大学物理仿真试验仿真实验
【大学物理实验(含 数据+思考题)】仿真实验 落球法测定液体的粘度

仿真实验 / 落球法测定液体的粘度一、实验目的(1)观察液体的粘滞现象;(2)用落球法测量不同温度下蓖麻油的粘度;(3)巩固使用基本测量仪器的技能;(4)了解PID温度控制的原理。
二、实验仪器变温黏度测量仪,ZKY-PID温控实验仪,停表,螺旋测微器,钢球若干,金属镊子。
三、实验原理1.落球法测定液体黏度原理一个在静止液体中下落的小球受到重力、浮力和黏滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示黏滞阻力的斯托克斯公式:(1)(1)式中d为小球直径。
由于黏滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受外力达到平衡,小球将以匀速下落,此时有:(2)式中ρ为小球密度,ρ为液体密度。
由(2)式可解出黏度η的表达式:(3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时黏滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:(4)当小球的密度较大,直径不是太小,而液体的黏度值又较小时,小球在液体会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对中的平衡速度v斯托克斯公式的影响:(5)其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。
(6)当Re小于0.1时,可认为(1)、(4)式成立。
当0.1<Re<1时,应考虑(5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。
考虑(5)式中1级修正项的影响及玻璃管的影响后,黏度η1可表示为:(7)由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(7)式又可表示为:(8)已知或测量得到ρ、ρ、D、d、v等参数后,由(4)式计算黏度η,再由(6)式计算Re,若需计算Re的1级修正,则由(8)式计算经修正的黏度η1。
在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:1Pa·s=10P=1000cP (9)2.PID条件控制PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图1说明。
大学物理仿真实验报告

大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。
通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。
本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。
一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。
与传统实验相比,物理仿真实验具有以下几个方面的意义。
1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。
而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。
2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。
学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。
3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。
而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。
二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。
1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。
通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。
2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。
在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。
3. 提升创新能力物理仿真实验可以激发学生的创新能力。
大学物理仿真实验傅里叶光学

⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告碰撞和动量守恒班级:信息1401 姓名:龚顺学号:201401010127【实验目的】:1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。
2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。
【实验原理】当一个系统所受和外力为零时,系统的总动量守恒,即有若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。
1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有:取V20=0,联立以上两式有:动量损失率:动能损失率:2,完全非弹性碰撞碰撞后两物体粘在一起,具有相同的速度,即有:仍然取V20=0,则有:动能损失率:动量损失率:3,一般非弹性碰撞中一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数:两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。
当V20=0时有:e的大小取决于碰撞物体的材料,其值在0~1之间。
它的大小决定了动能损失的大小。
当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0<e<1时,为一般非弹性碰撞。
动量损失:动能损失:【实验仪器】本实验主要仪器有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等【实验内容】一、气垫导轨调平及数字毫秒计的使用1、气垫导轨调平打开气源,放上滑块,观察滑块与轨面两侧的间隙纵向水平调节双支脚螺丝,横向水平调节单支脚,直到滑块在任何位置均保持不动,或做极缓慢的来回滑动为止。
动态法调平,滑块上装挡光片,使滑块以缓慢速度先后通过两个相距60cm的光电门,如果滑块通过两光电门的时间差小于1ms,便可认为轨道已经调平。
本实验采用动态调节。
2、数字毫秒计的使用使用U型挡光片,计算方式选择B档。
二滑块上分别装上弹簧圈碰撞器。
将小滑块m2置于两个相距40cm的光电门之间,使其静止,使大滑块m1以速度V10去碰撞m2,从计时器上读出碰撞前后通过S距离所用的时间t10,t1,t2.记录数据。
大学物理仿真实验报告

实验名称:光电效应实验实验日期:2023年4月10日学号:2120302003实验人员:张三、李四一、实验目的1. 通过仿真实验,理解光电效应的基本原理。
2. 掌握光电效应方程的推导过程。
3. 分析入射光频率与光电子最大初动能之间的关系。
4. 熟悉光电效应在光电探测技术中的应用。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光电子的最大初动能 \(E_k\) 与入射光的频率 \(v\) 和金属的逸出功 \(W_0\) 之间存在以下关系:\[E_k = hv - W_0\]其中,\(h\) 为普朗克常数。
三、实验步骤1. 打开仿真软件,设置入射光的频率和强度。
2. 调整金属表面的逸出功,观察光电子的发射情况。
3. 记录不同频率入射光下的光电子最大初动能。
4. 分析入射光频率与光电子最大初动能之间的关系。
四、实验结果与分析1. 当入射光的频率较低时,光电子的发射率较低,且光电子的最大初动能较小。
2. 随着入射光频率的增加,光电子的发射率逐渐增加,光电子的最大初动能也随之增加。
3. 当入射光的频率达到一定值时,光电子的发射率达到最大,此时光电子的最大初动能也达到最大值。
4. 当入射光的频率继续增加时,光电子的发射率逐渐降低,光电子的最大初动能也逐渐降低。
根据实验结果,可以得出以下结论:1. 光电效应方程 \(E_k = hv - W_0\) 是正确的。
2. 入射光的频率与光电子的最大初动能之间存在正相关关系。
3. 光电效应在光电探测技术中具有广泛的应用。
五、实验总结本次实验通过仿真实验,使我们深入理解了光电效应的基本原理,掌握了光电效应方程的推导过程,并分析了入射光频率与光电子最大初动能之间的关系。
通过实验,我们认识到光电效应在光电探测技术中的重要性,为今后的学习和研究打下了坚实的基础。
六、实验拓展1. 研究不同金属的逸出功对光电效应的影响。
2. 探究光强度对光电效应的影响。
大学物理仿真实验报告

大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。
实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。
理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。
动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。
能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。
实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。
实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。
实验步骤实验准备1. 打开计算机,启动物理仿真软件。
2. 设置实验初始参数,包括物体质量、速度等。
实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。
2. 进行碰撞实验,观察动量和能量的转移情况。
3. 分析实验结果,得出结论。
实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。
数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。
实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。
大学物理仿真实验报告-利用单摆测量重力加速度(2)

西安交通大学
大学物理仿真实验
实验报告
利用单摆测量重力加速度
实验简介
单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。
本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
实验原理
单摆的结构参考图1单摆仪,一级近似的周期公式为
T=2π√l
g
由此通过测量周期摆长求重力加速度。
实验仪器
单摆仪,摆幅测量标尺,钢球,游标卡尺,秒表,刻度尺实验过程及原始记录
测量内容及数据处理
T=1.825s
L=91.50cm
g=4π2L−D2⁄
T2
=4π2
(91.50−1.7462⁄)
1.8252
=10.74m s2
⁄
E g=
△D2⁄
L−D2⁄
=
0.022⁄
91.50−1.7462⁄
=0.11%△g=gE g=0.012m s2
⁄
所以实验结果:
g=10.74±0.012m/s2
误差分析
1.游标卡尺,直尺等读书误差;
2.钢球摆过平衡位置时未能及时计时;
总结反思
实验结果与实际结果存在一定偏差,实验过程检查无误,原理清晰,以后做类似实验需要设计更为精确的实验方案。
大学物理仿真实验---牛顿环

大学物理仿真实验实验报告电子13 梁辰余2110501077牛顿环法测曲率半径一、实验目的1.学习用牛顿环测定透镜曲率半径的方法;2.正确使用读数显微镜,学习用逐差法处理数据。
二、实验原理如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△′等于膜厚度e的两倍,即△′ =2e此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ /2的附加光程差,总的光程差为(1)当△满足条件,(k=1,2,3…)(2)时,发生相长干涉,出现第K级亮纹,而当, (k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk ,对应的膜厚度为ek,则(4)在实验中,R的大小为几米到十几米,而 ek 的数量级为毫米,所以R >>ek,e k 2相对于2Rk是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验实验名称:声速的测定目的要求:1.了解超声波的发射和接收方法。
2.加深对振动合成、波动干涉等理论知识的理解。
3.掌握用驻波法和相位法测声速。
实验原理:由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。
本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。
声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。
下图是超声波测声速实验装置图。
驻波法测波长设沿x 方向入射波的方程为:沿x 负方向反射波方程为:两波相遇干涉时,在空间某点的合振动方程为(驻波方程):12cos 2()cos 2()x xy y y A ft A ft ππλλ=+=-++(2cos 2)cos 2xA ft ππλ=当2/λn x =;(n =1,2,…)位置时,声振动振幅最大,为2A ,称为波腹,当4/)12(λ-=n x ,(n =1,2,…)位置上声振动振幅为零,这些点称为波节。
其余各点的振幅在零和最大值之间。
两相邻波腹(或波节)间的距离为λ/2即半波长。
相位比较法测波长从换能器S1发出的超声波到达接收器S 2,所以在同一时刻S 1与S 2处的波有一相位差:其中λ是波长,x 为S 1和S 2之间距离)。
因为x 改变一个波长时,相位差就改变2π。
利用李萨如图形就可以测得超声波的波长。
仪器用具:1.声速的测量实验仪器包括超声声速测定仪、函数信号发生器和示波器。
2.超声声速测定仪主要部件是两个压电陶瓷换能器和一个游标卡尺。
3.函数信号发生器1cos 2()xy A ft πλ=-2cos 2()x y A ft πλ=+提供一定频率的信号,使之等于系统的谐振频率。
4.示波器示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。
并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。
实验内容:1.调整仪器使系统处于最佳工作状态。
2.用驻波法(共振干涉法)测波长和声速。
3.用相位比较法测波长和声速。
注意事项1.确保换能器S1和S2端面的平行。
2.信号发生器输出信号频率与压电换能器谐振频率f保持一致。
实验数据:1、表1 驻波法和相位比较法测定声速环境温度t1= 13.2℃t2= 13.2℃测量次数共振法直线斜率相位法f(KHz) L i(mm) f(KHz) L i(mm)1 35.939 4.62 + 35.943 4.702 35.938 9.43 - 35.944 9.443 35.938 14.27 + 35.944 14.174 35.938 18.96 - 35.944 18.875 35.939 23.71 + 35.944 23.586 35.939 28.35 - 35.944 28.327 35.940 33.20 + 35.944 33.058 35.941 37.93 - 35.945 37.809 35.940 42.69 + 35.945 42.6310 35.94147.46 - 35.94447.312、表2 驻波法测定声速 λ的逐差处理 序号i12345511()5i i mm λλ==∑52()5i i i L L λ+=-9.49 9.51 9.46 9.49 9.50 9.49(mm )i λλ-0 0.02 -0.03 0 0.01S λ=0.008(mm)S λ=mm ) A U S λ==0.008(mm )B U ∆===0.006(mm )合成不确定度U λ=mm )3、表3 驻波法测定声速 f 的数据处理 序号i12345678910()f KHzi f35.939 35.938 35.938 35.938 35.939 35.939 35.940 35.941 35.940 35.941 35.939i f f --0.001-0.001-0.0010.0010.0020.0010.002f S =0.001f S =KHz) A f U S ==0.001(KHz ))B U ∆==均匀分布=0.003(KHz )合成不确定度f U ==0.003(KHz ) λ=9.49(mm ) ()f Hz =35939(Hz ) u f λ= =341.1m/s 由u f λ=得,u u u = m/s 得()341.10.4u u u U SI m/s =±=±标准状态下,干燥空气中声速为0331.5/u m s = 当t 平均= 13.2℃时/u u s =理=339.4 m/s 声速的相对误差100%u u u -⨯理理=0.59%4、表4 相位比较法测定声速 λ的逐差处理 序号i12345511()5i i mm λλ==∑52()5i i i L L λ+=-9.45 9.44 9.45 9.50 9.499.47(mm )i λλ--0.02 -0.03 -0.02 0.03 0.020.012()S mm λ=S λ==0.012(mm )A U S λ==0.012(mm )B U ∆===0.006(mm )合成不确定度0.01()U mm λ== 5、表5 相位比较法测定声速 f 的数据处理 序号i12345678910()f KHzi f35.943 35.944 35.944 35.944 35.944 35.944 35.944 35.945 35.945 35.944 35.944i f --0.0010.0010.001fS=0.0002f S =KHz) A f U S ==0.0002(KHz))B U ∆==均匀分布=0.003(KHz )合成不确定度f U ==0.003(KHz ) λ=9.47(mm ) ()f Hz =35944(KHz ) u f λ= =340.4 m/s 由u f λ= 得,u u u = m/s 得()340.40.4(/)u u u U SI m s =±=±标准状态下,干燥空气中声速为0331.5/u m s = 当t 平均= 13.2℃ 时u =理339.4 m/s 声速的相对误差100%u u u -⨯理理=0.29%思考1.固定距离,改变频率,以求声速。
是否可行?答:不可行。
换能器有一个固有频率,发射信号的频率与之相等时产生共振,幅度最大,若发射信号的频率偏离其固有频率,幅度衰减很快直至幅度为零,不利于观测。
2.各种气体中的声速是否相同?为什么?答:不一样,声音是一种波,受空气的阻力而衰减,气体的密度不同衰减当然不一样了,所以传播速度不一样空气比热容比的测定【实验目的】1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.了解压力传感器和电流型集成温度传感器的使用方法及特性。
【实验原理】对理想气体的定压比热容C p和定容比热容C v之关系由下式表示:C p—C v=R (1)(1)式中,R为气体普适常数。
气体的比热容比r值为:r= C p/C v (2)气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r 值经常出现在热力学方程中。
测量r 值的仪器如图〈一〉所示。
实验时先关闭活塞C 2,将原处于环境大气压强P 0、室温θ0的空气从活塞C 1,处把空气送入贮气瓶B 内,这时瓶内空气压强增大。
温度升高。
关闭活塞C 1,待稳定后瓶内空气达到状态I (P 0,θ0,V 1),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II (P 1,θ0,V 1)后,迅速关闭活塞C 2,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程:'20'11V P V P = (3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ0时,原状态为I (P 1,θ0,V 1)体系改变为状态 III (P 2,θ0,V 2),应满足:2011V P V P = (4)由(3)式和(4)式可得到:10101212ln ln ln()ln ln ln()P P P P P P P P γ-==- (5) 利用(5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比r 值。
【实验仪器】【实验内容】1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。
用Forton 式气压计测定大气压强P 0,用水银温度计测环境室温θ0。
开启电源,将电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。
2.把活塞C 2关闭,活塞C 1打开,用打气球把空气稳定地徐徐进入贮气瓶B 内。
用压力传感器和AD590温度传感器测量空气的压强和温度,记录瓶内压强均匀稳定时,压强P 1和温度θ0值(室温为θ0)。
3.突然打开活塞C 2,当贮气瓶的空气压强降低至环境大气压强P 0时(这时放气声消失),迅速关闭活塞C 2。
4.当贮气瓶内空气的温度上升至室温θ0时,记下贮气瓶内气体的压强P 2。
5.用公式(5)进行计算,求得空气比热容比值。
【实验数据处理】10101212ln ln ln()ln ln ln()P P P P P P P P γ-==-(200mv读数相当于1.000±104Pa)r=1.399,理论值r=1.402,所以:E21.0%r。