AT89C51相关特性
(单片机原理及应用)第2章AT89C51系列单片机结构

2
波特率发生器
控制数据传输速度。
3
数据帧
用于封装和传输数据。
定时器/计数器介绍
1 定时功能
用于生成精确的时间延迟。
2 计数功能
用于计数外部事件或脉冲。
8位CPU架构,高性能运算能力, 支持多种指令集和数据格式。
存储器
ROM和RAM存储器,用于程序 和数据的存储与访问。
I/O端口
提供与外部设备的通信和控制接 口。
AT89C51的程序和数据存储器
程序存储器ROM
存储程序代码和指令,容量可扩展。
数据存储器RAM
用于存储数据和临时变量。
AT89C51的特殊功能寄存器SFR
(单片机原理及应用)第2 章AT89C51系列单片机结 构
AT89C51系列单片机是一种广泛应用于嵌入式系统和工业自动化领域的单片 机技术。
AT89C51系列单片机概述
AT89C51是英特尔公司基于CISC架构的高性能8位单片机系列,用于控制和 处理各种设备和系统。它具有强大的功能和良好的可扩展性。
AT89C51特点与优势
Байду номын сангаас1 灵活性
2 高性能
各种I/O口和功能模块,可满足不同应用需求。
快速响应和高执行效率,适用于实时控制任 务。
3 易于学习和使用
开发工具丰富,文档资料完善,适合初学者 和专业开发人员。
4 可靠性
稳定性好,可靠性高,适合长时间运行的应 用场景。
AT89C51的CPU核心架构
处理器
1 控制寄存器
控制各种功能模块和外设的工作状态。
3 定时器寄存器
用于定时和计数功能。
2 状态寄存器
记录和指示处理器状态和条件。
AT89C51单片机简介

AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0P1门电流。
P1P2门电流,当口的16位口在P3P3口写入P3P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断0)P3.3/INT1(外部中断1)P3.4T0(记时器0外部输入)P3.5T1(记时器1外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
FLASH0。
此时,/PSENXTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
4.芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。
AT89C51单片机简介

AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
AT89C51单片机简介

ATMEL89系列单片机是以8031核构成的,所以,它和8051系列单片机是兼容的系列。
这个系列对于以8051为基础的系统来说,是十分容易进行取代和构造的。
故而对于熟悉8051的用户来说,用ATMEL公司的89系列单片机进行取代8051的系统设计是轻而易举的事。
一、89系列单片机的优点89系列单片机对一地一般用户来说,存在下列很明显的优点:1.内部含Flash存储器因此在系统的开发过程中可以十分容易进行程序的修改,这就大大缩短了系统的开发周期。
同时,在系统工作过程中,能有效地保存一些数据信息,即使外界电源损坏也不影响到信息的保存。
2.和80C51插座兼容89系列单片机的引脚是和80C51一样的,所以,当用89系列单片机取代80C51时,可以直接进行代换。
这时,不管采用40引脚亦或44引脚的产品,只要用相同引脚的89系列单片机取代80C51的单片机即可。
3.静态时钟方式89系列单片机采用静态时钟方式,所以可以节省电能,这对于降低便携式产品的功耗十分有用。
4.错误编程亦无废品产生一般的OTP产品,一旦错误编程就成了废品。
而89系列单片机内部采用了Flash存储器,所以,错误编程之后仍可以重新编程,直到正确为止,故不存在废品。
5.可进行反复系统试验用89系列单片机设计的系统,可以反复进行系统试验;每次试验可以编入不同的程序,这样可以保证用户的系统设计达到最优。
而且随用户的需要和发展,还可以进行修改,使系统不断能追随用户的最新要求。
二、89系列单片机内部结构89系列单片机的内部结构和80C51相近,它主要含有如下一些部件。
1.8031CPU2.振荡电路3.总线控制部件4.中断控制部件5.片内Flash存储器6.片内RAM7.并行I/O接口8.定时器9.串行I/O接口在89系列单片机中,AT89C1051的Flash存储器容量最小,只有1K;而AT89C52,LV52,S8252的Flash存储器容量最大,有8K。
at89c51中文资料_数据手册_参数

AT89C51是一种低功耗、高性能的CMOS 8位微型计算机,具有4Kbytes的Flash可编程只读 存储器(PEROM)。该设备使用Atmel的高密度非易失性存储器技术制造,与工业标准的 MCS-51指令集和pinout兼容。芯片上的闪存可以让程序内存在系统内重新编程,也可以 由一个召集人的非易失性内存程序员来重新编程。Atmel AT89C51是一种功能强大的微型 计算机,它将一个多用途的8位CPU与闪存芯片结合在一起,为许多嵌入式控制应用程序 提供了一种高灵活性和高性价比的解决方案。AT89C51提供了以下标准特性:4Kbytes的 Flash, 128字节的RAM, 32个I/O行,两AT89C51个16位的计时器/计数器,一个五个矢量的 二级中断架构,一个完整的双工串口,片上振荡器和时钟圈-cuitry。此外,AT89C51采用 静态逻辑设计,可将操作频率降至零,支持两种软件可选择的节能模式。空闲的适当操 作CPU,同时允许RAM、计时器/计数器、串行端口和中断系统继续运行。电源关闭模式 保存RAM内容,但冻结振荡器禁用所有其他芯片功能,直到下一个硬件复位。销 DescriptionVCCSupply voltage.GNDGround。端口0Port 0是一个8位开路双向I/O端口。作为 输出端口,每个引脚可以接收8个TTLAT89C51输入。当1被写入端口0时,这些引脚可以 作为高阻抗输入。端口0也可以配置为在访问外部pro-gram和数据内存期间的多路低阶地 址/数据总线。在这种模式下,P0具有内浆。端口0也在Flash编程期间接收代码字节,并 输出代码字节du环编程验证。AT89C51在程序验证过程中需要外部的pullups。端口1是一 个8位双向I/O端口,具有内部pullups。端口1输出缓冲区可以接收/源4个TTL输入。当1s被 写入端口1引脚时,它们被内部的脉冲拉高,并可作为输入。作为输入,外部被拉低的端 口1引脚会因为内部的pullups而变酸(IIL)。端口1也在flasups的8位双向I/O端口。端口2输出缓冲区可以接收/ 源4个TTL输入。当1s被写到端口2时,它们被内部的pullups拉得很高,可以用作输入。作 为输入,外部被拉低的端口2引脚会因为内部的脉冲而变酸。端口2在从外部程序内存获 取和访问使用16位地址的外部数据内存(MOVX @DPTR)期间发出高阶地址字节。在这个 应用中,当发射1s时,它使用强的内部拉升。在访问使用8位地址(MOVX @ RI)的外部数 据存储器时,端口2发出P2专AT89C51用函数寄存器的核心。端口2还在Flash编程和验证 过程中接收高阶地址位和somecontrol信号。端口3Port 3是一个8位双向I/O端口,具有内部 pullups。端口3输出缓冲区可以接收/源四个TTL输入。当1s被写到端口3时,它们被内部的 pullups拉得很高,可以用作输入。作为输入,外部被拉低的端口3引脚会因为pullups而变 酸(IIL)。端口3还具有AT89C51的各种特殊功能,如下所示在每次访问外部数据时都跳过 了pulse。如果需要,可以通过设置sfr位置8EH的0位来禁用ALE操作。在位集上,ALE只 在一个MOVX或MOVC指令中活动。否则,大头针就会弱拉高。如果微控制器处于外部 执行模式,则设置禁用“禁用”的位就没有效果。PSENProgram Store启用的是read strobe 到外部的pro-AT89C51gram内存。当AT89C51执行来自外部pro-gram内存的代码时,每个 machinecycle都会激活PSEN两次,除了在每次访问外部数据内存时跳过两次PSEN激 活。EA / VPPExternal访问启用AT89C51。必须将EA绑定到GND,以使设备能够从从从 0000H到FFFFH的外部pro-gram内存位置获取代码。然而,请注意,如果锁位1被编 程,EA将在复位时被内部锁住。EA应该绑定到VCC以执行内部程序。在Flash编程中,这 个pin还能接收12伏的编程实现volt-age (VPP),这是需要12伏VPP的部件。XTAL1Input输入到逆变振荡器放大器,输入到内部时 钟运行电路。XTAL2Output逆变振荡器放大器的输出。振荡器特性sxtal1和XTAL2分别是 逆变放大器的输入和输出,可以配置为使用asan片上振荡器,如图1所示。可以使用石英 晶体或陶瓷谐振器。要从外部时钟源驱动设备,XTAL2应该保持左连接,而XTAL1应该 被驱动,如图2所示。在外部时钟信号的工作周期中没有要求,因为内部时钟电路的输入 是通过两个触发器,但是最小和最大的电压高AT89C51和低的时间规格必须被观察。在 空闲模式下,CPU自动进入休眠状态,而所有的片上外围设备仍然处于活动状态。模式 是由软件调用的。在此模式下,片上RAM的内容和所有的spe函数寄存器都保持不变。空 闲模式可以通过任何启用的中断或硬件重置来终止。应该注意的是,当空闲被硬件 AT89C51重置终止时,设备通常会恢复程序执行,从它停止的地方开始,直到内部复位 算法控制之前的两个机器周期。在这种情况下,芯片上的硬件存储限制了对内部RAM的 访问,AT89C51但是对端口引脚的访问是不受限制的。为了消除AT89C51在空闲时对端口 pin进行意外写入的可能性,可以通过重置来终止,调用idleshnd的指令后面的指令不应该 是写入端口pin或外部内存的指令
AT89C51单片机简单介绍

AT89C51单片机简单介绍
AT89C51单片机是一款由Atmel公司生产出的基于8位MCS-51内核架构的单片机。
其内部包含大量的外设和接口,如8KB的Flash存储器、128字节的RAM、32个通用输入/输出引脚、三个16位定时器/计数器,还具备可编程的串行通讯接口UART、SPI、I2C总线控制等外设,使其在嵌入式系统中广泛应用。
AT89C51单片机拥有稳定、可靠的性能,主要应用于各种嵌入式系统中,例如:智能家居、仪器仪表、安防控制设备、工业自动化设备、医疗设备等。
1. 采用MCS-51内核架构,具有8位宽的数据总线和16位宽的地址总线;
2. 内置8KB的Flash存储器和128字节的RAM,可实现程序存储和数据处理;
3. 32个通用输入/输出引脚,可扩展各种外设和接口;
4. 内置三个16位定时器/计数器,可生成多种PWM波形,产生各种延时和定时功能;
5. 内置可编程的串行通讯接口UART,支持RS232、RS485通讯协议;
6. 支持SPI、I2C总线控制,可实现多种通讯方式;
7. 拥有多种中断模式和中断源,可实现多任务处理、多线程操作;
8. 采用低功耗设计,外部器件少,体积小,非常适合嵌入式系统应用。
最后,AT89C51单片机是一款性价比高、应用广泛、可靠稳定的单片机,是嵌入式系统设计师的不二之选。
AT89C51单片机的介绍——最常用的51芯片
AT89C51单片机的介绍——最常用的51芯片AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
AT89C51芯片介绍
AT89C51 芯片介绍
AT89C51 是一种带4K 字节闪烁可编程可擦除只读存储器(FPEROMFalsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8 位
微处理器,俗称单片机。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容。
由于将多功能8 位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51 是一种高效微控
制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:
-与MCS-51 兼容
-4K 字节可编程闪烁存储器
寿命:1000 写/擦循环
数据保留时间:10 年
-全静态工作:0Hz-24Hz
-三级程序存储器锁定。
AT89C51单片机的基本结构和工作原理
AT89C51单片机的主要工作特性:·内含4KB的FLASH存储器,擦写次数1000次;·内含28字节的RAM;·具有32根可编程I/O线;·具有2个16位可编程定时器;·具有6个中断源、5个中断矢量、2级优先权的中断结构;·具有1个全双工的可编程串行通信接口;·具有一个数据指针DPTR;·两种低功耗工作模式,即空闲模式和掉电模式;·具有可编程的3级程序锁定定位;AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz.AT89C51各部分的组成及功能:1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。
(1)运算器运算器主要用来实现算术、逻辑运算和位操作。
其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。
ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。
算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。
暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。
ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。
累加器是CPU使用最频繁的一个寄存器。
ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。
单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。
B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。
运算结果存于AB寄存器中。
(2)控制器控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。
AT89C51中文资料
A T89C51中文资料A T89C51是美国A TMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用A TMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大A T89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
主要性能参数:·与MCS-51产品指令系统完全兼容·4k字节可重擦写Flash闪速存储器·1000次擦写周期·全静态操作:0Hz-24MHz·三级加密程序存储器·128×8字节内部RAM·32个可编程I/O口线·2个16位定时/计数器·6个中断源·可编程串行UART通道·低功耗空闲和掉电模式功能特性概述:A T89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,A T89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
A T89C51方框图引脚功能说明·Vcc:电源电压·GND:地·P0口:P0口是一组8位漏极开路型双向I /O 口,也即地址/数据总线复用口。
作为输出口用时,每位能吸收电流的方式驱动8个TTL 逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MCS-51芯片
AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
现在AT89S51/52已经取代了AT89C51/52。
[1]
3.2.1 主要特性
1.与MCS-51 兼容;
2.具有4K字节可编程FLASH存储器;
3.寿命:1000写/擦循环;
4.数据保留时间:10年;
5.全静态工作:0Hz-24MHz;
6.三级程序存储器锁定;
7.具有128×8位内部RAM;
8.含有32可编程I/O线;
9.两个16位定时器/计数器;
10.具有5个中断源;
11.可编程串行通道;
12.低功耗的闲置和掉电模式;
13.片内振荡器和时钟电路;
3.2.2管脚说明
AT89C51 提供以下标准功能:4K 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
AT89C51管脚说明如图3-8所示。
图3-8AT89C51芯片
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P0口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1
口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH 编程和校验时,P1口作为低八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:
P3口管脚备选功能;
P3.0 RXD(串行输入口);
P3.1 TXD(串行输出口);
P3.2 /INT0(外部中断0);
P3.3 /INT1(外部中断1);
P3.4 T0(计时器0外部输入);
P3.5 T1(计时器1外部输入);
P3.6 /WR(外部数据存储器写选通);
P3.7 /RD(外部数据存储器读选通);
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE 只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.2.3振荡器特性
XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
3.3复位方式
单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。
51系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。
当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应
并将系统复位。
单片机系统的复位方式有两种:手动按钮复位和上电复位。
3.3.1手动按钮复位
手动按钮复位需要人为在复位输入端RST上加入高电平。
一般采用的办法是在RST端和正电源VCC之间接一个按钮。
当人为按下按钮时,则VCC的+5V 电平就会直接加到RST端。
手动按钮复位的电路(如图3-9)所示。
由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。
图3-9手动按钮复位
3.3.2上电复位
AT89C51的上电复位电路如图3-10所示,只要在RST复位输入引脚上接一电容至VCC端,下接一个电阻到地即可。
对于CMOS型单片机,由于在RST 端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至10uF。
上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着VCC对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。
为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。
上电时,VCC的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。
在图3-10的复位电路中,当VCC掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。
另外,在复位期间,端口引脚处于随机状态,
复位后,系统将端口置为全“1”态。
如果系统在上电时得不到有效的复位,则程序计数器PC 将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。
A
T
8
9
C
51RST
GND Vcc
Vcc
10uF
R
图3-10 上电复位
3.4 单片机的晶振电路
单片机的时钟电路产生方法有两种。
内部时钟方式和外部时钟方式。
本次设计采用的是内部时钟方式,利用芯片内部的振荡电路,在XTAL1,XTAL2引脚上外接定时元件,内部的振荡电路便产生自激振荡。
此次采用最常见的内部时钟方式,即用外接晶体和电容组成的并联谐振回路。
振荡晶体可在
1.2MKZ 到12MHZ 之间选择。
电容值无严格要求,单电容取值对振荡频率输出的稳定性,大小,振荡电路起振速度有少许影响,C1,C2可在20pF 到100pF 之间取值,但在60pF 到70pF 时振荡起有较高的频率稳定性。
如图3-11所示。
图3-11内部时钟方式
如果采用外部时钟源驱动器件,XTAL2应不接。
输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
如图3-12所示。
图3-12外部时钟。