大学物理仿真实验报告 碰撞与动量守恒

合集下载

最新碰撞与动量守恒实验报告

最新碰撞与动量守恒实验报告

最新碰撞与动量守恒实验报告实验目的:本实验旨在通过设计并执行一系列碰撞实验,验证动量守恒定律在不同类型碰撞中的应用,并计算相关物理量,加深对动量守恒原理的理解。

实验设备:1. 光滑水平实验台面2. 碰撞球(质量已知)3. 高速摄像机4. 测量尺5. 电子秤6. 碰撞检测传感器7. 数据分析软件实验原理:动量守恒定律表明,在一个封闭系统中,系统内所有物体的总动量在没有外力作用下保持不变。

在碰撞过程中,两个物体的相互作用力是内力,因此碰撞过程满足动量守恒。

实验步骤:1. 准备实验设备,确保实验台面光滑且水平,以减少摩擦力的影响。

2. 选择两种不同质量的碰撞球,使用电子秤测量并记录它们的质量。

3. 将其中一个球放置在实验台面的一端,作为固定球;另一个球作为运动球,从另一端以一定速度推出。

4. 使用高速摄像机记录碰撞过程,确保能够清晰地观察到碰撞前后的移动情况。

5. 通过碰撞检测传感器记录碰撞前后的瞬时速度。

6. 对收集到的数据进行分析,计算碰撞前后两球的速度和动量。

7. 改变球的质量比和初始速度,重复步骤3至6,进行多次实验以获取不同条件下的数据。

8. 利用实验数据验证动量守恒定律,并分析不同类型碰撞(完全弹性碰撞、非完全弹性碰撞)中动量守恒的表现。

实验结果:通过数据分析软件处理得到的碰撞前后速度数据,计算出各次实验的动量守恒情况。

结果显示,在所有实验中,碰撞前后的总动量基本保持不变,验证了动量守恒定律的正确性。

此外,不同类型的碰撞(如完全弹性碰撞和非完全弹性碰撞)在动量守恒的条件下,展现了不同的能量转换和分配特性。

结论:实验成功验证了动量守恒定律在碰撞过程中的应用。

通过对比不同质量比和速度条件下的碰撞结果,我们可以更深入地理解动量守恒原理及其在实际物理过程中的作用。

此外,实验结果也表明,在实际应用中,需要考虑能量损失和转换,特别是在非完全弹性碰撞中。

物理仿真碰撞实验报告

物理仿真碰撞实验报告

物理仿真碰撞实验报告实验目的:研究物体碰撞的基本规律,通过实验验证动量守恒定律和能量守恒定律。

实验仪器:1. 平滑水平面2. 碰撞器3. 物块实验原理:动量守恒定律:在一个孤立系统中,系统内部力之和为零,则系统的总动量守恒。

在碰撞实验中,即可通过动量守恒定律去计算。

能量守恒定律:在一个孤立系统中,系统内能量的总和保持不变,即能量守恒。

在碰撞实验中,即可通过能量守恒定律去计算。

实验步骤:1. 将平滑水平面搭建好,并确保其表面光滑无摩擦。

2. 准备两个物块,标记为物块A和物块B,以便于实验中的区分。

3. 将物块A放在碰撞器的起始位置处,物块B放在碰撞器的末端位置。

4. 保持物块A静止,同时用力将物块B向前推,使其以一定的速度和动量与物块A碰撞。

5. 观察并记录碰撞过程中物块A和物块B的运动情况,包括速度、动量等。

6. 重复多次实验,分析数据并计算动量和能量守恒的程度。

实验结果与分析:根据实验数据计算,我们发现在碰撞实验中,总动量基本保持不变,从而验证了动量守恒定律的正确性。

同时,根据能量守恒定律,我们也发现在碰撞实验中总能量基本保持不变。

实验结论:通过该实验,我们验证了动量守恒定律和能量守恒定律在物体碰撞实验中的适用性。

同时,也深入了解了物体碰撞的基本规律。

实验改进:1. 通过在实验中改变物块的质量、速度等条件,可以进一步验证动量守恒定律和能量守恒定律在不同情况下的适用性。

2. 使用更精确的仪器和测量工具,提高实验数据的准确性和可靠性。

3. 研究其他类型的碰撞,如弹性碰撞和非弹性碰撞,探索更多碰撞规律。

大学物理碰撞实验报告

 大学物理碰撞实验报告

碰撞实验实验日期:2023.3.28一、目的要求1、用对心碰撞特例检验动量守恒定律。

2、了解动量守恒和动能守恒的条件。

3、熟练地使用气垫导轨及数字毫秒计。

二、实验原理1.验证动量守恒定律动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。

设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。

m1u1+m2u2=m1v1+m2v2(2-3-1)其中,u1、u2和v1、v2分别为滑块m1、m2在碰撞前后的速度。

若分别测出式(2-3-1)中各量,且等式左右两边相等,则动量守恒定律得以验证。

2.碰撞后的动能损失只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。

但动能在碰撞过程中是否守恒,还将与碰撞的性质有关。

碰撞的性质通常用恢复系数e 表达:2112v v e u u -=- (2-3-2) 式(2-3-2)中,v2-v1为两物体碰撞后相互分离的相对速度,u1-u2则为碰撞前彼此接近的相对速度。

(1)相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2-v1=u1-u2,于是e=1,这类碰撞称为完全弹性碰撞。

(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0<v2-v1<u1-u2于是,0<e<1,这类碰撞称为非弹性碰撞。

(3)碰撞后两物体的相对速度为零,即v2-v1=0或v2=v1=v,两物体粘在一起以后以相同速度继续运动,此时e=0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。

物理碰撞实验报告

物理碰撞实验报告

物理碰撞实验报告
《物理碰撞实验报告》
实验目的:通过模拟物体之间的碰撞过程,探究碰撞对物体的影响,并验证动量守恒定律。

实验材料:弹簧、小球、测量工具、平滑水平面
实验步骤:
1. 将弹簧固定在水平面上,并在其一端固定一个小球;
2. 将另一个小球从一定高度自由落体,与弹簧上的小球发生碰撞;
3. 观察碰撞后两个小球的运动情况,并记录下各种数据;
4. 重复实验,改变小球的质量、速度等条件,继续观察和记录数据。

实验结果:
通过实验观察和数据记录,我们得到了以下结论:
1. 在碰撞过程中,动量守恒定律成立,即碰撞前后系统的总动量保持不变;
2. 碰撞后,小球的速度和运动方向发生了改变,但总动量保持不变;
3. 改变小球的质量和速度会影响碰撞后的运动情况,但总动量仍然守恒。

实验结论:
通过本次实验,我们验证了动量守恒定律,并深入理解了碰撞对物体的影响。

碰撞实验不仅是物理学中重要的实验之一,也为我们提供了更深入的认识和理解物体之间的相互作用。

总结:
物理碰撞实验是一项重要的实验,通过实验可以验证动量守恒定律,并对物体之间的碰撞过程有更深入的认识。

我们将继续深入研究物理碰撞实验,探索更
多有关碰撞的规律和现象,为物理学的发展做出更大的贡献。

弹性碰撞实验报告心得(3篇)

弹性碰撞实验报告心得(3篇)

第1篇一、实验背景弹性碰撞是物理学中一个重要的现象,它涉及到动量守恒和能量守恒两大基本定律。

在本次实验中,我们通过实验验证了弹性碰撞过程中动量守恒和能量守恒定律的正确性,加深了对这两个定律的理解。

二、实验目的1. 了解弹性碰撞的基本概念和特点;2. 掌握弹性碰撞实验的原理和操作方法;3. 验证动量守恒和能量守恒定律在弹性碰撞过程中的正确性;4. 培养学生的实验操作能力和数据处理能力。

三、实验原理1. 动量守恒定律:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变;2. 能量守恒定律:在一个封闭系统中,如果没有外力做功,系统的总能量保持不变;3. 弹性碰撞:在弹性碰撞过程中,两个物体的动能和动量都保持不变。

四、实验过程1. 实验准备:准备实验所需的器材,包括弹性碰撞实验装置、电子计时器、质量测量仪等;2. 实验操作:将实验装置安装好,调整好实验参数,进行实验操作;3. 数据记录:在实验过程中,记录下实验数据,包括碰撞前后的速度、质量等;4. 数据处理:对实验数据进行处理,计算碰撞前后的动量和能量,分析实验结果。

五、实验结果与分析1. 动量守恒定律验证:通过实验数据计算,碰撞前后的总动量保持不变,验证了动量守恒定律的正确性;2. 能量守恒定律验证:通过实验数据计算,碰撞前后的总能量保持不变,验证了能量守恒定律的正确性;3. 实验误差分析:实验过程中,由于实验装置的精度限制、人为操作误差等因素,导致实验结果存在一定的误差。

为了减小误差,我们采取了以下措施:(1)使用高精度的实验装置;(2)提高实验操作技巧,减小人为误差;(3)多次重复实验,取平均值减小随机误差。

六、实验心得1. 通过本次实验,我深入了解了弹性碰撞的基本概念和特点,认识到动量守恒和能量守恒定律在弹性碰撞过程中的重要性;2. 实验过程中,我学会了使用实验装置,掌握了实验操作方法,提高了自己的实验操作能力;3. 在数据处理过程中,我学会了如何运用数学工具分析实验数据,提高了自己的数据处理能力;4. 本次实验让我明白了实验过程中严谨的态度和细致的操作对于实验结果的重要性;5. 通过实验,我认识到理论知识与实际操作相结合的重要性,为今后的学习和工作打下了坚实的基础。

碰撞与动量守恒实验报告(两篇)2024

碰撞与动量守恒实验报告(两篇)2024

引言概述:本实验报告旨在探讨碰撞与动量守恒原理,并通过实验验证该原理的有效性。

动量守恒是一个基本的物理原理,适用于各种物体的碰撞问题。

在实验中,我们将通过进行不同类型的碰撞实验来观察和分析碰撞前后物体的动量变化,并据此验证动量守恒原理。

正文内容:1. 碰撞类型及动量守恒原理1.1 弹性碰撞弹性碰撞是指两个物体在碰撞过程中动能和动量都得到守恒的碰撞类型。

在弹性碰撞中,碰撞物体之间相互作用力的大小和方向完全相反,并且动量总和在碰撞前后保持不变。

根据动量守恒原理,我们可以通过测量碰撞前后物体的速度和质量来计算和验证动量守恒。

1.2 非弹性碰撞非弹性碰撞是指两个物体在碰撞过程中不完全弹性恢复的碰撞类型。

在非弹性碰撞中,碰撞物体之间存在能量损失,并且在碰撞后分别以不同速度进行运动。

尽管动能不能守恒,但动量守恒仍然保持不变。

我们可以通过测量碰撞前后物体的速度和质量,以及所损失的能量来验证动量守恒。

2. 实验器材和步骤2.1 实验器材本实验所需的器材包括:弹性碰撞车、非弹性碰撞车、轨道、计时器、测量工具等。

2.2 实验步骤(1) 设置轨道和安装弹性碰撞车。

(2) 确保弹性碰撞车和非弹性碰撞车的初始位置和速度。

(3) 开始实验,并使用计时器记录碰撞前后物体的运动时间。

(4) 测量物体的质量,并记录实验数据。

(5) 重复实验,得出平均值并计算动量变化。

3. 实验结果和数据分析3.1 弹性碰撞实验结果我们进行了一系列弹性碰撞实验,并测量了碰撞前后物体的速度和质量。

通过计算动量的变化,我们发现动量在碰撞前后保持不变的结果与动量守恒原理相一致。

3.2 非弹性碰撞实验结果我们进行了一系列非弹性碰撞实验,并测量了碰撞前后物体的速度和质量。

通过计算动量的变化和能量损失,我们发现动量在碰撞前后仍然保持不变,验证了动量守恒原理的有效性。

4. 实验误差和改进4.1 实验误差来源实验误差主要来自于实验仪器的精确度、人为操作的不准确性以及环境因素的干扰等。

大学物理演示实验报告—弹性碰撞

大学物理演示实验报告—弹性碰撞

大学物理演示实验报告
机械105 向泽山31
【实验名称】弹性碰撞球
【实验目的】演示弹性碰撞,能量守恒及动量守恒定律
【实验装置】用等长绳子悬挂的平行排列小球
1,实验装置如实验原理图示: (1)一底座(2)—支架(3)—钢球(4)—拉线(5)—调节螺丝
2,技术指标
钢球质量:m=7× 直径:l=7×35mm 拉线长度:L=55Omm
【实验原理】
弹性碰撞:碰撞前后两球的动量和能量之和不变,两球碰撞后的速度等于碰撞前的速度。

动量守恒:由钢球组成的系统相互作用的前后满足动量守恒条件,遵循动量守恒。

在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。

如果两个碰撞的球质量相等,则由动量守恒和能量守恒可知,碰撞后被碰撞的小球具有与碰撞小球同样大小的速度,而碰撞小球则停止。

多个小球碰撞时可以进行类似的分析。

事实上,由于小球间的碰撞并非理想的弹性碰撞或多或少会有能量损失,所以最后小球还是要停下来。

【操作步骤】
调整固定摆球的螺丝,尽量使摆球的中心处于同一直线上。

拉起最左边的一个摆球,释放,让其撞击其他的摆球,可看到最有端侧的一个球立即摆起其摆幅几乎等于左球的摆幅。

同时拉起左侧的两摆球、三个摆球或四个摆球,释放,让其撞击剩余的摆球,可看到另一侧相同数目的摆球立即摆起,其摆幅几乎等于被撞起的摆球的摆幅。

【注意事项】
操作前一定将七个钢球的球心调至同一水平线上,否则现象不明显.
球的摆幅不要大,否则效果反而不好。

碰撞动量守恒实验报告

碰撞动量守恒实验报告

.大学物理仿真实验——碰撞与动量守恒实验报告教育资料..一、实验简介:动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。

力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。

因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。

本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。

定量研究动量损失和能量损失在工程技术中有重要意义。

同时通过实验还可提高误差分析的能力。

二、实验内容:.研究三种碰撞状态下的守恒定律1(1)取两滑块m、m,且m>m,用物理天平称m、m的质量(包括挡光片)。

212211将两滑块分别装上弹簧钢圈,滑块m置于两光电门之间(两光电门距离不可太远),2使其静止,用m碰m,分别记下m通过第一个光电门的时间Δt和经过第二个光电10112教育资料..门的时间Δt,以及m通过第二个光电门的时间Δt,重复五次,记录所测数据,数据212。

表格自拟,计算、)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。

(2)分别在两滑块上换上金属碰撞器,重复上述测量和计算。

(3.验证机械能守恒定律2(1)a=0时,测量m、m'、m、s、v、v,计算势能增量mgs和动能增量e21,重复五次测量,数据表格自拟。

(2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。

三、实验原理:如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即)( 1实验中用两个质量分别为m、m的滑块来碰撞(图4.1.2-1),若忽略气流阻力,21根据动量守恒有)2 (教育资料..对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理仿真实验报告
实验目的
利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律,
定量研究动量损失和能量损失在工程技术中有重要意义。

同时通过实验还可提高误差分析的能力。

实验原理
如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即
实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有
对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。

当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。

由于滑块作一维运动,式(2)中矢量v可
改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取
负号。

完全弹性碰撞
完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即
由(3)、(4)两式可解得碰撞后的速度为
如果v20=0,则有
动量损失率为
能量损失率为
理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。

完全非弹性碰撞
碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。

在完全非弹性碰撞中,系统动量守恒,动能不守恒。

在实验中,让v20=0,则有
动量损失率
动能损失率
一般非弹性碰撞
一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。

牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即
恢复系数e由碰撞物体的质料决定。

E值由实验测定,一般情况下0<e<1,当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞。

验证机械能守恒定律
如果一个力学系统只有保守力做功,其他内力和一切外力都不作功,则系统机械能守恒。

如图2所示,将气垫导轨一端加一垫块,使导轨与水平面成α角,把质量为m的砝码用细绳通过滑轮与质量m’的滑块相连,滑轮的等效质量为m e,根据机械能守恒定律,有
式中s为砝码m下落的距离,v1和v2分别为滑块通过s距离的始末速度。

如果将导轨调成水平,则有
在无任何非保守力对系统作功时,系统机械能守恒。

但在实验中存在耗散力,如空气阻力和滑轮的摩擦力等作功,使机械能有损失,但在一定误差范围内可认为机械能是守恒的。

实验仪器
本实验主要仪器有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等
实验内容
研究三种碰撞状态下的守恒定律
取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。

将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个
光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算
分别在两滑块上换上尼龙搭扣,重复上述测量和计算。

分别在两滑块上换上金属碰撞器,重复上述测量和计算。

数据记录与处理
完全弹性碰撞
一般非弹性碰撞
3.完全非弹性碰撞
六.实验结论
1. 完全弹性碰撞动量守恒,机械能守恒,恢复系数为1;
2. 一般弹性碰撞动量守恒,机械能不守恒,恢复系数小于;
3. 完全非弹性碰撞动量守恒,机械能不守恒,恢复系数为0;
七.思考题
碰撞前后系统总动量不相等,试分析其原因。

答:粘滞阻力,阻尼系数大小,系统恢复速度,气流速度,系统负载大小,都会影响实验结果。

恢复系数e的大小取决于哪些因素
答:碰撞物体的材料,系统环境等。

你还能想出验证机械能守恒的其他方法吗
答:通过研究自由落体运动,单摆运动等方法可以验证。

相关文档
最新文档