电力系统光纤通信若干问题
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理随着电力系统的不断发展和提高,对于通信设备的要求也越来越高。
特别是SDH光纤通信设备在电力系统中扮演着非常重要的角色,其维护和故障处理工作显得格外重要。
本文将分析电力系统中SDH光纤通信设备的维护和故障处理,希望可以为相关工作人员提供一些帮助。
一、SDH光纤通信设备的维护1. 定期检查SDH光纤通信设备是电力系统中的重要通信设备,因此需要定期进行检查。
首先要检查设备的外观,确保设备表面没有异常,没有明显的损坏。
其次要检查设备的连接线路是否松动,是否有断裂,确保连接线路的质量。
要定期检查设备的工作状态,查看设备是否正常工作,是否存在异常情况。
通过定期检查可以及时发现设备的问题,并及时进行修复,确保设备的正常运行。
2. 清洁工作SDH光纤通信设备在工作过程中会产生一定的灰尘和污垢,长时间不清理会影响设备的散热和通风,严重时可能会导致设备故障。
需要定期对设备进行清洁工作,清理设备表面的灰尘和污垢,确保设备的散热和通风正常,避免设备因为散热不畅导致的故障。
3. 软件升级随着技术的不断发展,SDH光纤通信设备的软件也需要不断升级。
因此需要定期对设备的软件进行升级,确保设备具有最新的功能和性能。
在对软件进行升级的过程中要严格按照操作规程,避免因操作不当导致设备故障。
1. 故障诊断当SDH光纤通信设备出现故障时,首先需要进行故障诊断,找出故障原因。
可以通过设备的指示灯、报警信息、设备日志等途径来进行故障诊断,找出故障的具体位置和原因。
在进行故障诊断的过程中,需要有一定的经验和技巧,可以根据设备的特点和之前的故障处理经验来进行诊断,尽快找出故障原因。
2. 故障处理在找出故障原因后,需要尽快进行故障处理,确保设备的正常运行。
根据故障的具体情况,采取相应的处理措施,可以是更换故障部件、修复故障线路、调整设备参数等。
在进行故障处理的过程中,需要注意安全问题,避免因为操作不当导致二次故障。
电力通信中通信光缆常见故障及检修方法分析

电力通信中通信光缆常见故障及检修方法分析电力通信中,通信光缆是连接各个设备和节点的重要传输媒介,一旦出现故障,会严重影响整个通信系统的正常运行。
因此,及时发现和排除故障至关重要。
本文将介绍常见的通信光缆故障及相应的检修方法。
1. 光缆割断光缆割断是通信光缆故障中最常见的一种。
这种故障会直接影响通信系统的连通性和数据传输效率。
常见的原因包括施工时未注意保护、外力撞击、老化等等。
检修方法:①利用光纤检测仪对光缆进行测试,确定光缆的割断位置;②用裸光缆连接器连接光缆的两段,注意使用专业连接器并进行精细调节;③利用光功率计重新测试光缆的传输功率,确认故障已解决。
2. 光缆水浸光缆水浸会导致光纤接口受潮、设备失灵,严重会导致整个通信系统瘫痪。
常见的原因包括施工时未做好密封、管道破裂、天灾等。
检修方法:①对水浸光缆进行检查,并切断与其相关的设备电源;②将光缆从抽盘处剥开,清除内部水分;③重装光缆,并测试传输功率。
3. 光缆接口脱落光缆接口脱落会导致光信号丢失、数据传输错误等问题。
常见的原因包括光缆连接不严、接头松动等。
检修方法:①检查光缆连接是否稳固,重新连接或紧固;②重新测试光缆的传输功率,确认故障已解决。
4. 光缆损坏光缆损坏是指光缆与外界环境接触导致的损伤,如拉伸、弯曲、挤压等。
这种故障会导致光纤损伤,严重会导致数据传输错误、信号丢失等问题。
总的来说,通信光缆的检修需要依据故障现象进行准确判断,并采用相应的方法进行处理。
在进行检修前,应先关闭与光缆相关设备的电源,并进行充分的准备工作。
同时,在光缆的安装和日常维护中,也应当严格按照规范要求进行,以降低故障发生的概率。
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理
随着电力系统的不断发展,电力系统的信息化程度也在不断提高,而SDH光纤通信设备则是电力系统核心信息传输的基础。
因此,对SDH光纤通信设备的维护和故障处理显得极为重要。
1.物理环境维护
保持通信设备周围环境的清洁,防止尘埃、湿度等因素对设备产生影响。
对于机房电源稳定性,应该查看配电装置是否正常,UPS电池容量是否充足,及时更换UPS电池等维护工作。
2.设备维护
定期对SDH光纤通信设备进行系统巡检,检查CPU、内存和磁盘等硬件是否正常。
定时清除系统日志、运行文件、备份文件等,防止因存储空间不足而引发系统故障。
对设备的系统软件,定期进行更新和升级,以保证设备的最新版本。
SDH光纤通信设备可能会出现各种硬件和软件故障,常见的故障有:
1.光缆故障
当光纤通信设备通信中断时,第一步需要检查的就是与该通信设备相关的光缆是否存在故障。
可以通过使用OTDR光源仪等专业光缆检测工具将光缆进行检测。
如果发现光缆故障,则必须更换或修复光缆。
2.板卡故障
板卡故障是SDH光纤通信设备故障中常见的一种类型。
当通信设备出现问题时,可以通过检查相应的板卡状态,确定是否存在问题。
如果发现板卡故障,则需要更换或修复故障板卡。
3.软件故障
软件故障能够通过系统调试和升级进行处理,但是为了减少故障的发生,必须保持设备的软件处于最新版本。
总结:。
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理随着科技的不断发展,电力系统中的SDH光纤通信设备在现代化电力系统中起着越来越重要的作用。
保障电力系统的正常运行,维护和故障处理是至关重要的工作。
本文将对SDH光纤通信设备的维护和故障处理进行分析,帮助读者更好地理解和应对SDH光纤通信设备相关的问题。
一、SDH光纤通信设备的维护1.设备定期巡检SDH光纤通信设备作为电力系统中的关键设备,定期巡检是非常必要的。
定期巡检可以排查设备运行中的潜在问题,及时发现并解决问题,保障设备的正常运行。
巡检内容主要包括设备连接线路是否松动、设备散热是否正常、设备面板是否有异常报警等。
2.设备清洁SDH光纤通信设备在运行过程中会不可避免地产生一定的灰尘,定期清洁设备是非常重要的维护措施。
设备清洁可以有效防止灰尘对设备的影响,保障设备的正常运行。
3.设备参数备份SDH光纤通信设备的参数备份可以保障设备出现问题时能够快速恢复到正常工作状态。
定期对设备参数进行备份,以防意外情况发生时能够及时恢复。
4.设备升级随着技术的不断进步,SDH光纤通信设备的升级也是非常重要的维护工作。
及时对设备进行软件和硬件的升级,可以提高设备的性能和稳定性,保障设备的正常运行。
1.设备故障的分类SDH光纤通信设备的故障可以分为软件故障和硬件故障两大类。
软件故障包括设备程序出现异常、设备参数错误等;硬件故障包括设备电路损坏、设备连接线路松动等。
在实际运行中,需要根据具体情况综合分析故障原因,采取相应的处理措施。
2.故障排查流程发生故障时,首先需要明确故障的具体表现,包括设备报警信息、设备指示灯状态、设备运行情况等。
然后根据故障表现逐步分析故障原因,包括软件故障、硬件故障,并进行相应的处理措施。
3.快速定位故障点在故障排查过程中,快速定位故障点是非常重要的。
可以通过排除法,逐步缩小故障范围,最终确定故障点。
在定位故障点时,可以借助专业的故障定位工具,提高故障定位的效率和准确性。
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理1. 引言1.1 背景介绍随着信息时代的到来,电力系统的规模和复杂度逐渐增加,数据通信在电力系统中的重要性也日益凸显。
SDH光纤通信设备作为电力系统中的重要组成部分,承担着传输大量数据和信息的任务。
SDH光纤通信设备的正常运行对于电力系统的高效运行至关重要。
由于SDH光纤通信设备本身具有很高的技术含量和复杂性,一旦发生故障或需要维护保养,可能会给电力系统带来严重的影响。
为了确保SDH光纤通信设备的稳定运行,有效的维护和故障处理至关重要。
本文将对SDH光纤通信设备的维护方法、故障处理流程进行深入分析,结合实例进行具体分析,同时提出注意事项和维护保养建议,旨在帮助电力系统工程师更好地了解和掌握SDH光纤通信设备的维护和故障处理技术,提升电力系统的运行效率和稳定性。
【以上为2000字背景介绍内容】。
1.2 研究目的本文旨在探讨电力系统中SDH光纤通信设备的维护和故障处理方法,通过深入分析现有的维护和故障处理流程,总结经验教训,提出具体的建议和解决方案,以提高SDH光纤通信设备的稳定性和可靠性。
具体研究目的包括以下几点:1. 掌握SDH光纤通信设备的维护方法,包括日常巡检、定期维护、故障诊断等内容,为系统运行和维护人员提供具体操作指南。
2. 分析SDH光纤通信设备常见的故障类型和原因,总结处理经验和方法,建立科学的故障处理流程,提高故障处理效率和准确性。
3. 通过实例分析,深入剖析SDH光纤通信设备在实际运行中遇到的问题,探讨解决方案和应对策略,为类似情况的处理提供借鉴。
本研究旨在为电力系统中SDH光纤通信设备的维护和故障处理提供系统化的指导和支持,提高设备的可靠性和可用性,保障电力系统的正常运行和稳定供电。
1.3 研究意义SDH光纤通信设备在电力系统中扮演着至关重要的角色。
对于电力系统而言,通信设备的正常运行是确保电力系统运行安全和稳定的基础。
对SDH光纤通信设备的维护和故障处理至关重要。
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理随着电力系统的发展,SDH光纤通信设备已经成为电力系统中不可或缺的重要组成部分。
它能够保证电力系统的通信可靠性和稳定性,对于保障电力系统的正常运行至关重要。
维护和及时处理故障是电力系统运维人员的重要工作之一。
对SDH光纤通信设备进行定期维护是非常必要的。
定期检查设备的工作状态,包括设备的外部接口、光模块、接口卡等,确保设备正常工作。
对设备的软件进行升级,以获取最新的功能和修复已知的问题。
还应该定期备份设备的配置文件和相关数据,以防止数据丢失。
在维护过程中,还需要特别关注设备的光缆连接问题。
光缆连接质量直接影响通信的稳定性和速率。
维护人员应对设备的连接进行检查和清洁,确保光缆连接的质量。
还要确保光缆的线路没有受到外界干扰,如防止光缆被挤压、刮擦等。
如果SDH光纤通信设备发生故障,及时处理故障是十分重要的。
一旦设备出现问题,会对电力系统的通信造成影响,从而影响系统的正常运行。
处理故障的具体步骤如下:需要通过设备的告警系统来获取故障信息。
设备的告警系统会自动产生相关告警,包括设备故障、连接故障、光缆故障等。
维护人员需要及时查看这些告警信息,并对故障进行分类和分析,确定故障的原因和范围。
然后,根据故障的类型和范围,采取相应的措施进行修复。
对于设备故障,可以尝试重启设备或更换相应的硬件组件。
对于连接故障,可以检查光缆连接是否松动或损坏,并进行修复或更换。
对于光缆故障,可以通过替换光缆或修复光缆来解决。
在进行故障处理时,维护人员需要遵循一定的安全操作规程,确保操作的安全性和有效性。
需要记录下故障处理的过程和结果,以便以后的参考和分析。
电力通信中通信光缆常见故障及检修方法分析

电力通信中通信光缆常见故障及检修方法分析电力通信中的通信光缆是保障电力系统正常运行和数据信息传输的重要组成部分,而在使用过程中,通信光缆常常会出现各种故障,影响通信效果和数据传输质量。
本文将就通信光缆常见的故障及检修方法进行分析,希望能为相关人员提供帮助。
一、常见的通信光缆故障类型1. 光缆断裂光缆断裂是通信光缆故障中较为常见的一种类型。
它通常是由于外力的损坏、拉力过大或地下铺设不当等原因造成的,可以导致光缆中的光纤被切断,从而影响通信信号的传输。
光缆的断裂点通常在外部铺设的地埋段,检修起来比较困难。
2. 光缆纤芯损坏光缆纤芯损坏也是通信光缆常见的故障类型之一。
光缆纤芯损坏可能是由于外力挤压、温度变化、潮湿等因素造成的,损坏范围通常比较局部,但也会对通信信号的传输造成严重影响。
3. 光缆连接头故障光缆连接头故障是指在光缆的连接处出现了接头松动、脱落、接触不良等问题,导致通信信号无法正常传输。
这种故障一般与连接头的质量和安装方式有关。
4. 光缆绝缘层损坏光缆绝缘层损坏是由于外部环境因素(如温度变化、湿度变化等)或者人为损坏导致的,绝缘层一旦损坏就会对光缆的正常使用造成严重影响。
1. 光缆断裂的检修方法光缆断裂的检修方法一般分为地面段和地埋段两种情况。
地面段的断裂点一般比较容易找到,可以直接用光缆接头进行连接修复;地埋段的断裂点一般比较难以定位,需要借助专业的检测设备进行查找,并采取切除、打开终端盒等方式进行修复。
2. 光缆纤芯损坏的检修方法光缆纤芯损坏的检修方法通常需要先找到损坏点,然后采取剥皮、清洁、打磨等步骤进行修复。
在修复过程中,需注意保持光纤的整洁和纤芯的质量,以确保修复后的光缆能够正常使用。
3. 光缆连接头故障的检修方法光缆连接头故障通常需要先检查连接头的状态,如果发现问题,可以采取重新接插、更换连接头等方式进行修复。
在接插的过程中,需要注意保持接头的干净与整洁,确保连接的可靠性。
除了及时检修通信光缆故障,预防通信光缆故障同样重要。
分析电力系统中SDH光纤通信设备的维护和故障处理

分析电力系统中SDH光纤通信设备的维护和故障处理电力系统中的SDH光纤通信设备在电力生产、传输、配电和调度等方面发挥着非常重要的作用。
作为电力系统中的关键设备,SDH光纤通信设备的维护和故障处理对于保障电力系统的正常运行至关重要。
本文将从SDH光纤通信设备的维护和故障处理两个方面进行详细分析。
一、SDH光纤通信设备的维护1. 定期检查SDH光纤通信设备作为电力系统中的重要设备,需要进行定期检查,以确保设备的正常运行。
定期检查的内容包括设备的外观检查、电气连接检查、接口检查、设备状态检查等。
通过定期检查,可以及时发现设备存在的问题,并采取相应的措施进行处理,以防止设备出现故障影响电力系统的正常运行。
2. 清洁维护SDH光纤通信设备在长时间运行后,容易积累灰尘和杂物,导致散热不良,甚至引发设备故障。
定期的清洁维护非常重要。
清洁维护包括对设备外壳、散热孔、风扇等部分进行清洁,并定期更换设备的滤网,以确保设备的散热和通风效果良好。
3. 软件升级随着技术的不断发展,SDH光纤通信设备的软件系统也需要不断优化和升级。
定期对设备的软件进行升级,可以提高设备的运行效率、减少系统的故障率,并增加设备的新功能和新特性,提高设备的性能和可靠性。
4. 备件更换作为关键设备,SDH光纤通信设备需要定期更换关键部件和备件,以确保设备的长期稳定运行。
定期更换设备的关键部件和备件,可以减少设备的故障率和维修时间,提高设备的可靠性和稳定性。
5. 线路检测SDH光纤通信设备的线路是设备正常运行的重要保障。
定期对线路进行检测和测试,及时发现线路存在的问题,并进行修复和调整,以确保设备的通信质量和稳定性。
1. 故障定位在SDH光纤通信设备出现故障时,第一步是进行故障定位。
通过设备自身的故障提示和报警信息,以及现场的实际情况,对设备的故障进行定位和判断,找出故障的具体位置和原因,为后续的故障处理提供有力的支持。
2. 故障分析在故障定位的基础上,对设备的故障进行详细分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统光纤通信若干问题分析李 玮(广东省电力设计研究院 广东 广州 510000)摘 要: 随着光纤通信在电力系统内应用水平的进一步提高,光纤通信取代微波、电力载波已成为必然。
以南方电网光纤通信骨干网为例,介绍电力系统专用光缆、通信电源、参数匹配及业务倒换等方面的现状,分析存在的问题,并在此基础上提出解决问题的措施及思路。
关键词: 通信电缆;通信电源;参数匹配;业务倒换中图分类号:TP311 文献标识码:A 文章编号:1671-7597(2012)1120128-02分成两组,分别为2条母线供电,同时每条母线配置独立的蓄电0 引言池,以实现2条母线相对独立供电。
该运行方式较好的实现了目前,SDH(synchronous digital hierarchy)光纤通2条母线的独立供电,增强了通信电源设备的运行可靠性,同信凭借其安全、经济、可靠的优势,已逐步替代了微波通信、时提高了设备检修的灵活性,由于2条母线共用同一台充电机,电力载波通信等通信方式,成为我国电力系统最重要的通信方因此在充电机发生物理损坏的情况下容易导致2条母线同时失式,在其承载的业务中,仅直接与电网安全稳定运行的主要业电,因此目前也较少使用。
务就有继电保护、安全自动装置、EMS、调度语音、能量计3)双电源双母线运行方式:即由两套充电机分别对2条母量、故障录波、电力市场以及集控站控制等等。
面对越来越多线供电,并配置独立的蓄电池,实现了双路供电的完全独立,的系统应用,光纤通信迎来了巨大的发展机遇,但由于电力系具有极高的可靠性,是目前电力通信系统中的主要供电方式。
统对信号传输安全性、可靠性的特殊要求,光纤通信同样也面伴随着通信电源运行方式的改变,南方电网光纤通信骨干临着严峻的挑战。
网已逐渐摸索出一套适合自身安全需要的供电方式:对于支持本文以南方电网光纤通信骨干网为例,就专用光缆、通信双路电源的设备,采用两路相互独立的电源对设备供电,并实电源、参数匹配及业务倒换等方面对电力系统现状进行简要介现负载均衡;对于只支持单路供电的设备,在设备前端增加电绍,分析存在的问题,并讨论解决问题的措施及思路。
源转换模块,实现两路电源输入;对于无人值守变电站,除采1 通信设备自身存在的问题用上述措施外,采用加大蓄电池组容量的方法以延长故障情况1.1 通信光缆对系统的影响下的设备运行时间。
作为电力系统专用的特殊光缆,光纤复合架空地线2 通信设备与业务系统的匹配问题(OPGW)具有强度高、性能稳定、无电腐蚀等优点,目前在电2.1 通道时延对继电保护及安自业务的影响力系统光纤通信骨干网中应用十分广泛。
但因其与高压线路同杆架设,且兼做地线,因此,雷击问题已经成为影响OPGW安全性能的重要因素。
雷击对OPGW的影响:随着OPGW大规模投入使用,其易受雷击的问题已变得越来越突出,国内已发生多起因雷击导致OPGW外丝断股进而影响内部光纤性能的事件,而建设单位为了确保所用光缆性能更加稳定,对OPGW更是提出了3级雷击不断股的近乎苛刻的要求,因此,如何提高OPGW抗雷击性能已经成为OPGW面临的最严峻的挑战之一。
目前较为通用的做法主要有以下两点。
1)改善光缆结构和股线形状,主要是在外层股线和内层股线间留有空气隙,以防止外层热量传导至内层和光纤,这种思想主要是保护内层光纤,对外层雷击断股并无实质改善。
2)调整外层股线材料配比,对于雷击多发区,采用外径较粗的全铝包钢单丝,同时提高导电率,这种思想提高了外层单丝的抗雷击水平,但增加了光缆的生产成本和自身重量,对铁塔的承重造成了一定的压力,同时也加大了施工难度。
1.2 通信电源对通信系统的影响“心脏”,通信电源运行的好坏直接影响着整个系统是否能够健康稳定运行。
回顾通信电源的发展历程,主要经历了单电源单母线、单电源双母线和双电源双母线等三种运行方式。
1)单电源单母线运行方式:即将整流模块输出、蓄电池组、负载均连接于同一条母线,由于采用这种方式对设备供电安全性较低且维护检修不便,因此在电压等级较高的变电站已基本不用。
2)单电源双母线运行方式:即将一套充电机的整流模块继电保护和安自构成了我国电网安全稳定的三道防线,其主要功能依托通信通道承载,由于相关控制、保护信息对实时性要求很高,因此通信通道的时延将对装置的动作速动性、可靠性和灵敏性乃至电网的安全稳定速度造成严重影响。
2.1.1 通道时延对继电保护的影响目前,我国线路保护的主保护为线路纵联保护,根据实现原理,又可以分为线路纵联距离(方向)保护和线路纵差保护:对于线路纵联距离(方向)保护而言,虽然故障方向的判别只是依赖于本侧电气量,判别时间与通道时延没有关系。
但是,通道时延对装置动作速度的影响是累加的。
由于故障范围的判别决定于两个因素:一是根据本侧电气量得到的相对于本侧装置的故障方向,二是通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障时区内故障,因此通道时延对装置动作速度的影响是累加的。
1)对于线路纵联距离(方向)保护,由于故障范围的判别决定于两个因素:一是根据取决于本侧电气量得到的相对于本侧装置的故障方向,二是和通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障是区内故障。
因此,通过通道得到的相对于对侧装置的故障方向信息对保护动作的正确性至关重要,如果通道延时过长,不仅影响保护的动作速度,很可能造成保护误动甚至可能造成保护误动、拒动。
运行中,曾多次出现在功率倒向情况下因通道延时过长造成的同塔双回线保护误动的案例[3-5]。
② 由于其保护判据使用的是两侧的电气量,由于通道问对于线路纵差保护,通道时延对动作速度的影响考虑两个题导致当前数据丢失,将会影响到保护判据的后续动作特性。
因素。
首先,需要根据两侧电气量来进行差动计算,当前计算例如,线路纵差保护往往采用异步抗饱和法,防止区外故障的差动电流不是本侧当前的电气量和对侧当前的电气量之和,TA饱和导致保护误动。
故障初始阶段TA不会饱和,保护判据不而是当前收到的对侧电气量和对应的本侧的电气量之和。
因需要采取任何抗饱和措施,通信正常时线路纵差保护能快速动此,当前进行差动判据的电气量需要向前推一段时间(至少包作。
但如果正好在故障初始阶段有误帧,线路纵差保护不能快括通道时延+报文长度);其次,为了防止TA断线造成差动保速动作,其后需要投入抗饱和判据,导致线路纵差保护动作较护误动,通常保护装置动作不但需要本侧装置满足动作条件,慢。
若线路纵差保护设置为连续几次满足差动判据后保护才动同时还需要收到对侧的允许动作信号,因此通道时延对线路纵作,只要中间有一个误帧,则将引起差动保护延迟几帧时间动差保护动作速度的影响是双倍的。
作,可能会造成严重的后果。
2)对于线路纵差保护,通道时延对动作速度的影响考虑3)为防止线路保护因误码而误动,目前在用的保护装置有两个方面的因素:首先,在首先,需要根据两侧电气量来进均具备一定的误码检测功能。
行差动计算时,当前计算的差动电流不是本侧当前的电气量和电力系统光纤通信网传输继电保护信息只占业务的一小部对侧当前的电气量之和,而是当前收到的对侧电气量和对应时分,并且光纤通信网往往先于光纤通信的保护装置而建设,因刻的本侧的电气量之和,因此,当前进行差动判据的电气量需此,要求现存的光纤通信网适应保护装置的难度很大。
同时,要向前推一段时间(至少包括通道时延+报文长度)计算和补从保护装置的角度出发,对通信网误码指标也无需超过偿通道延时;其次,为了防止TA断线造成差动保护误动,通常G.821标准,原则上在收到对侧装置完整的信息时,线路纵差保护装置动作不但需要本侧装置满足动作条件,同时还需要收保护能正常运行;一旦收不到对侧完整的信息,包括误码,线到对侧的允许动作信号,因此通道时延对线路纵差保护动作速路纵差保护就只能短暂退出,直到通道恢复正常。
从运行的角度的影响是双倍的因此通道时延对线路纵差保护动作速度的影度,也可以计算由通道质量问题引起的保护日闭锁时间,来考响是双重的。
察通道传输继电保护信号的可靠性。
2.3 通道倒换对业务的影响为满足继电保护信号对速动性的要求,各类保护信号在通道上的最大允许传输时间不得大于规定值,其中闭锁式保护南方电网光纤通信骨干网采用双向通道倒换环,通道倒换15ms(模拟)/10ms(数字)、允许式20ms(模拟)/10ms环采用“首端桥接、末端倒换”结构,正常情况下通道双向路(数字)、直跳式40ms(模拟)/10ms(数字),同时由能够保持一致,双向时延基本相等。
当但是,单根光纤中断220kV及以上线路配置双重化主保护及适当的后备保护则大大后,通道的双向路由将不一致,时延也将不一致。
经过试验得提高了继电保护信号的可靠性。
为减少传输时延并提高系统可出以下结论:靠性,目前较为通用的做法是将较大的光纤传输网“分割”成1)通道正常时,双向通道倒换环能够保证通道双向路由多各较小的环网。
一致,双向时延误差不超过100us,能够满足线路纵差保护对3)通道时延对安自装置的影响。
对于安自装置,其主要通道双向时延一致性的要求。
控制策略是联络线故障后同时切除送电侧机组和受电侧负荷。
2)具有自愈功能的双向通道倒换环,在主用通道中断后,一词系统发生变化,目前都是由就地的安自装置根据系统状态业务会暂时中断,中断时间小于50ms,不会造成装置通道报警。
变化以及相应的控制策略发出相应的控制命令,从系统状态变3)具有自愈功能的双向通道倒换环,单纤中断后通道双化到控制命令发出这一过程不需要考虑通道时延的影响。
通道向路由不一致,导致通道双向时延不一致,不能满足线路纵差时延对安稳系统动作速度的影响主要体现在主站发出控制命令保护对通道双向时延一致性的要求。
对执行站执行命令这一过程。
因此,通道时延对安子系统动作4)具有自愈功能的双向通道倒换环,通过网关切除主用速度的影响不是累加的通道时延对安自系统动作速度的影响不电路,双向业务会先后自动切换到备用通道,双向先后时间间是累加的,安自装置只需要考虑点对点的最大单向时延。
隔不超过150ms;但是当主用通道故障消失后,备用通道切换2.2 误码对继电保护的影响回主用通道过程中,将有数秒时间双向通信经不同路由可能维在通道发生切换的情况下,通信业务将发生中断数毫秒,持数秒传输信息,不能满足线路纵差保护对双向时延一致性的此时保护或者安自信号传输过程中必然会出现非完整报文等情要求。
单业务中断时间不超过50ms,不会造成装置报警。
况。
对于线路纵差保护,一旦检测到非完整报文,就重新检测5)继电保护、安自装置能检测到业务的暂时中断,同时通道时延,实现两侧装置采样数据的再同步。
对于单个随机误会瞬间退出相关功能,不会造成误动。