如下表所示:
压力 F/N
0 50 100 150 200 250 300 …
总电流增大,则R1两端的电压增大,而路端电压减小,所以灯泡两端的
电压减小,灯泡变暗,选项B、D正确,C错误.
答案:ABD
9.(电阻应变片、力传感器的应用)压敏电阻的阻值随所受压力的增大而减小,
有位同学设计了利用压敏电阻判断竖直升降机运动状态的装置,其工作原理图
如图11甲所示,将压敏电阻固定在升降机底板上,其上放置一个物块,在升降
二、热敏电阻的应用
2.现要组装一个由热敏电阻控制的报警系统,要求当热敏电阻的温度达 到或超过60 ℃时,系统报警.提供的器材有:热敏电阻,报警器(内阻很 小,流过的电流超过Ic时就会报警),电阻箱(最大阻值为999.9 Ω),直流 电源(输出电压为U,内阻不计),滑动变阻器R1(最大阻值为1 000 Ω),滑 动变阻器R2(最大阻值为2 000 Ω),单刀双掷开关一个,导线若干. 在室温下对系统进行调节.已知U约为18 V,Ic约为10 mA;流过报警器的 电流超过20 mA时,报警器可能损坏;该热敏电阻的阻值随温度升高而 减小,在60 ℃时阻值为650.0 Ω.

传感器原理及应用第五章 光电式传感器

传感器原理及应用第五章 光电式传感器
7
原理
无光照射时,电路不通
有光线照射时,如果光子
能量大于电子的逸出功, 光
会有电子逸出,产生电子 发射
A(阳极) IR
电子被带有正电的阳极吸 引,在光电管内形成光电
K(阴极)
U0 E

根据电流大小可知光量的 大小
8
光电倍增管
在光电管的阴极与阳极之间(光电子飞跃 的路程上)安装若干个倍增极,就构成了 光电倍增管,
1-光源 2-透镜 3-半透 明膜 4-透镜 5-转盘 6透镜 7-光电元件
15
表面缺陷光电传感器
表面光滑
表面有缺陷
1-光源 2-透镜 3-被测物 4-透镜 5-光电元件
16
燃气热水器脉冲点火控制器
打火确认针产生火花,才可打开燃气阀门;否则燃气阀 门关闭,保证使用燃气器具的安全性
17
红外光电开关
而线阵是把CCD像素排成1直线的器件
33
CCD传感器的工作原理
当物体通过物镜成像,这些光敏元就产生与照 在它们上面的光强成正比的光生电荷(光生电 子-空穴对),同一面积上光敏元越多分辨率 越高,得到的图象越清楚
34
CCD传感器的应用
管径测量
物镜 平 行 光 线
玻璃管
CCD视频输出
CCD
上臂厚
20
红外光电开关
反射镜反射型传感器单侧安 装
需要调整反射镜的角度以取 得最佳反射效果
当有物体通过时,红外光束 被隔断,光敏三极管收不到 红外线而产生一个电脉冲信 号,其检测距离不如透射型
21
红外光电开关
被测体反射型 发光二极管与光敏三极管光
轴在同一平面上,以某一角 度相交,交点处为待测点, 当有物体经过待测点时,发 光二极管的红外线经被测体 上的标记反射,被光敏三极 管接收,从而使光敏三极管 产生电脉冲信号

第5章《传感器及其应用》参考答案

第5章《传感器及其应用》参考答案

第5章《传感器及其应用》第1节 揭开传感器的“面纱”【学习目标】1.了解传感器在生产和生活中的应用。

2.知道非电学量转换成电学量的技术意义。

3.知道传感器的最基本原理及其一般结构。

4.知道敏感元件的作用。

【要点透析】1. 什么是传感器?传感器是把非电学物理量(如位移、速度、压力、温度、湿度、流量、声强、光照度等)按一定规律转换成便于处理和传输电学量(如电压、电流等)的一种元件。

传感器输入的是非电学物理量,输出的是电学量。

将非电学物理量转换成电学量后,测量比较方便,而且能输入到计算机进行处理。

各种传感器是自动控制设备中不可缺少的元件,已经渗透到宇宙开发、环境保护、交通运输以至家庭生活等多种领域。

2.传感器的组成传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需要加辅助电源。

如图5.1-1所示。

敏感元件(预变换器):将不能够直接变换为电量的非电量转换为可直接变换为电量的非电量元件。

敏感元件是传感器的核心部分,它是利用材料的某种敏感效应(如热敏、光敏、压敏、力敏、湿敏等)制成的。

转换元件:将感受到的非电量直接转换为电量的器件称为转换元件,如压电晶体、热电偶等。

转换电路:将转换元件输出的电量变成便于显示、记录、控制和处理的有用电信号的电路称为测量电路。

3.传感器的分类传感器的种类很多,目前尚没有统一的分类方法,一般常采用的分类方法有如下几种:(1)按工作原理分类物理传感器:利用物质的物理性质和物理效应感知并检测出待测对象信息的传感器,如电容传感器、电感传感器、光电传感器、压电传感器等;化学传感器:利用化学反应识别和检测信息的传感器,如气敏传感器、湿敏传感器等; 生物传感器:利用生物化学反应识别和检测信息的传感器,它是由固定生物体材料和适图5.1-1 敏感元件当转换器件组合成的系统。

如组织传感器、细胞传感器、酶传感器等。

(2)按用途分类这种分类方法给使用者提供了方便,容易根据需要测量的对象选择所需要的传感器。

传感器与测试技术课件第五章电阻应变片

传感器与测试技术课件第五章电阻应变片

2、电阻应变片的种类及材料 电阻应变片的种类
常用有丝式、箔式、半导体式和薄膜式应变片等。
丝式应变片:金属电阻应变片的典型结构。将一根高 电阻率金属丝(0.025mm左右)绕成栅形,粘贴在绝缘 的基片和覆盖层之间并引出导线构成。
?栅状
结构
dR /R S x
为了获得大的 电阻变化量
丝式应变片制作简单、性能稳定、成本低、易粘贴。 分为丝绕式和短接式两种。
电桥的工作特性:
1)不同的接桥方式具有不同的电桥灵敏度,尽量采 用半桥双臂或全桥方式。
1 R 0 Uo UI 4 R 0
1 R 0 Uo UI 2 R 0
R0 Uo UI R0
•在R0<<R0条件下,电桥的输出与 R0/R0成正比;
•全桥接法可以获得最大的输出,其灵敏度为半桥单 臂接法的4倍 。
5)焊线:用电烙铁将应变片的引线焊接到导引线上。
6)用兆欧表检查应变片与试件之间的绝缘电阻,应 大于1000M欧。
7)应变片保护:用704硅橡胶覆于应变片上,防止 受潮。
5.2 测量电路及温度补偿
电阻应变片将应变转换为电阻的变化量,测量电路 将电阻的变化再转换为电压或电流信号,最终实现被 测量的测量。 1、测量电桥 电桥按其电源性质的不同可 以分为直流电桥和交流电桥。 直流电桥只能测量电阻,而 交流电桥可用于测量电阻、 电感和电容的变化。
电阻应变片
电阻应变片的选择、粘贴技术 1)目测 Nhomakorabea阻应变片有无折痕、断丝 等缺陷,有缺陷的应变片不能粘贴。 2)用数字万用表测量应变片电阻值大小。同一电桥 中各应变片之间阻值相差不得大于0.5欧姆。
3)试件表面处理:贴片处用细纱纸打磨干净,用 酒精棉球反复擦洗贴处,直到棉球无黑迹为止。

_新教材高中物理第五章传感器12认识传感器常见传感器的工作原理及应用课件新人教版选择性必修第二册

_新教材高中物理第五章传感器12认识传感器常见传感器的工作原理及应用课件新人教版选择性必修第二册
第5章 传感器
1、2 认识传感器 常见 传感器的工作原理及应用
核心素养目标
1.知道什么是传感器,并了解传感器 的种类。
2.知道传感器的组成及应用模式,理 解将非电学量转化为电学量的物 理意义。
3.理解常见传感器敏感元件的特性及 应用。
知识点一 认识传感器 [情境导学] 干簧管的结构很简单,如图甲所示,它只是玻璃管内封入两个软磁性材料制
成的簧片,接入图乙电路,当磁体靠近干簧管时:
(1)会发生什么现象,为什么? (2)干簧管的作用是什么?
提示:(1)小灯泡会发光,因为两个簧片被磁化而接通。 (2)干簧管起到了开关的作用。
[知识梳理] 1.神奇的传感器 (1)干簧管是一种能够感知磁场的传感器。 (2)楼道灯白天不亮,晚上有声音时亮,是因为楼道的灯安装了“声控—光探” 开关。 (3)一些宾馆安装了自动门,当有人走近时,门会自动打开,是因为自动门安 装了红外线传感器。 (4)交通警察在检查司机是否酒后开车时,用的是“便携式酒精检测仪”,上 面安装了乙醇传感器。
(5)传感器的定义:能够感受诸如力、温度、光、声、化学成分等被测量,并 能够把它们按照一定的规律转换为便于传送和处理的如电压、电流等电学量,或 转换为电路的通断的装置。
(6)非电学量转换为电学量的意义:把非电学量转换为电学量,可以很方便地 进行测量、传输、处理和控制。
2.传感器的种类 (1)物理传感器:利用物质的物理特性或物理效应制作而成的传感器,如力传 感器、磁传感器、声传感器等。 (2)化学传感器:利用电化学反应原理,把无机或有机化学物质的成分、浓度 等转换为电信号的传感器,如离子传感器、气体传感器等。 (3)生物传感器:利用生物活性物质的选择性来识别和测定生物化学物质的传 感器。如酶传感器、微生物传感器、细胞传感器等。

第5章 电感式传感器原理及其应用

第5章 电感式传感器原理及其应用

自感式传感器结构图
5.2.2自感式传感器的工作原理 自感式传感器的工作原理 自感式传感器是把被测量变化转换成自感L的变化 的变化, 自感式传感器是把被测量变化转换成自感 的变化, 通过一定的转换电路转换成电压或电流输出。 通过一定的转换电路转换成电压或电流输出。 传感器在使用时,其运动部分与动铁心(衔铁) 传感器在使用时,其运动部分与动铁心(衔铁)相 当动铁芯移动时, 连,当动铁芯移动时,铁芯与衔铁间的气隙厚度 δ 发生改变,引起磁路磁阻变化, 发生改变,引起磁路磁阻变化,导致线圈电感值发 生改变,只要测量电感量的变化, 生改变,只要测量电感量的变化,就能确定动铁芯 的位移量的大小和方向。 的位移量的大小和方向。
1.差动式自感传感器的结构 差动式自感传感器的结构
(a)变气隙式; 变气隙式; 变气隙式
(b)变面积式; )变面积式; 差动式自感传感器
(c)螺管式 )
三种形式的差动式自感传感器以变气隙厚度式电 感传感器的应用最广。 感传感器的应用最广。
变气隙式差动式自感传感器结构剖面图
2.差动式自感传感器的特点 差动式自感传感器的特点 自感系数特性曲线如图所示。 自感系数特性曲线如图所示。
(4)调相电路 ) 调相电路的基本原理是, 调相电路的基本原理是,传感器电感的变化将引起 的变化。 输出电压相位 ϕ 的变化。
第5章 电感式传感器原理及其应用 章
5.1概述 概述 5.2 自感式传感器 5.3差动变压器式传感器 差动变压器式传感器 5.4电涡流式传感器 电涡流式传感器
5.1概述 概述
1.电感式传感器的定义 电感式传感器的定义 利用电磁感应原理将被测非电量转换成线圈 的变化, 自感系数 L 或互感系数 M 的变化,再由测 量电路转换为电压或电流的变化量输出, 量电路转换为电压或电流的变化量输出,这 种装置称为电感式传感器。 种装置称为电感式传感器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d0
(5-11)
2015-7-20
安农大经济技术学院 29
EXIT
若电介质εr1=1, 当L=0时,传感器初始电容 C0=ε0L0b0/d0。 当被测介质εr2进入极板间L深度后,引起
电容相对变化量为
C C C0 ( r 2 1) L C0 C0 L0
(5-12)
可见,电容量的变化与电介质εr2的移动量L成线性关系。
2015-7-20
安农大经济技术学院 4
EXIT
概述
电容式传感器的应用:
•传统电容式传感器主要用于位移、振动、角度、 加速度 等机械量精密测量。
•现逐渐应用于压力、压差、液面、成份含量等方面的测 量。
2015-7-20
安农大经济技术学院 5
EXIT
各种电容式传感器
电容式接近开关
电容式变送器
电容式指纹传感器
d d 2 d 3 C C0 1 d0 d0 d0
d C0 1 (5-4) d 0
此时C与Δd近似呈线性关系,所以变极距型电容式传感器只
有在Δd/d0很小时,才有近似的线性关系。
2015-7-20
安农大经济技术学院 19
EXIT
C x C0 a
(5-7)
这种形式的传感器其电容量C与水平位移Δx呈线性关系。
2015-7-20
安农大经济技术学院 20
EXIT
a d x S
b
x
图5-5 变面积型电容传感器原理图
2015-7-20
安农大经济技术学院 21
EXIT

S
2015-7-20 安农大经济技术学院 11
EXIT
当传感器的εr和S为常数,初始极距为d0时,由式(5-1)可 知其初始电容量C0为
C0
ΔC
0 r S
d0
(5-2
若电容器极板间距离由初始值d0缩小了Δd,电容量增大了
C0 C C0 C d0 d 1 d d0
安农大经济技术学院 24
EXIT
5.1.3 变介质型电容式传感器
2015-7-20
安农大经济技术学院 25
EXIT
D d

H h
1
图5-7 电容式液位变换器结构原理图
2015-7-20 安农大经济技术学院 26
EXIT
变换器电容值为:
21h 2 ( H h) 2H 2h( 1 ) 2h( 1 ) C C0 D D D D D 1n 1n 1n 1n 1n d d d d d
2015-7-20 安农大经济技术学院 6
差压传感器
EXIT
接近开关又称无触点行程开关。它能在一定的距
离(几毫米至几十毫米)内检测有无物体靠近。当物
体与其接近到设定距离时,就可以发出“动作”信号。
2015-7-20
安农大经济技术学院 7
EXIT
工作原理和结构
由绝缘介质分开的两个平行金属板
组成的平板电容器,如果不考虑边缘效 应,其电容量为
(5-25)
如果只考虑式(5-24)中的线性项和三次项, 则电容式传感
d 2 | ( d / d 0 ) | 100% 100% 2 | d / d -7-20
安农大经济技术学院 37
EXIT
差动的好处
• 灵敏度得到一倍的改善
2015-7-20
安农大经济技术学院 9
EXIT
哪些属于变极距 型、 变面积型 和变介电常数型

(a )
(b )
(c)
(d)
2
(e)
1
(f)
(g )
(h )
(i)
(j)
( k)
(l)
图5-1 电容式传感元件的各种结构形式
2015-7-20 安农大经济技术学院 10
EXIT
5.1.1
S
d
r
图5-2 变极距型电容式传感器
第5章 电容式传感器
主要内容
5.1 电容式传感器的工作原理和结构
5.2 电容式传感器的灵敏度及非线性 5.3 电容式传感器的等效电路(自学) 5.4 电容式传感器的测量电路 5.5 电容式传感器的应用
2015-7-20
安农大经济技术学院 2
EXIT
• 学习要求
1、掌握变极距、变面积、变介质电容式传感器的工 作原理,特点及应用。
2015-7-20 安农大经济技术学院 28
EXIT
图中两平行电极固定不动,极距为d0,相对介电常数
为εr2的电介质以不同深度插入电容器中,从而改变两种介
质的极板覆盖面积。 传感器总电容量C
L0 L
r2
r1
d0
C C1 C2 0b0
r1 ( L0 L) r 2 L
2、熟悉常用电容式传感器的常用检测电路及特点。
3、学习应用电容式传感器。
2015-7-20
安农大经济技术学院 3
EXIT
5.1 电容式传感器的工作原理和结构
概述
电容式传感器的特点是: • 小功率、高阻抗;本身发热影响小; • 电容器小几十~几百微法,具有高输出阻抗; • 静电引力小(极板间),工作所需作用力很小; • 可动质量小,具有高的固有频率动态响应特性好; • 可进行非接触测量。
2015-7-20 安农大经济技术学院 12
0 r S
(5-3)
EXIT
C C
C1 C1 C 2 C
2
OO
d 1d d 2 d
1
2
d
图5-3 电容量与极板间距离的关系
2015-7-20
安农大经济技术学院 13
EXIT
在式(5-3)中,若Δd/d0<<1时,则展成级数:
EXIT
电容值相对变化量为
2 4 C d d d 2 1 C0 d0 d0 d0
(5-24)
略去高次项,则ΔC/C0与Δd/d0近似成为如下的线性关系:
C d 2 C0 d0
器的相对非线性误差δ近似为
dg——云母片的厚度。
2015-7-20 安农大经济技术学院 17
EXIT
云母片的相对介电常数是空气的 7 倍,其击穿电压不
小于1000 kV/mm,而空气仅为3 kV/mm。因此有了云母片, 极板间起始距离可大大减小。 一般变极板间距离电容式传感器的起始电容在 20~100pF之间, 极板间距离在25~200μm 的范围内。最大 位移应小于间距的1/10, 故在微位移测量中应用最广。
+ + +

S
C
S
d

0 r S
d
(5-1)
d
2015-7-20
安农大经济技术学院 8
EXIT
当被测参数变化使得S、 d或ε发生变化时, 电容 量C也随之变化。
如果保持其中两个参数不变,而仅改变其中一个
参数, 就可把该参数的变化转换为电容量的变化,通 过测量电路就可转换为电量输出。 电容式传感器可分为变极距型、 变面积型和变 介电常数型三种。
电容值总的变化量为

(5-21)
(5-22)
d d 3 d 5 C C1 C2 2C0 d0 d0 d0
(5-23)
2015-7-20 安农大经济技术学院 36
2015-7-20
安农大经济技术学院 14
EXIT
另外,在 d 0 较小时,对于同样的 Δ d 变化所引起的 Δ C 可以
增大,从而使传感器灵敏度提高。但d0过小,容易引起电 容器击穿或短路。为此,极板间可采用高介电常数的材料 (云母、 塑料膜等)作介质, 如图 5-4 所示。
0
图5-4 放置云母片的电容器
r2
2
动极板 定极板

r
图5-6 电容式角位移传感器原理图
2015-7-20
安农大经济技术学院 22
EXIT
图 5-6 是电容式角位移传感器原理图。当动极板有一 个角位移 θ 时,与定极板间的有效覆盖面积就发生改变,
从而改变了两极板间的电容量。当θ=0时,则
C0
0 r S0
d0
(5-8)
2015-7-20 安农大经济技术学院 15
EXIT
d0
dg
g
表5-1 电介质材料的相对介电常数
2015-7-20
安农大经济技术学院 16
EXIT
dg
g 0
d0
C
S dg
0 g

0
d0
(5-5
式中:εg——云母的相对介电常数,εg=7;
ε0——空气的介电常数,ε0=1;
d0——空气隙厚度;
式中: εr——介质相对介电常数; d0——两极板间距离; S0——两极板间初始覆盖面积。
2015-7-20 安农大经济技术学院 23
EXIT
当θ≠0时,
C
0 r S0 1
d0

C0 C0
(5-9)
传感器的电容量C与角位移θ呈线性关系。
2015-7-20
2015-7-20
安农大经济技术学院 31
EXIT
可见,输出电容的相对变化量ΔC/C0与输入位移Δd之间成 非线性关系,当|Δd/d0|<<1时可略去高次项,得到近似的 线性关系:
C d C0 d0
(5-15)
C / C0 1 K d d0
的大小(即灵敏度)与d0呈反比关系。
相关文档
最新文档