高二数学圆锥曲线测试题以及详细答案

合集下载

高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!

高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!

高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为36分,试卷Ⅱ分值为64分。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.已知点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,则点O 到直线AB 的距离等于 ( ) A. 2 B.3 C .2 D .2 210.(2009·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.(2009·四川高考)已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( ) A .-12 B .-2 C .0 D .412.(2009·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF = ( )A.45B.23C.47D.12第Ⅰ卷二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.(2009·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF =FB ,BA ·BC =48,则抛物线的方程为______________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)(2010·南通模拟)已知动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .20.[理](本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值; (2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.20.[文](本小题满分12分)已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.21.(本小题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.22.[理](本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.[文](本小题满分14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2.答案:B2、解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2.答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab ≥3+22, 当且仅当b a =2ab ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7、解析:由已知b a =55e ,∴b a =55×ca ,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.答案:C9、解析:本题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x ⇒x = 2.答案:A10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b 2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12、解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值.∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A 13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2. 答案:a 2+b 2 解析:由焦点弦|AB |=2p sin 2α得|AB |=2psin 245°, ∴2p =|AB |×12,∴p =2.答案:214、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=115、解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点,故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48, 解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x16、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 17、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =4-02-2x ,k PB =4-2y 2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.18、解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x . 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ .19、解:(1)根据抛物线的方程可得焦点F (1,0),设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0.设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2),则y 1y 2=-4.因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1, 故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ, 因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52. 20、解:∵e =c a =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点,设A (2-m,1-n ),B (2+m,1+n ),则⎩⎪⎨⎪⎧ (2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧ 8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2 203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16. 故所求椭圆的方程为x 2+2y 2=16.21、解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点, 又因为坐标原点O 为线段AB 的中点,所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1, 所以E 点在以O 为圆心,1为半径的圆上,又因为A ,B ,D 三点不在一条直线上,所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y =k (x +2)(当直线斜率不存在时不成立),由于直线MN 与圆x 2+y 2=1(y ≠0)相切,所以|2k |k 2+1=1,解得k =±33, 所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y 2a 2-4=1, 整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0, 所以x 0=x 1+x 22=-a 22(a 2-3). 又线段MN 的中点到y 轴的距离为45, 即x 0=-a 22(a 2-3)=-45,解得a =2 2. 故所求的椭圆方程为x 28+y 24=1. 22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧ x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y . 又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4, 由⎩⎪⎨⎪⎧ x 225+y 29=1,x =my +4,消去x 得 (9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。

考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。

最新人教版高二第一学期:圆锥曲线测试及答案

最新人教版高二第一学期:圆锥曲线测试及答案

第一学期高二年级圆锥曲线测试、选择题(本大题共 10小题,每小题5分,共50 分)2 爲 1 ( a >b>0)离心率为,则双曲线 b 2 1. 椭圆爲 a A.- 4 B . 2. 抛物线顶点在原点,焦点在 A. x 2 8y 2 X~2 a 2 y b 2 1的离心率为3•圆的方程是(x — cos A. 2、" 2 4.若过原点的直线与圆 A. y 25.椭圆x 9. 5 2 y 轴上,其上一点 2 3 P(m , 1)到焦点距离为5,则抛物线方程为 ( 2 x 2 8y C. 1 )2+(y — sin )2= ,当 从0变化到2时,动圆所扫过的面积是 B . x 2 16y C. (1 , 2) x 2+ y 2 + 4x +3=0相切,若切点在第三象限,唾x3B . y .. 3x C. y 1的焦点为F i 和F 2,点P 在椭圆上, 如果线段 2 D. x 16yD (1邛2 则该直线的方程是 D 43 D. y T x PF i 中点在y 轴上, 那么|PF i | A. 7倍 B . 5倍 C. 4倍 D. 3倍以原点为圆心,且截直线 3x 4y 15 0所得弦长为 8的圆的方程是 ( A. 2 x 2 2 y 5 B . x 2 y 2 2 25 C. x y 4 D. 2 2x y 16 曲线 x 2cos (为参数)上的点到原点的最大距离为( y sin A. 1 B . 2 C. 2 D. .3( 6. 7.如果实数 (X 、 2 12是|PF 2|的 y 满足等式(x 2)2 A.- 23,贝V —最大值 x 仝 2 D. ..3 过双曲线 2Z=1 2 的右焦点F 作直线 交双曲线于A B 两点,若 | AB =4 , 则这样的直 线l 有( ) A. 1条 10.如图,过抛物线C. 3条 y 2 C,若 BC 2BF ,且 AF B . 2条 2px (p 0)的焦点F 的直线l 交抛物线于点 3 ,则此抛物线的方程为D. 4条 A . B ,交其准线于点( )2y2C y2D. 3x 9x、填空题(本大题共4小题,每小题6分,共24 分)11•椭圆的焦点是F i (- 3, 0)F2 (3, 0), P为椭圆上一点,且|F I F2|是|PF i|与|PF2|的等差中项,则椭圆的方程为____________________________________ .12.若直线mx ny 3 0与圆x2 y2 3没有公共点,则m,n满足的关系式为_____________________ .2 2以(m,n)为点P的坐标,过点P的一条直线与椭圆J L L 1的公共点有个.7 313.设点P是双曲线x2 1 上一点,焦点F (2, 0),点A (3, 2),使|PA+ 1| PF 有最2小值时,则点P的坐标是 ____________________________________ .214. AB是抛物线y=x的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为.________三、解答题(本大题共6小题,共76分)215. P为椭圆251上一点,F1、F2为左右焦点,若F1PF2 60 (1)求厶F1PF2的面积;(2)求P点的坐标.(12分)16.已知抛物线y2 4x ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.(12分)17.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,.. 2)为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y x对称.(1)求双曲线C的方程;(2)设直线y mx 1与双曲线C的左支交于A,B两点,另一直线I经过M(—2, 0)及AB的中点,求直线I在y轴上的截距b的取值范围.(12分)18.如图,过抛物线y2 2px(p 0)上一定点P(X o,y。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程。

【答案】【解析】动圆圆心到定点的距离与到定直线(切线)的距离相等(等于半径),由抛物线的定义可知动点的轨迹是抛物线,易得方程为.试题解析:依题意,圆心的轨迹是以F(0,2)为焦点,L:y=-2为准线的抛物线上因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是x2=8y.【考点】抛物线的定义与方程2.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.3.已知曲线,求曲线过点的切线方程。

【答案】【解析】因为点不在曲线上,故先设所求切线的切点为,再求的导数则,由点斜式写出所求切线方程,再将切线上的已知点代入切线方程可求出,从而所求出切线方程.试题解析:,点不在曲线上,设所求切线的切点为,则切线的斜率,故所求的切线方程为.将及代入上式得解得:所以切点为或.从而所求切线方程为【考点】1、过曲线外一点求曲线的切线方程;2、导数的几何意义.4.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】根据题意,由于点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点(x,y),直线方程为,与联立方程组,并且有,,解得双曲线的离心率是,故选D.【考点】双曲线的性质点评:主要是考查了双曲线与抛物线的几何性质的运用,属于基础题。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。

解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。

3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。

利用“点差法”求弦的斜率,由点斜式写出方程。

故选B。

4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。

【考点】本题主要考查抛物线的定义、标准方程、几何性质。

点评:熟记抛物线的标准方程及几何性质。

5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。

【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。

点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

高二圆锥曲线测试题一、选择题:1.动点M 的坐标满足方程|12512|1322-+=+y x y x ,那么动点M 的轨迹是〔 〕 A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,假设5||1=PF ,那么=||2PF 〔 〕A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,假设△F 1PF 2为等腰直角三角形,那么椭圆的离心率是〔 〕.A.B. C. 214.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2C. 3D.45.点)0,2(-A 、)0,3(B ,动点2),(y PB PA y x P =⋅满足,那么点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,那么这条弦所在的直线方程是〔 〕 A 02=-y x B 042=-+y x C 0123=-+y x D 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是〔 〕A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx与)02+mx 的曲线在同一坐标系中的示意图应是〔 〕A C 二、填空题:9.对于椭圆191622=+y x 和双曲线19722=-y x 有以下命题: ①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点一样. 其中正确命题的序号是.10.假设直线01)1(=+++y x a 与圆0222=-+x y x 相切,那么a 的值为11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,那么点Q 的坐标。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )】A. 1或5B. 1或9C. 1D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.B. C. 2 D. 16.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2(B)3(C)48.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )|A. 双曲线B.抛物线C. 椭圆D.以上都不对10.方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )A B D11.以双曲线16922-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A . B.C .D.12.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )/A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x二、填空题:13.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .14.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 15、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的…16.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 .; 三、解答题:17.已知双曲线与椭圆125922=+y x 共焦点,它们的离心率之和为514,求双曲线方程.(12分) 18.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分) 19、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338的双曲线方程.(14分) 20 在平面直角坐标系xOy 中,点P 到两点(03)-,,(03),的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB 此时AB 的值是多少、B 是双曲线x 2-y 22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆为什么.22、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

答案DC ADD AC DBA AA一、)二、填空题:13.①② 14、-1 15. 7倍 16.(0,±3) 三、解答题: 17(12分)解:由于椭圆焦点为F(0,±4),离心率为e=45,所以双曲线的焦点为F(0,±4),离心率为2,从而所以求双曲线方程为:221412y x -= 18.[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 19、解:设双曲线方程为x 2-4y 2=λ.]联立方程组得: 22x -4y =30x y λ⎧⎨--=⎩,消去y 得,3x 2-24x+(36+λ)=0设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么:1212283632412(36)0x x x x λλ+=⎧⎪+⎪=⎨⎪∆=-+>⎪⎩ 那么:===解得: λ=4,所以,所求双曲线方程是:2214x y -= 20.解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0-,为焦点, 长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足22141.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,. OA OB ⊥,即12120x x y y +=. 而2121212()1y y k x x k x x =+++,于是222121222223324114444k k k x x y y k k k k -++=---+=++++. "所以12k =±时,12120x x y y +=,故OA OB ⊥. 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=, 所以46517AB =.21A 、B 是双曲线x 2-y 22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆为什么 19.解:(1)依题意,可设直线方程为y =k(x -1)+2代入x 2-y 22=1,整理得 (2-k)x 2-2k(2-k)x -(2-k)2-2=0 ① `记A(x 1,y 1),B(x 2,y 2),则x 1、x 2是方程①的两个不同的实数根,所以2-k 2≠0,且x 1+x 2=2k(2-k)2-k 2由N(1,2)是AB 中点得12(x 1+x 2)=1∴ k(2-k)=2-k 2,解得k =1,所易知 AB 的方程为y =x +1.(2)将k =1代入方程①得x 2-2x -3=0,解出 x 1=-1,x 2=3,由y =x +1得y 1=0,y 2=4 即A 、B 的坐标分别为(-1,0)和(3,4)由CD 垂直平分AB ,得直线CD 的方程为y =-(x -1)+2,即 y =3-x ,代入双曲线方程,整理,得 x 2+6x -11=0 ②记C(x 3,y 3),D(x 4,y 4),以及CD 中点为M(x 0,y 0),则x 3、x 4是方程②的两个的实数根,所以 x 3+x 4=-6, x 3x 4=-11, 从而 x 0=12(x 3+x 4)=-3,y 0=3-x 0=6|CD|=(x 3-x 4)2+(y 3-y 4)2=2(x 3-x 4)2 =2[(x 3+x 4)2-4x 3x 4=410∴ |MC|=|MD|=12|CD|=210, 又|MA|=|MB|=(x 0-x 1)2+(y 0-y 1)2=4+36=210即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆.22(14分)解:(1)由已知可得点A(-6,0),F(0,4) 】设点P(x ,y ),则AP =(x +6, y ),FP =(x -4, y ),由已知可得22213620(6)(4)0x y x x y ⎧+=⎪⎨⎪+-+=⎩则22x +9x -18=0, x =23或x =-6. 由于y >0,只能x =23,于是y =235.∴点P 的坐标是(23,235) (2) 直线AP 的方程是x -3y +6=0. 设点M(m ,0),则M 到直线AP 的距离是26+m . 于是26+m =6-m ,又-6≤m ≤6,解得m =2.椭圆上的点(x ,y )到点M 的距离d 有 222222549(2)4420()15992d x y x x x x =-+=-++-=-+, 由于-6≤m ≤6, ∴当x =29时,d 取得最小值15 说明:在解析几何中求最值:一是建立函数关系,利用代数方法求出相应的最值;再是利用圆锥曲线的几何性质或者曲线的参数方程求最值。

相关文档
最新文档