大学物理仿真实验报告

合集下载

物理仿真实验报告

物理仿真实验报告

物理仿真实验报告物理仿真实验报告引言:物理仿真实验是一种通过计算机软件模拟真实物理实验的方法,它可以帮助我们深入理解物理现象和原理。

本篇报告将介绍我进行的一次物理仿真实验,重点讨论实验的目的、方法、结果和结论。

实验目的:本次实验的目的是研究物体在受到不同力的作用下的运动规律,并探究力对物体运动的影响。

通过仿真实验,我们可以观察和分析物体在不同力的作用下的运动轨迹、速度和加速度的变化。

实验方法:我们使用了一款物理仿真软件,在虚拟环境中进行实验。

首先,我们选择了一个简单的物理模型,如自由落体或平抛运动。

然后,我们设置不同的初始条件和力的大小,观察物体的运动情况。

通过改变初始速度、质量或施加的力的方向,我们可以研究不同情况下的运动规律。

实验结果:在实验中,我们观察到了许多有趣的现象和规律。

例如,在自由落体实验中,我们发现物体在没有外力作用下以恒定的加速度向下运动,这个加速度被称为重力加速度。

我们还发现,物体的质量对自由落体的运动没有影响,所有物体都以相同的加速度自由下落。

在平抛运动实验中,我们发现物体在水平方向上做匀速直线运动,而在竖直方向上受到重力的影响而做自由落体运动。

通过改变施加的力的大小和方向,我们还研究了物体在斜面上滑动的情况。

我们发现,施加的力越大,物体的加速度越大,滑动的速度也越快。

而改变施加力的方向会改变物体在斜面上的运动轨迹,例如,当施加的力与斜面垂直时,物体只会沿着斜面下滑,而不会在水平方向上运动。

结论:通过这次物理仿真实验,我们深入了解了物体在受到不同力的作用下的运动规律。

我们发现,物体的质量对自由落体和平抛运动没有影响,而施加的力的大小和方向会直接影响物体的加速度和运动轨迹。

这些发现对我们理解和应用物理学原理具有重要意义。

在实际的物理实验中,我们往往受到实验条件的限制,无法进行大范围的变量改变和数据记录。

而物理仿真实验则为我们提供了一个灵活、可控的环境,使我们能够更深入地研究物理现象。

仿真实验报告(推荐5篇)

仿真实验报告(推荐5篇)

仿真实验报告(推荐5篇)第一篇:仿真实验报告大学物理仿真实验报告——塞曼效应一、实验简介塞曼效应就是物理学史上一个著名得实验。

荷兰物理学家塞曼(Zeeman)在1896 年发现把产生光谱得光源置于足够强得磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化得谱线,这种现象称为塞曼效应。

塞曼效应就是法拉第磁致旋光效应之后发现得又一个磁光效应。

这个现象得发现就是对光得电磁理论得有力支持,证实了原子具有磁矩与空间取向量子化,使人们对物质光谱、原子、分子有更多了解.塞曼效应另一引人注目得发现就是由谱线得变化来确定离子得荷质比得大小、符号。

根据洛仑兹(H、A、Lorentz)得电子论,测得光谱得波长,谱线得增宽及外加磁场强度,即可称得离子得荷质比.由塞曼效应与洛仑兹得电子论计算得到得这个结果极为重要,因为它发表在J、J 汤姆逊(J、J Thomson)宣布电子发现之前几个月,J、J 汤姆逊正就是借助于塞曼效应由洛仑兹得理论算得得荷质比,与她自己所测得得阴极射线得荷质比进行比较具有相同得数量级,从而得到确实得证据,证明电子得存在。

塞曼效应被誉为继 X 射线之后物理学最重要得发现之一。

1902 年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰她们研究磁场对光得效应所作得特殊贡献).至今,塞曼效应依然就是研究原子内部能级结构得重要方法。

本实验通过观察并拍摄Hg(546、1nm)谱线在磁场中得分裂情况,研究塞曼分裂谱得特征,学习应用塞曼效应测量电子得荷质比与研究原子能级结构得方法。

二、实验目得1、学习观察塞曼效应得方法观察汞灯发出谱线得塞曼分裂; 2、观察分裂谱线得偏振情况以及裂距与磁场强度得关系;3、利用塞曼分裂得裂距,计算电子得荷质比数值。

三、实验原理1、谱线在磁场中得能级分裂设原子在无外磁场时得某个能级得能量为,相应得总角动量量子数、轨道量子数、自旋量子数分别为。

当原子处于磁感应强度为得外磁场中时,这一原子能级将分裂为层。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。

实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。

理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。

动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。

能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。

实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。

实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。

实验步骤实验准备1. 打开计算机,启动物理仿真软件。

2. 设置实验初始参数,包括物体质量、速度等。

实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。

2. 进行碰撞实验,观察动量和能量的转移情况。

3. 分析实验结果,得出结论。

实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。

数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。

实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。

大物仿真实验实验报告

大物仿真实验实验报告

物理仿真实验实验报告光电效应和普朗克常量的确定一、实验简介1905年,年仅26岁的爱因斯坦提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后被具有非凡才能的物理学家密里根用光辉的实验证实了。

两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。

光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在揭示光的波粒二象性等方面都具有划时代的深远意义。

利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。

二、实验目的(1)了解光电效应基本规律,加深对光量子论的认识和理解;(2)了解光电管的结构和性能,并测定其基本特性曲线;(3)验证爱因斯坦光电效应方程,并测量普朗克常量。

三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。

在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。

光电效应实验原理如图1所示。

其中S为真空光电管,K为阴极,A为阳极。

当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当用一波长比较短的单色光照射到阴极K上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。

1.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值H I ,饱和电流与光强成正比,而与入射光的频率无关。

当K A U U U -=变成负值时,光电流迅速减小。

实验指出,有一个遏止电位差a U 存在,当电位差达到这个值时,光电流为零。

2.光电子的初动能与入射光频率之间的关系光电子从阴极逸出时,具有初动能。

在减速电压下,光电子在逆着电场力方向由K 极向A 极运动。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告

仿真实验(单摆测重力加速度和单透镜焦距的测定)引言随着计算机应用的普及,在各个应用领域都采用计算机设计和仿真,在大学物理实验课教学中,除了实际操作外还可以进行计算机仿真实验,对有些内容采用仿真实验也可以起到很好的效果。

一、实验目的:1、了解仿真实验特点2、学会用仿真实验完成单摆测重力加速度3、学会用仿真实验完成单透镜焦距的测定二、实验仪器:计算机、仿真软件三、实验原理1、单摆的工作原理单摆在摆动过程中,当摆角小于5度时,其运动为简谐运动,周期2224LT g Tπ=⇒=,通过测定摆长L 与T 可测定加速度g 。

详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的大小和位置是依照物体离透镜的距离而决定的 当u f >>时,极远处的物体经过透镜在后焦点附近成缩小的倒立实像。

当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变大。

当u f =时,物体位于前焦点,像存在于无穷远处。

当u f <时,物体位于前焦点以内,像为正立放大的虚像,与物体位于同侧,由于虚像点是光线反方向延长的交点,因此不能用像屏接收,只能通过透镜观察。

(1)、自准直法测凸透镜的焦距光路图如下图1所示。

当物体A 处在凸透镜的焦距平面时,物A 上各点发出的光束,经透镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜M 将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′。

所以自准直法的特点是,物、像在同一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。

(2)、贝塞尔法(共轭法,二次成像法)测凸透镜的焦距利用凸透镜物像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告

⼤学物理实验仿真实验实验报告仿真实验(单摆测重⼒加速度和单透镜焦距的测定)引⾔随着计算机应⽤的普及,在各个应⽤领域都采⽤计算机设计和仿真,在⼤学物理实验课教学中,除了实际操作外还可以进⾏计算机仿真实验,对有些内容采⽤仿真实验也可以起到很好的效果。

⼀、实验⽬的:1、了解仿真实验特点2、学会⽤仿真实验完成单摆测重⼒加速度3、学会⽤仿真实验完成单透镜焦距的测定⼆、实验仪器:计算机、仿真软件三、实验原理1、单摆的⼯作原理单摆在摆动过程中,当摆⾓⼩于5度时,其运动为简谐运动,周期2224LT g Tπ=?=,通过测定摆长L 与T 可测定加速度g 。

详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的⼤⼩和位置是依照物体离透镜的距离⽽决定的当u f >>时,极远处的物体经过透镜在后焦点附近成缩⼩的倒⽴实像。

当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变⼤。

当u f =时,物体位于前焦点,像存在于⽆穷远处。

当u f <时,物体位于前焦点以内,像为正⽴放⼤的虚像,与物体位于同侧,由于虚像点是光线反⽅向延长的交点,因此不能⽤像屏接收,只能通过透镜观察。

(1)、⾃准直法测凸透镜的焦距光路图如下图1所⽰。

当物体A 处在凸透镜的焦距平⾯时,物A 上各点发出的光束,经透镜后成为不同⽅向的平⾏光束。

若⽤⼀与主光轴垂直的平⾯镜M 将平⾏光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平⾯上,此关系就称为⾃准直原理。

所成像是⼀个与原物等⼤的倒⽴实像A ′。

所以⾃准直法的特点是,物、像在同⼀焦平⾯上。

⾃准直法除了⽤于测量透镜焦距外,还是光学仪器调节中常⽤的重要⽅法。

凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。

(2)、贝塞尔法(共轭法,⼆次成像法)测凸透镜的焦利⽤凸透镜物像共轭对称成像的性质测量凸透镜焦距的⽅法,叫共轭法。

大学物理仿真实验报告

大学物理仿真实验报告篇一:大学物理仿真实验报告大学物理仿真实验报告实验日期:2011年5月31日实验人员:机自实验名称:热敏电阻的温度特性一、实验目的:1、了解热敏电阻的电阻—温度特性及测温原理;2、学习惠斯通电桥的原理及使用方法;3、学习坐标变换、曲线改直的技巧。

二、实验原理:热敏电阻---实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A、B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为惠斯通电桥的工作原理:如图所示:四个电阻R0,R1,R2,Rx 组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx 即可求出。

电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。

实验仪器三、实验仪器及使用方法:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器、稳压电源。

四、实验内容:1、从室温开始,每隔5°C测量一次Rt,直到85°C。

撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。

2、作ln Rt ~ (R1 / T)曲线,确定式(R1)中常数A和B五、数据记录及处理:1、数据处理结果如下:2、作ln Rt ~ (R1 / T)曲线如下:六、实验结论,误差分析及建议:1、实验结论:了解了惠斯通电桥的原理及使用方法;基本掌握坐标变换、曲线改直的技巧。

作ln Rt ~ (R1 / T)曲线,成线性关系。

2、误差分析:由于在记录过程中温度计视数在变化,故出现误差; 电源不稳定,造成系统误差;数据处理时产生偶然误差。

3、建议:1)在使用检流计时,要注意保护检流计,不要让大电流通过检流计,实验中间要用跃接2)实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。

物理仿真实验报告

物理仿真实验报告
《物理仿真实验报告》
摘要:
本实验通过物理仿真软件进行了一系列物理实验,包括简谐振动、牛顿运动定律、光的折射等。

通过实验数据的收集和分析,得出了一些有意义的结论,并对物理规律有了更深入的理解。

一、简谐振动实验
利用物理仿真软件,我们模拟了一个弹簧振子的简谐振动过程。

通过改变弹簧的劲度系数和振子的质量,我们发现简谐振动的周期与振动系统的参数有着密切的关系。

实验结果表明,简谐振动的周期与振动系统的劲度系数成反比,与振子的质量成正比。

这与理论预期相符。

二、牛顿运动定律实验
我们通过物理仿真软件模拟了一个小车在斜面上的运动过程。

通过改变小车的质量和斜面的倾角,我们观察到小车的加速度随着斜面倾角的增加而增大,与牛顿第二定律的预测一致。

同时,我们还验证了牛顿第一定律和第三定律,实验结果与理论相符。

三、光的折射实验
我们利用物理仿真软件模拟了光在不同介质中的折射现象。

通过改变介质的折射率和入射角度,我们发现光线的折射角与入射角之间存在着一定的关系,符合折射定律。

实验结果进一步验证了光的折射规律。

综上所述,通过物理仿真实验,我们对物理规律有了更深入的理解,同时也加深了对实验数据的收集和分析的重要性。

希望通过这些实验,能够更好地理解
物理规律,提高实验操作能力。

大学物理仿真实验报告

大学物理仿真实验报告项目名称:固体热膨胀系数的测量院系名称:电气工程学院专业班级:姓名:学号:一、实验目的1.掌握测量固体线热膨胀系数的基本原理。

2.掌握大学物理仿真实验软件的基本操作方法。

3.测量铜棒的线热膨胀系数。

4.学会用图解图示法处理实验数据。

二、实验原理1.膨胀系数 : 表征物体热胀冷缩特性的物理量,常用:(1)线膨胀系数描述材料在受热状态下,在一维方向上膨胀特性的物理量。

定义为:(2)体膨胀系数体膨胀是材料在受热时体积的增加,一般情况下,固体的体胀系数为其线胀系数的3倍。

2.光杠杆放大原理(测量△L)L b n DL tα⋅∆=∆DLbL* =2αK三、实验仪器1.实物仪器:镜尺组、平面镜、待测铜棒等。

2.仿真软件的操作方法演示。

四、实验内容及步骤(实验过程截图)1、调整试验仪器。

调整镜面垂直,然后调整望远镜是视野达到要求。

2、开始试验,将功率调到最大,每经过十摄氏度读取一次数据。

3、对其他试验数据进行测量。

按要求测量D、d、L。

记录数据。

4、对试验数据进行分析计算。

五、数据记录与处理温度伸长量10 020 0.3530 0.7140 1.1150 1.5160 1.8870 2.2280 2.6190 3.01b=(7.20-1.00)cmD=(196.90-8.40)cmL=50.70cm由图表知道斜率K=0.0377由公式得:膨胀系数为1.223。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。

然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。

为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。

本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。

II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。

通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。

III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。

其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。

通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。

IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。

具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。

2. 设置初始条件,包括质量、弹性系数等参数。

3. 点击开始按钮,开始模拟实验过程。

4. 观察模拟实验的过程,记录下每次振动的周期时间。

5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。

6. 绘制周期时间与质量、弹性系数之间的关系曲线。

V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。

通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。

这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。

2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称:碰撞过程中守恒定律的研究
实验日期:
实验人:
1. 实验目的:
利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。

定量研究动量损失和能量损失在工程技术中有重要意义。

同时通过实验还可提高误差分析的能力。

2. 实验仪器和使用:
实验仪器:主要有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。

1.气垫导轨是以空气作为润滑剂,近似无摩擦的力学实验装置。

导轨由优质三角铝合金管制成,长约 2m ,斜面宽度约7cm ,管腔约18.25cm ,一端密封,一端通入压缩空气。

铝管向上的两个外表面钻有许多喷气小孔,压缩空气进入管腔后,从小孔喷出。

导轨的一端装有滑轮,导轨的二端装有缓冲弹簧,整个导轨安装在工字梁上,梁下有三个支脚,调节支脚螺丝使气垫保持水平。

2.光电计时系统由光电门和数字毫秒计或电脑计时器构成。

光电门安装在气轨上,时间由数字毫秒计或电脑计时器测量。

3.气源是向气垫导轨管腔内输送压缩空气的设备。

要求气源有气流量大、供气稳定、噪音小、能连续工作的特点,一般实验室采用小型气源,气垫导轨的进气口用橡皮管和气源相连,进入导轨内的压缩空气,由导轨表面上的小孔喷出,从而托浮起滑块,托起的高度一般在0.1mm 以上。

3.实验原理:
如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即
i
i v m ∑=恒量 (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有
2211202101v m v m v m v m +=+ (2)
对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。

当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。

由于滑块作一维运动,式(2)中矢量v 可改成标量 , 的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反
之,则取负号。

1.完全弹性碰撞
完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即
2211202101v m v m v m v m +=+ (3)
22
2211220221012/12/12/12/1v m v m v m v m +=+ (4) 由(3)、(4)两式可解得碰撞后的速度为
2
1202102112)(m m v m v m m v ++-= (5) 2
1101201222)(m m v m v m m v ++-= (6) 如果v20=0,则有 2
110211)(m m v m m v +-= (7) 2110122m m v m v +=
(8) 动量损失率为 △p/0p =01
0p p p -=10
12211101)(v m v m v m v m +- (9) 能量损失率为 △E/0E =0
10E E E - (10)
2.完全非弹性碰撞
碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。

在完全非弹性碰撞中,系统动量守恒,动能不守恒。

v m m v m v m )(21202101+=+ (11)
在实验中,让v 20=0,则有v m m v m )(21101+= (12)
v=2
1101m m v m + (13) 动量损失率: △p/0p =1-10
121)(v m v m m + (14) 动能损失率: △E/0E =2
12m m m + (15)
3. 一般非弹性碰撞
一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。

牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度12v v -与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 e=10
2012v v v v -- 恢复系数e 由碰撞物体的质料决定。

E 值由实验测定,一般情况下0<e<1,当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞。

4.实验内容及数据
1.研究三种碰撞状态下的守恒定律
(1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。


两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算△p/p 、△E/E 。

(2) 分别在两滑块上换上尼龙搭扣,重复上述测量和计算。

(3) 分别在两滑块上换上金属碰撞器,重复上述测量和计算。

2.验证机械能守恒定律
(1)a=0时,测量m 、m ’、me 、s 、v1、v2,计算势能增量mgs 和动能增量
1/2(e m m m ++')(2
122v v -),重复五次测量,数据表格自拟。

(2)a 不等于0时,(即将导轨一端垫起一固定高度h ,sin α=h/L ),重复以上测量。

3.数据记录
1.完全弹性碰撞
2.一般非弹性碰撞
3.完全非弹性碰撞
5.总结(误差分析,建议)
由三张表格可以看出
1.在完全弹性碰撞,完全非弹性碰撞,一般弹性碰撞时△p/p在误差范围内均约等于0。

由此可以证明系统动量守恒。

2.第一张表格(即完全弹性碰撞)可以看到△E/E约等于0,由此可以看出完全弹性碰撞时
系统能量基本没有损失。

有二,三张表格的△E/E可以看出一般弹性碰撞与完全非弹性碰撞市系统能量均有损失,并且完全非弹性碰撞时能量损失最大。

3.根据数据显示,完全弹性碰撞时的恢复系数最大,接近于1。

完全非弹性碰撞时的恢复
系数最小,接近于0。

建议:实验中只有“三种碰撞状态下的守恒定律”的研究,而没有机械能守恒定律的相关动画。

建议下次改进。

6.思考题
1.碰撞前后系统总动量不相等,试分析其原因。

1.有可能没有完全做到正碰,是斜碰
2.气垫导轨没有调平
2.恢复系数e的大小取决于哪些因素?
e的大小取决于碰撞物体反的质料决定,如弹簧钢圈, 尼龙搭扣, 金属碰撞器.
3.你还能想出验证机械能守恒的其他方法吗?
利用纸带,打点计时器,重锤等仪器来验证.。

相关文档
最新文档