弹塑性力学博士生考题03答案

合集下载

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

工程弹塑性力学题库及答案(修订)

工程弹塑性力学题库及答案(修订)

,再求应力偏张量






由此求得:
然后求得:

,解出
然后按大小次序排列得到


1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦

解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:

1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程

时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为

弹塑性力学历年考题(杨整理)

弹塑性力学历年考题(杨整理)

i, j x, y, z ,展开其中的 xy 。 (5 分)
三、 以图示平面应力问题为例,列出边界条件,叙述半逆解法的解题步骤。 (15 分) 。
四、 解释图示受内压 p 作用的组合厚壁筒(半径上的过盈量为 )的弹性极限载荷为何比 单层厚壁筒大。 (25 分)
五、 说明为何扭转问题可以进行薄膜比拟。计算边长为 a 的正方形截面,材料剪切屈服强 度为 s 的柱体扭转塑性极限扭矩。 (15 分) 六、 解释为何在用最小总势能原理和里兹法求解图示梁的挠度时,可以设位移函数 (15 分) w a1x 2 (l x) a2 x 2 (l 2 x 2 ) ... 取一项近似计算梁的挠度。
Ar 2 ( ) r 2 sin cos r 2 cos 2 tan ( A为常数)
能满足图示楔形悬臂梁问题的边界条件。并利用这个应力函数确定任一点的应力分量。
四、已知两端封闭的薄壁圆筒,半径为 R,壁厚为 t。圆筒由理想塑性材料制成,其屈服极 限为 s 。薄壁圆筒因受内压而屈服,试确定: (1)屈服时,薄壁筒承受的内压 p; (2) 塑性应力增量之比。 (20 分) 五、求解狭长矩形截面柱形杆的扭转问题:求应力分量和单位长度的扭转角。 (16 分) 六、试用能量法求解图示悬臂梁的挠度曲线。 (提示:设挠度函数为 y A1 cos 其中 A 为待定系数)




2 A r 2 4 sin cos 2(cos 2 sin 2 ) tan 2


2 2 A r 2 sin 2 2 sin cos ) tan r


满足协调方程:
4 (
应力分量:

博士生考题05答案弹塑性力学

博士生考题05答案弹塑性力学

2005年结构工程博士研究生入学考试弹塑性力学试卷答案第一道题答案:弹塑性力学问题有两类不同的提法和解法:(1)微分提法及其解法;(2)变分提法及其解法。

微分提法是从研究固体内的任意一个微元体出发,考虑微元体的平衡关系、几何关系和物理(本构)关系,由此建立起问题所需满足的基本方程(包括平衡方程、几何方程和本构方程),从而把问题归结为在给定的边界条件下求偏微分方程的边值问题。

变分提法则直接处理整个固体系统,通过考虑系统的能量关系,由此建立起一些泛函变分方程,从而把问题归结为在给定的约束条件下求泛函极值的变分问题。

一、微分提法的基本方程为:1)平衡微分方程:2,20()iij j i u X tσρ∂+=∂ 2)几何方程:,,1()2ij i j j i u u ε=+及,,,,ij kl kl ij ik jl jl ik εεεε+=+3)本构方程:111223ij ij kk ij ij ij ij kk ij E Ed dS d S d G E ννεσσδνελσδ+⎫=-⎪⎪⎬-⎪=++⎪⎭,弹性状态,塑性状态微分提法的基本解法:一种是以位移作为基本未知函数求解,在求出位移后,再求得其它的未知函数,这种解法称为位移法;另一种是以应力作为基本未知函数求解,在求出应力后,再求得其它的未知函数,这种解法称为应力法。

二、变分提法的基本方程为:1)位移变分方程:ij ij VW dV U δσδεδ==⎰⎰⎰或()0P i u δ∏=2)应力变分方程:''WU δδ=或0c δ∏=变分提法的基本解法:Ritz 法和迦辽金法。

微分提法对应的数学问题是偏微分方程的边值问题,因此,不管是采用位移法或是应力法求解,一般情况下,除了一些简单问题外,绝大多数问题的求解是相当困难的,在边界条件比较复杂时,甚至不可能求得解。

这就使得近似解法具有极为重要的意义。

变分提法对应的数学问题是在给定的约束条件下求泛函极值的变分问题,可以通过Ritz 法或迦辽金法等直接求解问题的近似解答,实际上是弹塑性力学问题近似解法中最有效的方法之一,而且,它还构成了当前工程上普遍应用的有限元法的理论基础。

弹塑性力学试题答案完整版

弹塑性力学试题答案完整版

欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即
0
Wij
=
1
2
v x

u y
1 2
w x

u z
1 2
u y

v x
0
1 2
w y

v z
1 2
u z

w x
1 2
v z

w y
0
6)应变张量:表示纯变形部分,即
22)小应变张量:(P33) 23)弹性模量:E 的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力,其量纲
为 ML-1T-2 ,其单位为 Pa。
E 是度量物体受力时形变大小的物理量。指在弹性限度内,应力与应变的比值。 弹性模量又分纵向弹性模量(杨氏模量)和剪切弹性模量。杨氏模量为正应力与线应变之比值;剪切弹 性模量为剪应力与剪应变之比值。对同一种材料,在弹性极限内,弹性模量是一常数。 24)相容方程(P38): 25)变分原理:
弹塑性力学 2008、2009 级试题
一、简述题 1)弹性与塑性
弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的 9 个应力分量组成的新的二阶张量 。
( ) ( ) 个独立的应力分量的函数,即为 f = 0 , f ij 即为屈服函数。
10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。
11)稳定性假设(P56):即德鲁克公社,包括:1.在加载过程中,应力增量所做的功 dWD 恒为正;2.在

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

中国科学技术大学 考博真题 弹塑性力学 2003

中国科学技术大学 考博真题 弹塑性力学 2003
(1) σ 12 = σ 21 = 30, σ 23 = σ 32 = 40 ( 其余应力分量为零)
(2) σ 11 = −50, σ 22 = −10, σ 33 = 10 (其余应力分量为零)
五.设材料受到拉伸与扭转的联合作用 (如图) , 材料简单拉伸条件下的屈服应力为 σ Y , 请分别用 Mises 屈服准则和 Tresca 准则写出在此应力状态作用下,材料进入塑性屈服的条件。
τ
σ
τ σ
~ ,新旧坐标系变化关系如下所示,求该点在新坐标系里的表达 σ ~′ 二. 设某点的应力张量为 σ
50 ~ σ = 37.5 0
37.5 − 25 − 50
0 2 − 50 (kg / cm ) 25 − 20 50 10
x' X Y Z 3/5 0 -4/5
Y' 0 1 0
z' 4/5 0 3/5
100 ~ = − 20 三.设某点的应力状态为 σ 40
40 2 Βιβλιοθήκη 0 (kg/cm ), x + y + z = 0 是过该点 − 100
的平面方程,求该点: (1) 作用于上述平面上的应力矢量 (2) 作用于该平面上的法应力和切应力 ,并求最大切应力及作用在最大切应力平面上的法 四.对下述各应力状态,分别作出 Mohr 圆(示意图) 2 应力(单位均为 kg/cm ) 。
中国科学技术大学 博士入学考试试题 弹塑性力学 2003 春 (共五题,每题 20 分)
一. 基本概念题(每题 5 分) (1) 示意地画出低碳钢简单拉伸时的应力应变曲线,标识出主要特征点并说明各点相应特征量的意 义。 (2) 写出各向同性和横观各向同性弹性材料广义虎克定律的数学形式,并说明式中各弹性常数的物理 意义。 (3) 何谓各向同性硬化材料、理想塑性材料和随动硬化材料。 (4) 写出 Mises 屈服准则和 Tresca 屈服准则,并解释其物理意义。

中国科学技术大学 考博真题 弹塑性力学 2002

中国科学技术大学 考博真题 弹塑性力学 2002

中国科学技术大学 博士入学考试试题 弹塑性力学 2002
(共五题,每题20分)
一、 矢量与张量运算
(1) 已知矢量~3~2~1~646e e e u −−=,矢量~3~2~1~e 8e 2e 4v −−=,求两矢量的点积~
~.v u 与矢量积~
~v u ×。

(2) 若~T 为二阶对称张量,~W 为二阶反对称张量,证明~T 与~
W 的标量积为零,0:~
~=W T 。

二、
(1) 设某点的应力状态为211/18cm Kg =σ,222/50cm Kg −=σ,
233/32cm Kg =σ,23113/24cm Kg ==σσ,其余应力分量为零,求该点的主应力及相应的主方向。

(2) 设某点的应力状态可用主应力表示为321,,σσσ,求外法线为~
33~22~11~e n e n e n n ++=面元上的应力矢量~
n t 及其法向应力分量nn σ和切向应力分量τσn 。

三.已知速度场为:,0V ,e )y y x (A V ,e )xy x (A V z kt 32y kt 23x =+=+−=−−其中A ,k 为常数。

求t=0,
)0,1,1{x ~=点的空间速度梯度L ~,应变率张量D ~和旋转率张量W ~。

四.求下列应力状态下的主偏应力及偏应力张量的第二不变量J 2(单位kg/cm 2)
(1)3011=σ
(2)102112=σ=σ
(3)τ=σ=σσ=σ211211,
五.试述经典塑性理论中的Mises 屈服准则和Tresca 屈服准则,说明两准则间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年结构工程博士研究生入学考试
弹塑性力学试卷答案
第一道题答案:
圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。

圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。

上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。

正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。

实践应用中,圣维南原理可提供:
1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。

为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。

这对于离边界较远处的应力状态,并无显著的误差。

这已经为理论分析和实验所证实。

2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。

根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。

3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。

4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。

第三道题答案:
第五道题答案:
第四道题答案。

相关文档
最新文档