碰撞和动量守恒_大物仿真实验

碰撞和动量守恒_大物仿真实验
碰撞和动量守恒_大物仿真实验

大学物理仿真实验

实验名称碰撞和动量守恒实验日期2012年11月21日

姓名班级学号

一、实验简介

动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。

本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。

二、实验目的

1.利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律;

2.通过实验提高误差分析的能力。

三、实验原理

如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即

(1)

实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有

(2)

对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。

当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。

1.完全弹性碰撞

完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即

(3)

(4)

由(3)、(4)两式可解得碰撞后的速度为

(5)

(6)

如果v20=0,则有

?(7)

?(8)

动量损失率为

(9)

能量损失率为

(10)

理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。

2.完全非弹性碰撞

碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。

(11)

在实验中,让v20=0,则有

(12)

(13)

动量损失率

(14)

动能损失率

(15)

3.一般非弹性碰撞

一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已

不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即

(16)

恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0

4.验证机械能守恒定律

如果一个力学系统只有保守力做功,其他内力和一切外力都不作功,则系统机械能守恒。如图4.1.2-2所示,将气垫导轨一端加一垫块,使导轨与水平面成α角,把质量为m的砝码用细绳通过滑轮与质量m’的滑块相连,滑轮的等效质量为m e,根据机械能守恒定律,有

(17)

式中s 为砝码m 下落的距离,v 1和v 2分别为滑块通过s 距离的始末速度。如果将导轨调成水平,则有

(18)

在无任何非保守力对系统作功时,系统机械能守恒。但在实验中存在耗散力,如空气阻力和滑轮的摩擦力等作功,使机械能有损失,但在一定误差范围内可认为机械能是守恒的。

四、实验仪器

气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。

五、实验内容

1.气垫导轨调平

2.研究三种碰撞状态下的守恒定律

(1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt 10和经过第二个光电门的时间Δt 1,以及m2通过第二个光电门的时间Δt 2,重复五次,记录所测数据,数据表格自拟,计算

p

p ?、

E E ?。

(2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。 (3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。

六、数据记录与处理

(1)完全弹性碰撞的情况

(2)一般非完全弹性碰撞

(3)完全非弹性碰撞

七、实验总结

在完全弹性碰撞中,系统动量和能量守恒

八、误差分析

碰撞前后系统总动量不相等有多重原因:导轨摩擦、空气阻力等。在实验误差允许的范围内可以验证动量守恒和能量守恒定律。

九、实验心得

1、实验前应充分检查仪器是否满足实验要求。

2、在实验前应对实验结果有个预估值。

3、实验时应充分考虑各种误差对实验结果的影响。

专题 动量守恒定律中的碰撞问题(高三)

专题:碰撞中的动量守恒 碰撞 1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象. 在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况. 2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据. 3.弹性碰撞 题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1/、v 2/,碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……① 根据机械能守恒 ?m 1 v 12十?m 2v 22= ?m 1 v 1/2十?m 2 v 2/2 ……② 由①②得v 1/= ()212 21212m m v m v m m ++-,v 2/= ()21112122m m v m v m m ++- 仔细观察v 1/、v 2/结果很容易记忆, 当v 2=0时v 1/= () 21121m m v m m +-,v 2/= 2 1112m m v m + ①当v 2=0时;m 1=m 2 时v 1/=0,v 2/=v 1 这就是我们经常说的交换速度、动量和能量. ②m 1>>m 2,v /1=v 1,v 2/=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。 ③m 1《m 2,v /l =一v 1,v 2/=0. 碰后m 1被按原来速率弹回,m 2几乎未动。 【例1】试说明完全非弹性碰撞中机械能损失最多. 解析:前面已经说过,碰后二者一起以共同速度运动的碰撞为完全非弹性碰撞. 设两物体质量分别为m 1、m 2,速度碰前v 1、v 2,碰后v 1/、v 2/ 由动量守恒:m 1v 1+m 2v 2=m 1v 1/十m 2v 2/……① 损失机械能:Q=?m 1v 12+?m 2v 22-? m 1 v 1/2-? m 2 v 2/2 ……② 由①得 m 1v 1+m 2v 1-m 2v 1+m 2v 2=m 1v 1/十m 2v 1/-m 2v 1/+m 2v 2/ 写成(m 1+m 2)v 1-m 2(v 1-v 2)=(m 1十m 2)v 1/-m 2(v 1/-v 2/) 即(m 1+m 2)(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)] 于是(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)]/ (m 1+m 2) 同理由①得m 1v 1+m 1v 2-m 1v 2+m 2v 2=m 1v 1/十m 1v 2/-m 1v 2/+m 2v 2/ 写成(m 1+m 2)v 2+m 1(v 1-v 2)=(m 1十m 2)v 2/+m 1(v 1/-v 2/) (m 1+m 2)(v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)] (v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)]/ (m 1+m 2) 代入②得Q=?m 1v 12+?m 2v 22-? m 1v 1/2-? m 2v 2/2=?m 1(v 12-v 1/2)+?m 2(v 22-v 2/2) =?m 1(v 1-v 1/) (v 1+v 1/)+?m 2(v 2-v 2/)(v 2+v 2/)

部编版2020高中物理 第1章 碰撞与动量守恒 实验:研究碰撞中的动量守恒学案 教科版选修3-5

实验:研究碰撞中的动量守恒 【学习目标】 1.明确探究碰撞中的不变量的基本思路; 2.掌握同一条直线上运动的两个物体碰撞前、后速度的测量方法; 3.掌握实验数据处理的方法; 4.掌握案例的原理、方法. 【要点梳理】要点诠释: 要点一、实验内容 1.实验目的 该实验的目的是追寻碰撞过程中的不变量,由于质量不是描述运动状态的量,因此我们需要在包括物体质量和速度在内的整体关系中探究哪些是不变的,所以实验中一方面需要控制碰撞必须是一维碰撞,另一方面还要测量物体的质量和速度,并通过计算探究不变量存在的可能性. 2.实验探究的基本思路 (1)一维碰撞. 两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运动,这种碰撞叫做一维碰撞. (2)追求不变量. 在一维碰撞的情况下,设两个物体的质量分别为12m m 、,碰撞前的速度分别为12v v 、,碰撞后的速度分别为12v v 、'',如果速度与我们规定的正方向一致取正值,相反取负值,依次研究以下关系是否成立: ①11112222m v m v m v m v ==,''; ②11221122m v m v m v m v +=+''; ③ 2222 11221122''m v m v m v m v +=+; ④ 12121212 ''v v v v m m m m +=+. 3.实验探究的案例 方案一:利用气垫导轨实现一维碰撞,如图所示. (1)质量的测量:用天平测量. (2)速度的测量:x v t ?= ?,式中x ?为滑块(挡光片)的宽度,t ?为数字计时器显示的滑块(挡光片)经过光电门的时间. (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量.

动量守恒定律碰撞与反冲

动量守恒定律碰撞与反冲Last revision on 21 December 2020

碰撞与反冲 【自主预习】 1.如果碰撞过程中机械能守恒,这样的碰撞叫做________。 2.如果碰撞过程中机械能不守恒,这样的碰撞叫做________。 3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在________,碰撞之后两球的速度________会沿着这条直线。这种碰撞称为正碰,也叫________碰撞。 4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会________原来两球心的连线。这种碰撞称为________碰撞。 5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做 ________。 6. 弹性碰撞和非弹性碰撞 从能量是否变化的角度,碰撞可分为两类: (1)弹性碰撞:碰撞过程中机械能守恒。 (2)非弹性碰撞:碰撞过程中机械能不守恒。 说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。 7.弹性碰撞的规律 质量为m1的物体,以速度v1与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v′1和v′2,碰撞前后的速度方向均在同一直线上。 由动量守恒定律得m1v1=m1v′1+m2v′2 由机械能守恒定律得1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 联立两方程解得 v′1=m1-m2 m1+m2 v1,v′2= 2m1 m1+m2 v1。 (2)推论 ①若m1=m2,则v′1=0,v′2=v1,即质量相等的两物体发生弹性碰撞将交换速度。惠更斯早年的实验研究的就是这种情况。 ②若m1m2,则v′1=v1,v′2=2v1,即质量极大的物体与质量极小的静止物体发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。 ③若m1m2,则v′1=-v1,v′2=0,即质量极小的物体与质量极大的静止物体发生弹性碰撞,前者以原速度大小被反弹回去,后者仍静止。乒乓球落地反弹、台球碰到桌壁后反弹、篮球飞向篮板后弹回,都近似为这种情况。 【典型例题】 【例1】在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图16-4-2所示。设碰撞中不损失机械能,则碰后三个小球的速度可能是( )

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

物体碰撞中的动量守恒

物体碰撞中的动量守恒 碰撞 1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象. 在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况. 2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据. 3.弹性碰撞 题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1/、v 2/,碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……① 根据机械能守恒 ?m 1 v 12十?m 2v 22= ?m 1 v 1/2十?m 2 v 2/2 ……② 由①②得v 1/= ()212 21212m m v m v m m ++-,v 2/= ()21112122m m v m v m m ++- 仔细观察v 1/、v 2/结果很容易记忆, 当v 2=0时v 1/= () 21121m m v m m +-,v 2/= 2 1112m m v m + ①当v 2=0时;m 1=m 2 时v 1/=0,v 2/=v 1 这就是我们经常说的交换速度、动量和能量. ②m 1>>m 2,v /1=v 1,v 2/=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。 ③m 1《m 2,v /l =一v 1,v 2/=0. 碰后m 1被按原来速率弹回,m 2几乎未动。 【例1】试说明完全非弹性碰撞中机械能损失最多. 解析:前面已经说过,碰后二者一起以共同速度运动的碰撞为完全非弹性碰撞. 设两物体质量分别为m 1、m 2,速度碰前v 1、v 2,碰后v 1/、v 2/ 由动量守恒:m 1v 1+m 2v 2=m 1v 1/十m 2v 2/……① 损失机械能:Q=?m 1v 12+?m 2v 22-? m 1 v 1/2-? m 2 v 2/2 ……② 由①得 m 1v 1+m 2v 1-m 2v 1+m 2v 2=m 1v 1/十m 2v 1/-m 2v 1/+m 2v 2/ 写成(m 1+m 2)v 1-m 2(v 1-v 2)=(m 1十m 2)v 1/-m 2(v 1/-v 2/) 即(m 1+m 2)(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)] 于是(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)]/ (m 1+m 2) 同理由①得m 1v 1+m 1v 2-m 1v 2+m 2v 2=m 1v 1/十m 1v 2/-m 1v 2/+m 2v 2/ 写成(m 1+m 2)v 2+m 1(v 1-v 2)=(m 1十m 2)v 2/+m 1(v 1/-v 2/) (m 1+m 2)(v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)] (v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)]/ (m 1+m 2) 代入②得Q=?m 1v 12+?m 2v 22-? m 1v 1/2-? m 2v 2/2=?m 1(v 12-v 1/2)+?m 2(v 22-v 2/2) =?m 1(v 1-v 1/) (v 1+v 1/)+?m 2(v 2-v 2/)(v 2+v 2/) =?m 1(v 1+v 1/) m 2[(v 1-v 2)-(v 1/-v 2/)]/(m 1+m 2)+?m 2(v 2+v 2/)m 1[(v 1/-v 2/)-(v 1-v 2)]/(m 1+m 2) =[?m 1 m 2/(m 1+m 2)][ v 12-v 1v 2+v 1v 1/-v 2v 1/-v 1v 1/+v 1v 2/-v 1/2+v 1/v 2/+v 2v 1/-v 2v 2/-v 1v 2+v 22+v 1/v 2/-v 2/2-v 1v 2/+v 2v 2/]=[?m 1 m 2/(m 1+m 2)][ v 12-v 1v 2-v 1v 2+v 22-v 1/2+v 1/v 2/+v 1/v 2/-v 2/2]= [?m 1 m 2/(m 1+m 2)][(v 1-v 2)2-(v 1/-v 2/)2]()()()22//121212122m m v v v v m m ??=---? ?+……③ 由③式可以看出:当v 1/= v 2/时,损失的机械能最多.

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

【2013真题汇编】第18专题 碰撞与动量守恒定律

第十七专题 碰撞与动量守恒定律 【 2013福建卷30 (2) 】将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在及短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是 。(填选项前的事母) A.0m v M B. 0M v m C. 0M v M m - D. 0m v M m - 【答案】D 【解析】根据动量守恒定律得:0)(0=--mv v m M ,所以火箭模型获得的速度大小是m M m v v -=0,选项D 正确。 【2013山东 38(2)】如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。 解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 C C A A A v m v m v m +=0 A 与 B 在摩擦力作用下达到共同速度,设共同速度为v AB , 由动量守恒定律得 AB B A B A A v m m v m v m )+(=+0 A 与 B 达到共同速度后恰好不再与 C 碰撞,应满足C AB v v = 联立上式,代入数据得 s /m 2=A v 【2013江苏 12 C (3)】如图所示,进行太空行走的宇航员A 和B 的质量分别为80kg 和100kg ,他们携手远离空间站,相对空间站的速度为0。 1m/ s 。 A 将B 向空间站方向轻推后,A 的速度变为0。2m/ s ,求此时B 的速度大小和方向。

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

动量守恒定律-碰撞问题试卷

动量守恒定律-碰撞问题试卷

考点23动量守恒定律碰撞问题考点名片 考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。高考对本考点的考查以识记、理解为主,试题难度不大。 备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。 一、基础与经典 1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。已知m A

答案 A 解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。 2.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量一定守恒 答案 C 解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。 3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。则() A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒 B.当两物块相距最近时,甲物块的速率为零 C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0

动量守恒实验

动量守恒实验 1.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放 置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下: ①在小滑块a上固定一个宽度为d的窄挡光片; ②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b; ③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上; ④细线烧断后,a、b瞬间被弹开,向相反方向运动; ⑤记录滑块a通过光电门时挡光片的遮光时间t; ⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a; ⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面 的高度h及平台边缘铅垂线与B点之间的水平距离S b; ⑧改变弹簧压缩量,进行多次测量. (1)该实验要验证“动量守恒定律”,则只需验证______ = ______ 即可.(用上述实验数据字母表示) (2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所 示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 ______ .(用上述实验数据字母表示) 2.如图,用“碰撞试验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分 碰撞前后的动量关系. ①试验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量______ (填选项前的序号)来间接地解决这个问题 A.小球开始释放高度h B.小球抛出点距地面的高度H C.小球做平抛运动的射程 ②图中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球m1多次从斜 轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静止于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相撞,并多次重复.椐图可得两小球质量的关系为______ ,接下来要完成的必要步骤是______ (填选项的符号) A.用天平测量两个小球的质量m1、m2 B.测量小球m1开始释放高度h C.测量抛出点距地面的高度h D.分别找到m1、m2相碰后平均落地点的位置M、N E.测量平抛射程OM,ON ③若两球相碰前后的动量守恒,其表达式可表示为______ 用②中测量的量表示) 若碰撞是弹性碰撞.那么还应满足的表达式为______ (用②中测量的量表示). 3.如图所示,气垫导轨是常用的一种实验仪器。 它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑 块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。

大学物理仿真实验报告 碰撞与动量守恒

大学物理仿真实验报告 实验目的 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律, 定量研究动量损失和能量损失在工程技术中有重要意义。 同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可 改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取 负号。 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 由(3)、(4)两式可解得碰撞后的速度为

如果v20=0,则有 动量损失率为 能量损失率为 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 在实验中,让v20=0,则有 动量损失率 动能损失率

一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个 光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算

高中物理选修3-5碰撞与动量守恒经典题型计算题练习有答案

动量守恒定律 1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求 (1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。 答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。由机械能守恒定律,有 22 1mv mgh = ① 根据牛顿第二定律,有R v m mg mg 2 9=- ② 解得h =4R ③ 即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。 (2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。依题意,小车的质量为3m ,BC 长度为10R 。由滑动摩擦定律,有 mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤ 对物块、小车分别应用动能定理,有 222 1 21)10(mv mv s R F -'=+- ⑥ 0)3(2 1 2-'= v m Fs ⑦ 解得3.0=μ ⑧ 2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求 (1) 物块在车面上滑行的时间t; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

高中物理-学习并验证碰撞中的动量守恒定律教案

高中物理-学习并验证碰撞中的动量守恒定律教案 教学目标: 1、知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。 2、学会沿同一直线相互作用的两个物体的动量守恒定律的推导。 3、知道动量守恒定律是自然界普遍适用的基本规律之一。 教学重点: 动量守恒定律及其守恒条件的判定。 教学难点: 对动量守恒定律条件的掌握。 教具准备:斜槽、小球等。 教学过程 (一)引入新课 前面已经学习了动量定理,那么我们首先回顾一下动量定理的定义:物体所受合力的冲量等于物体的动量变化。表达式为:Ft=mv′-mv=p′-p,或Ft=△p 由此看出冲量是力在时间上的积累效应。动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时,F 是合外力对作用时间的平均值。p 为物体初动量,p′为物体末动量,t 为合外力的作用时间。 下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何? (二)以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。 画图: 设想水平桌面上有两个匀速运动的球,它们的质量分别是1m 和2m ,速度分别是1v 和2v ,而且21v v >。则它们的总动量(动量的矢量和)。经过一定时间1m 追上2m ,并与之发生碰撞,设碰后二者的速度分别为'1v 和' 2v ,此时它们的动量的矢量和,即总动量'+'='+'='221121v m v m p p p 。 板书:221121v m v m p p p +=+= '+'='+'='221121v m v m p p p 下面从动量定理和牛顿第三定律出发讨论p 和p '有什么关系.设碰撞过程中两球相互作用力分别是1F 和2F ,力的作用时间是t .根据动量定理,1m 球受到的冲量是11111v m v m t F -' =;

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

探究与实验 探究碰撞中的动量守恒定律

第4讲 探究与实验 探究碰撞中的动量守恒定律 ★一、考情直播 1.考纲解读 2.考点整合 考点一 实验基本考查 (1).实验目的:验证动量守恒定律. (2).实验原理 ①质量分别为21m m 和的两小球发生正碰,若碰前1m 运动,2m 静止,根据动量守恒定律应有:''221111v m v m v m += ②若能测出21m m 、及''211v v v 和、代入上式,就可验证碰撞中 动量是否守恒. ③ 21m m 、用天平测出,''211v v v 、、用小球碰撞前后运动的 水平距离代替.(让各小球在同一高度做平抛运动.其水平速度等于 水平位移和运动时间的比,而各小球运动时间相同,则它们的水平 位移之比等于它们的水平速度之比)则动量守恒时有: N O m OM m OP m '211?+?=?.(见实验图6-4-1) (3).实验器材 重锤线一条,大小相等、质量不同的小球两个,斜槽,白纸, 复写纸,刻度尺,天平一台(附砝码),圆规一个. (4).实验步骤 ①先用天平测出小球质量21m m 、. ②按要求安装好实验装置,将斜槽固定在桌边,使槽的末端点切线水平,把被碰小球放在斜槽前边的小支柱上,调节实验装置使两小球碰撞时处于同一水平高度,确保碰后的速度方向水平. ③在地上铺一张白纸,白纸上铺放复写纸. ④在白纸上记下重垂线所指的位置O ,它表示入射小球1m 碰前的球心位置. ⑤先不放被碰小球,让入射小球从斜槽上同一高度处滚下,重复10次,用圆规画尽可能小的圆把所有的小球落点圈在里面,圆心就是入射小球不碰时的落地点平均位置P . ⑥把被碰小球放在小支柱上,让入射小球从同一高度滚下,使它们发生正碰,重复10次,仿步骤(5)求出入射小球落点的平均位置M 和被碰小球落点的平均位置N . ⑦过O 、N 在纸上作一直线,取OO ′=2r ,O ′就是被碰小球碰撞时的球心竖直投影位置. ⑧用刻度尺量出线段OM 、OP 、O ′N 的长度,把两小球的质量和相应的水平位移数值代入N O m OM m OP m '211?+?=?看是否成立. 图6-4-1

相关文档
最新文档