大学物理仿真实验报告——碰撞与动量守恒
最新碰撞与动量守恒实验报告

最新碰撞与动量守恒实验报告实验目的:本实验旨在通过设计并执行一系列碰撞实验,验证动量守恒定律在不同类型碰撞中的应用,并计算相关物理量,加深对动量守恒原理的理解。
实验设备:1. 光滑水平实验台面2. 碰撞球(质量已知)3. 高速摄像机4. 测量尺5. 电子秤6. 碰撞检测传感器7. 数据分析软件实验原理:动量守恒定律表明,在一个封闭系统中,系统内所有物体的总动量在没有外力作用下保持不变。
在碰撞过程中,两个物体的相互作用力是内力,因此碰撞过程满足动量守恒。
实验步骤:1. 准备实验设备,确保实验台面光滑且水平,以减少摩擦力的影响。
2. 选择两种不同质量的碰撞球,使用电子秤测量并记录它们的质量。
3. 将其中一个球放置在实验台面的一端,作为固定球;另一个球作为运动球,从另一端以一定速度推出。
4. 使用高速摄像机记录碰撞过程,确保能够清晰地观察到碰撞前后的移动情况。
5. 通过碰撞检测传感器记录碰撞前后的瞬时速度。
6. 对收集到的数据进行分析,计算碰撞前后两球的速度和动量。
7. 改变球的质量比和初始速度,重复步骤3至6,进行多次实验以获取不同条件下的数据。
8. 利用实验数据验证动量守恒定律,并分析不同类型碰撞(完全弹性碰撞、非完全弹性碰撞)中动量守恒的表现。
实验结果:通过数据分析软件处理得到的碰撞前后速度数据,计算出各次实验的动量守恒情况。
结果显示,在所有实验中,碰撞前后的总动量基本保持不变,验证了动量守恒定律的正确性。
此外,不同类型的碰撞(如完全弹性碰撞和非完全弹性碰撞)在动量守恒的条件下,展现了不同的能量转换和分配特性。
结论:实验成功验证了动量守恒定律在碰撞过程中的应用。
通过对比不同质量比和速度条件下的碰撞结果,我们可以更深入地理解动量守恒原理及其在实际物理过程中的作用。
此外,实验结果也表明,在实际应用中,需要考虑能量损失和转换,特别是在非完全弹性碰撞中。
物理仿真碰撞实验报告

物理仿真碰撞实验报告实验目的:研究物体碰撞的基本规律,通过实验验证动量守恒定律和能量守恒定律。
实验仪器:1. 平滑水平面2. 碰撞器3. 物块实验原理:动量守恒定律:在一个孤立系统中,系统内部力之和为零,则系统的总动量守恒。
在碰撞实验中,即可通过动量守恒定律去计算。
能量守恒定律:在一个孤立系统中,系统内能量的总和保持不变,即能量守恒。
在碰撞实验中,即可通过能量守恒定律去计算。
实验步骤:1. 将平滑水平面搭建好,并确保其表面光滑无摩擦。
2. 准备两个物块,标记为物块A和物块B,以便于实验中的区分。
3. 将物块A放在碰撞器的起始位置处,物块B放在碰撞器的末端位置。
4. 保持物块A静止,同时用力将物块B向前推,使其以一定的速度和动量与物块A碰撞。
5. 观察并记录碰撞过程中物块A和物块B的运动情况,包括速度、动量等。
6. 重复多次实验,分析数据并计算动量和能量守恒的程度。
实验结果与分析:根据实验数据计算,我们发现在碰撞实验中,总动量基本保持不变,从而验证了动量守恒定律的正确性。
同时,根据能量守恒定律,我们也发现在碰撞实验中总能量基本保持不变。
实验结论:通过该实验,我们验证了动量守恒定律和能量守恒定律在物体碰撞实验中的适用性。
同时,也深入了解了物体碰撞的基本规律。
实验改进:1. 通过在实验中改变物块的质量、速度等条件,可以进一步验证动量守恒定律和能量守恒定律在不同情况下的适用性。
2. 使用更精确的仪器和测量工具,提高实验数据的准确性和可靠性。
3. 研究其他类型的碰撞,如弹性碰撞和非弹性碰撞,探索更多碰撞规律。
碰撞与动量守恒实验报告

碰撞与动量守恒实验报告一、实验目的本次实验主要验证碰撞定律,以及动量守恒定律。
二、实验环境本次实验在实验室里进行,配备实验安全措施,完善的实验设备,在室内温度恒定的情况下进行实验,防止实验测量的影响。
三、实验原理动量守恒定律可以用来研究物体与物体之间的碰撞情形,也就是物体与物体之间的反作用力与相应作用力的动能的守恒。
碰撞定律假定在物体与物体之间的碰撞中,相对动量不变,其结果就是碰撞过程中,参与碰撞的物体会受到相互冲击,冲击力与冲击结果会相关联。
四、实验设备1.两个相等大小的圆形木板,它们有一样的质量、体积和速度方向。
2.实验室里有一个表面光滑的面板,用来确保木板在碰撞过程中没有摩擦力。
3.实验中使用的材料还有高档插头、电驱动器等。
4.实时记录仪与控制仪,用于实时测量、记录和控制圆形木板的运动情况,实现精确测量。
五、实验步骤1.安装电路:在实验表面上组装实验电路,连接实时记录仪和电驱动器,确保安装完成后电路可以正常工作。
2.测量参数:调节电驱动器的转速,测量圆形木板的碰撞速度、碰撞力和相对动量变化。
3.碰撞实验:放置两个圆形木板,在平面上一致运动,待转速达到一定值时,木板相互碰撞,观察木板运动情况,记录木板运动数据。
4.计算数据:利用实验记录的数据,计算相对动量大小变化,确定物体受到的冲击力是否满足动量守恒定律。
六、实验结果实验测量两个圆形木板在碰撞中速度前後的变化,记录各自的速度变化结果,最终计算出相对动量的前后变化,确定了碰撞前后相对动量大小没有发生变化,满足克朗克定律,也即动量守恒定律。
即在碰撞过程中,物体受到的冲击力与碰撞结果是有关联的。
七、安全措施1.确保实验设备稳定,实验场地温度稳定,确保实验测量精度2.保持实验安全,确保实验数据准确3.及时维护设备,确保设备安全稳定。
大学物理碰撞实验报告

碰撞实验实验日期:2023.3.28一、目的要求1、用对心碰撞特例检验动量守恒定律。
2、了解动量守恒和动能守恒的条件。
3、熟练地使用气垫导轨及数字毫秒计。
二、实验原理1.验证动量守恒定律动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。
设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。
m1u1+m2u2=m1v1+m2v2(2-3-1)其中,u1、u2和v1、v2分别为滑块m1、m2在碰撞前后的速度。
若分别测出式(2-3-1)中各量,且等式左右两边相等,则动量守恒定律得以验证。
2.碰撞后的动能损失只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。
但动能在碰撞过程中是否守恒,还将与碰撞的性质有关。
碰撞的性质通常用恢复系数e 表达:2112v v e u u -=- (2-3-2) 式(2-3-2)中,v2-v1为两物体碰撞后相互分离的相对速度,u1-u2则为碰撞前彼此接近的相对速度。
(1)相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2-v1=u1-u2,于是e=1,这类碰撞称为完全弹性碰撞。
(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0<v2-v1<u1-u2于是,0<e<1,这类碰撞称为非弹性碰撞。
(3)碰撞后两物体的相对速度为零,即v2-v1=0或v2=v1=v,两物体粘在一起以后以相同速度继续运动,此时e=0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。
碰撞与动量守恒实验报告(两篇)2024

引言概述:本实验报告旨在探讨碰撞与动量守恒原理,并通过实验验证该原理的有效性。
动量守恒是一个基本的物理原理,适用于各种物体的碰撞问题。
在实验中,我们将通过进行不同类型的碰撞实验来观察和分析碰撞前后物体的动量变化,并据此验证动量守恒原理。
正文内容:1. 碰撞类型及动量守恒原理1.1 弹性碰撞弹性碰撞是指两个物体在碰撞过程中动能和动量都得到守恒的碰撞类型。
在弹性碰撞中,碰撞物体之间相互作用力的大小和方向完全相反,并且动量总和在碰撞前后保持不变。
根据动量守恒原理,我们可以通过测量碰撞前后物体的速度和质量来计算和验证动量守恒。
1.2 非弹性碰撞非弹性碰撞是指两个物体在碰撞过程中不完全弹性恢复的碰撞类型。
在非弹性碰撞中,碰撞物体之间存在能量损失,并且在碰撞后分别以不同速度进行运动。
尽管动能不能守恒,但动量守恒仍然保持不变。
我们可以通过测量碰撞前后物体的速度和质量,以及所损失的能量来验证动量守恒。
2. 实验器材和步骤2.1 实验器材本实验所需的器材包括:弹性碰撞车、非弹性碰撞车、轨道、计时器、测量工具等。
2.2 实验步骤(1) 设置轨道和安装弹性碰撞车。
(2) 确保弹性碰撞车和非弹性碰撞车的初始位置和速度。
(3) 开始实验,并使用计时器记录碰撞前后物体的运动时间。
(4) 测量物体的质量,并记录实验数据。
(5) 重复实验,得出平均值并计算动量变化。
3. 实验结果和数据分析3.1 弹性碰撞实验结果我们进行了一系列弹性碰撞实验,并测量了碰撞前后物体的速度和质量。
通过计算动量的变化,我们发现动量在碰撞前后保持不变的结果与动量守恒原理相一致。
3.2 非弹性碰撞实验结果我们进行了一系列非弹性碰撞实验,并测量了碰撞前后物体的速度和质量。
通过计算动量的变化和能量损失,我们发现动量在碰撞前后仍然保持不变,验证了动量守恒原理的有效性。
4. 实验误差和改进4.1 实验误差来源实验误差主要来自于实验仪器的精确度、人为操作的不准确性以及环境因素的干扰等。
大学物理仿真实验报告-碰撞与动量守恒

大学物理仿真实验报告实验名称碰撞与动量守恒班级:姓名:学号:日期:碰撞和动量守恒实验简介动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。
力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。
因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。
本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。
定量研究动量损失和能量损失在工程技术中有重要意义。
同时通过实验还可提高误差分析的能力。
实验原理如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即(1)实验中用两个质量分别为m1、m2的滑块来碰撞(图),若忽略气流阻力,根据动量守恒有(2)对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。
当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。
由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。
1.完全弹性碰撞完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即(3)(4)由(3)、(4)两式可解得碰撞后的速度为(5)(6)如果v20=0,则有(7)(8)动量损失率为(9)能量损失率为(10)理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。
2.完全非弹性碰撞碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。
碰撞动量守恒实验报告

.大学物理仿真实验——碰撞与动量守恒实验报告教育资料..一、实验简介:动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。
力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。
因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。
本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。
定量研究动量损失和能量损失在工程技术中有重要意义。
同时通过实验还可提高误差分析的能力。
二、实验内容:.研究三种碰撞状态下的守恒定律1(1)取两滑块m、m,且m>m,用物理天平称m、m的质量(包括挡光片)。
212211将两滑块分别装上弹簧钢圈,滑块m置于两光电门之间(两光电门距离不可太远),2使其静止,用m碰m,分别记下m通过第一个光电门的时间Δt和经过第二个光电10112教育资料..门的时间Δt,以及m通过第二个光电门的时间Δt,重复五次,记录所测数据,数据212。
表格自拟,计算、)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。
(2)分别在两滑块上换上金属碰撞器,重复上述测量和计算。
(3.验证机械能守恒定律2(1)a=0时,测量m、m'、m、s、v、v,计算势能增量mgs和动能增量e21,重复五次测量,数据表格自拟。
(2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。
三、实验原理:如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即)( 1实验中用两个质量分别为m、m的滑块来碰撞(图4.1.2-1),若忽略气流阻力,21根据动量守恒有)2 (教育资料..对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。
大学物理实验室中的动量守恒与碰撞

大学物理实验室中的动量守恒与碰撞在大学物理实验室中,动量守恒与碰撞是一个重要的研究方向。
动量守恒是物理学中的基本定律之一,它指出在一个系统中,当没有外力作用时,系统的总动量保持不变。
碰撞作为一种常见的物理现象,是动量守恒的一个典型应用。
本文将重点探讨大学物理实验室中有关动量守恒与碰撞的实验研究。
1. 动量守恒的实验验证动量守恒定律的实验验证是大学物理实验课程中的基础实验之一。
一种常见的实验方法是利用动量守恒定律研究弹性碰撞。
实验中通常会使用弹性小球或弹簧,通过测量碰撞前后物体的速度和质量,验证动量守恒定律是否成立。
实验结果通常会与理论计算进行比较,从而检验动量守恒定律的准确性。
2. 非弹性碰撞的实验研究除了弹性碰撞,大学物理实验室还研究了非弹性碰撞的相关实验。
非弹性碰撞是指碰撞后物体之间发生能量损失的碰撞过程。
在这种情况下,动量守恒定律仍然成立,但总能量不再保持恒定。
实验中,可以使用软泥、黏土等物质进行非弹性碰撞实验,通过测量碰撞前后物体的速度和质量,探究碰撞过程中发生的能量转化和损耗。
3. 斜面碰撞实验斜面碰撞是大学物理实验室中常见的实验之一。
该实验主要研究在斜面上物体的碰撞过程。
通过测量物体的速度和质量,可以分析物体在斜面上运动时的动量守恒情况。
实验中,可以调节斜面的角度、物体的质量等参数,观察碰撞过程中动量守恒是否成立,并进一步推导出物体的加速度和位移等相关参数。
4. 动量守恒实验与实际应用动量守恒定律在实际应用中具有广泛的应用价值。
在交通事故、工业生产等领域,动量守恒定律被用于解决各种问题。
大学物理实验室中的动量守恒实验帮助学生理解和熟悉这一定律的实际应用情景。
通过实验的设计和数据分析,学生可以更好地理解动量守恒定律在碰撞过程中的应用,并进一步应用到实际问题解决中。
总结:大学物理实验室中的动量守恒与碰撞是一个引人入胜的研究领域。
通过实验验证动量守恒定律,研究弹性碰撞、非弹性碰撞以及斜面碰撞等实验,可以深入理解和掌握动量守恒定律在现实生活中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验实验报告
碰撞和动量守恒
班级:信息1401 姓名:龚顺学号:201401010127
【实验目的】:
1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。
2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。
【实验原理】
当一个系统所受和外力为零时,系统的总动量守恒,即有
若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。
1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有:
取V20=0,联立以上两式有:
动量损失率:
动能损失率:
2,完全非弹性碰撞
碰撞后两物体粘在一起,具有相同的速度,即有:
仍然取V20=0,则有:
动能损失率:
动量损失率:
3,一般非弹性碰撞中
一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数:
两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。
当V20=0时有:
e的大小取决于碰撞物体的材料,其值在0~1之间。
它的大小决定了动能损失的大小。
当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0<e<1时,为一般非弹性碰撞。
动量损失:
动能损失:
【实验仪器】
本实验主要仪器有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等
【实验内容】
一、气垫导轨调平及数字毫秒计的使用
1、气垫导轨调平
打开气源,放上滑块,观察滑块与轨面两侧的间隙纵向水平调节双支脚螺丝,横向水平调节单支脚,直到滑块在任何位置均保持不动,或做极缓慢的来回滑动为止。
动态法调平,滑块上装挡光片,使滑块以缓慢速度先后通过两个相距60cm的光电门,如果滑块通过两光电门的时间差小于1ms,便可认为轨道已经调平。
本实验采用动态调节。
2、数字毫秒计的使用
使用U型挡光片,计算方式选择B档。
二滑块上分别装上弹簧圈碰撞器。
将小滑块m2置于两个相距40cm的光电门之间,使其静止,使大滑块m1以速度V10去碰撞m2,从计时器上读出碰撞前后通过S距离所用的时间t10,t1,t2.记录数据。
二、重复5次测量,计算动量和动能损失。
损失率小于5%即可认为是动量守恒的。
三、将两个钢圈换成两个尼龙搭扣,重复上述实验。
四、将尼龙搭扣换成非弹性碰撞器,重复上述实验。
【数据处理】
一、完全弹性碰撞实验数据
二一般非弹性碰撞实验数据三完全非弹性碰撞实验数据
【实验结论】
1 完全弹性碰撞
由实验数据可知,在完全弹性碰撞下系统内无机械能的损失,只产生机械能的转移,系统动量和机械能同时守恒。
2 一般非弹性碰撞
由实验数据知,在非弹性力的作用下,系统的一部分机械能转化为物体的内能机械能存在损失,机械能不守恒。
但在允许误差范围内动量守恒。
3 完全非弹性碰撞
由实验数据可知,当相互作用力是完全非弹性力,此时机械能向内能的转化最大,机械能的损失最大,机械能不守恒,但此过程中动量守恒。
【思考题】
1、碰撞前后系统总动量不相等,试分析其原因。
答:粘滞阻力,阻尼系数大小,系统恢复速度,气流速度,系统负载大小,都会影响实验结果。
2、恢复系数e的大小取决于哪些因素?
答:碰撞物体的材料,系统环境等。
3、你还能想出验证机械能守恒的其他方法吗?
答:通过研究自由落体运动,单摆运动等方法可以验证。