指数函数复习专题(含详细解析)

指数函数复习专题(含详细解析)
指数函数复习专题(含详细解析)

1

第 讲 指数函数

时间: 年 月 日 刘老师 学生签名:

一、 兴趣导入

二、 学前测试

1.在区间

上为增函数的是( B )

A .

B .

C .

D .

2

.函数是单调函数时,的取值范围 ( A )

A .

B .

C .

D .

3.如果偶函数在具有最大值,那么该函数在

有 ( A )

A .最大值

B .最小值

C .没有最大值

D . 没有最小值 4.函数

是( B )

A .偶函数

B .奇函数

C .不具有奇偶函数

D .与有关

5.函数在

和都是增函数,若

,且

那么( D )

A .

B .

C .

D .无法确定

6.函数在区间

是增函数,则

的递增区间是 ( B )

A .

B .

C .

D .

2

三、方法培养

☆专题1:指数函数的定义

一般地,函数x

y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .

例1

指出下列函数那些是指数函数:

(1)4

x

y =(2)x

y 4

=

(3)4

x

y -

= (4))

4(

-=x

y (5)

π

=y x

(6)x

y 2

4

=(7)x

x

y =

(8))1,2

1

((

)

12≠>

=-a a y a x

解析:利用指数函数的定义解决这类问题。 解:(1),(5),(8)为指数函数

变式练习1 1函数2

(33)x

y a a a

=-+?是指数函数,则有( )

A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:1054

32)(0625.08

33416

--+++π; 解:(1)1054

32)(0625.08

33416

--+++π =(425)21

+(827)31

+(0.062 5)41

+1-2

1

=(25)2×21+(23)31

3?+(0.5)41

4?+2

1 =

25+23+0.5+2

1 =5;

☆专题2:指数函数的图像与性质

一般地,指数函数y=a x

在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:

a >1

0<a <1

图象

3

性质

①定义域:R ②值域:(0,+∞)

③过点(0,1),即x=0时y=1

④在R 上是增函数,当x <0时,0<y <1;

当x >0时,y >1

④在R 上是减函数,当x <0时,y >1;

当x >0时,0<y <1

在同一坐标系中作出y=2x

和y=(2

1)x

两个函数的图象,如图2-1-2-3.经过仔细研究发现,它们的图象关于y 轴对称.

图2-1-2-3

例3比较下列各题中的两个值的大小:

(1)1.72.5

与1.73

; (2)0.8-0.1

与0.8-0.2

; (3)1.70.3

与0.93.1

. 利用函数单调性,

①1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x

,当x=2.5和3时的函数值;因为1.7>1,所以函数

y=1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73

②0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x

,当x=-0.1和-0.2时的函数值;因为0<0.8<1,

所以函数y=0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2

③因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1

..

变式练习3

1.已知a=0.80.7

,b=0.80.9

,c=1.20.8

,按大小顺序排列a,b,c.

答案:b

2. 若指数函数y=(2a -1)x

是减函数,则a 的范围是多少? 答案:

2

1

<a <1. 3. 设m<1,f(x)=2

44+x x

,若0

(1)f(a)+f(1-a)的值; (2))1001

1000()10013()10012()10011(

f f f f ++++ 的值. 活动:学生思考,观察,教师提示学生注意式子的特点,做这种题目,一定要有预见性,即第(2)问要用到第(1)问的结果,联系函数的知识解决.

解:(1)f(a)+f(1-a)=24424411+++--a a

a a

=2

4444244+++a a a a

=a a a 4244244?+++

4

=a

a a 422244+++=2

42

4++a a =1. (2))10011000()10013()10012()10011(f f f f ++++ =[)]1001

501

()1001500([)]1001999()10002([)]10011000()10001([f f f f f f ++++++

=500×1=500.

☆专题3:求函数的定义域与值域 例4

求下列函数的定义域 (1)2

4

1

-=

x y (2)1

5

-=x y

解析:求定义域注意分母不为零,偶次根式里面为非负数。 解(1):令x-4≠0,得x≠4, 故定义域为(-∞,4) (4,+∞) (2):

,

1,01≥∴≥-x x

所以1

5

-=x y 的定义域为}1{≥x x

点评:求函数的定义域是解决函数问题的基础。

变式练习4

求下列函数的定义域和值域: (1)y=(

2

1)22x x -;(2)y=913

1

2--x ;(3)y=a x -1(a>0,a≠1). 答案:(1)函数y=(

21)22x x -的定义域是R ,值域是[21,+∞);(2)函数y=9131

2--x 的定义域是[2

1-,+∞),值域是[0,+∞);(3)当a>1时,定义域是{x|x≥0},当0

四、强化练习

1. 下列关系中正确的是( )

A.(21)32<(51)12<(21)31

B.(21)31<(21)32<(51

)32

C.(51)32

<(21)31

<(21)32

D.(51)32

<(21)32

<(2

1)31

答案:D

2.函数y=a x

(a>0,a≠1)对任意的实数x,y 都有( )

5

A.f(xy)=f(x)·f(y)

B.f(xy)=f(x)+f(y)

C.f(x+y)=f(x)·f(y)

D.f(x+y)=f(x)+f(y) 答案:C

3.函数y=a x

+5+1(a>0,a≠1)恒过定点________. 答案:(-5,2)

4.比较a 3

1与a 2

1的大小(a >0且a≠0).

答案:分a >1和0

1>a 2

1;当a>1时,a 3

1

1.

五、训练辅导

☆专题4:函数图像的平移

当m>0时,y=a x

的图象向左移动m 个单位得到y=a x +m

的图象;

当m<0时,y=a x 的图象向右移动|m|个单位得到y=a x +m

的图象. 上述规律也简称为“左加右减”.

例4为了得到函数y=2

x -3

-1的图象,只需把函数y=2x

的图象( )

A.向右平移3个单位长度,再向下平移1个单位长度

B.向左平移3个单位长度,再向下平移1个单位长度

C.向右平移3个单位长度,再向上平移1个单位长度

D.向左平移3个单位长度,再向上平移1个单位长度

变式练习5

1.已知定义域为R 的函数f(x)=a

b

x x ++-+122是奇函数.

(1)求a,b 的值;

(2)若对任意的t∈R ,不等式f(t 2-2t)+f(2t 2

-k)<0恒成立,求k 的取值范围.

活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R,所以f(0)=0,f(-1)=-f(1),(2)在(1)的基础上求出f(x),转化为关于k 的不等式,利用恒成立问题再转化. (1)解:因为f(x)是奇函数, 所以f(0)=0,即

2

1

+-a b =0?b=1, 所以f(x)=1

221++-x x

a ;

又由f (1)=-f (-1)知421+-a =1

21

1+-

-a ?a=2. (2)解法一:由(1)知f(x)=1

2221++-x x =21

-

+121+x ,易知f(x)在(-∞,+∞)上为减函数.

6

又因f(x)是奇函数,从而不等式:f(t 2-2t)+f(2t 2

-k)<0,

等价于f(t 2-2t)<-f(2t 2-k)=f(k-2t 2

),因f(x)为减函数,由上式推得: t 2-2t>k-2t 2,即对一切t∈R 有3t 2

-2t-k>0, 从而判别式Δ=4+12k<0, ∴k<3

1-

. 2. 已知定义在R 上的函数12()22

x x a f x +-+=+(a 为实常数)是奇函数,2

()2()g x x x =-;

(I )求a 的值,判断并证明函数()f x 的单调性;

(II )若对任意的[]1,4t ∈-,不等式(()1)(8)0f g t f t m -++<(m 为实常数)都成立,求m 的取值范围;

六、家庭作业布置:

家长签字:_________________

(请您先检查确认孩子的作业完成后再签字)

7

附件:堂堂清落地训练

(坚持堂堂清,学习很爽心)

1.函数y=a |x|

(a >1)的图象是( )

图2-1-2-8

分析:当x≥0时,y=a |x|=a x

的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B

2.下列函数中,值域为(0,+∞)的函数是( )

A.y=(3

1)2-x B.y=x 4-1 C.y=1-0.5x

D.y=22x +1

分析:因为(2-x )∈R ,所以y=(3

1)2-x ∈(0,+∞);y=x 4-1∈[0,1];y=1-0.5x ∈[0,+∞);y=2

2x +1∈

[2,+∞). 答案:A

3.已知函数f (x )的定义域是(0,1),那么f (2x

)的定义域是( ) A.(0,1) B.(

2

1

,1) C.(-∞,0) D.(0,+∞) 分析:由题意得0<2x

<1,即0<2x

<20

,所以x <0,即x∈(-∞,0). 答案:C

4.若集合A={y|y=2x ,x∈R },B={y|y=x 2

,x∈R },则( )

A.A B

B.A B

C.A =B

D.A∩B=? 分析:A={y|y >0},B={y|y≥0},所以A B. 答案:A

5. 已知0

+b 的图像必定不经过( A ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题 1.若a 2

3

2

,则a 的取值范围是 。0

2.若10x

=3,10y

=4,则10x-y

= 。

4

3 3.化简?5

3

x

x 3

5

x

x

×2

3

5

x

x = 。1

4.函数y=11

51--x x 的定义域是 。(-∞,0)?(0,1) ?(1,+ ∞) ???

??≠-≠--015011x x x ,联立解得

x ≠0,且x ≠1。

y

y

8

5.函数y=3

2

32x -的单调递减区间是 。(0,+∞)

令y=3U

,U=2-3x 2

, ∵y=3U

为增函数,∴y=32

323x

-的单调递减区间为[0,+∞)。

6.若f(52x-1)=x-2,则f(125)= . 0 f(125)=f(53)=f(52×2-1

)=2-2=0。

7.对于函数f(x)定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f(x 1+x 2)=f(x 1)·f(x 2);②f(x 1·x 2)=f(x 1)+f(x 2); ③

2121)()(x x x f x f -->0;④)2

(2

1x x f +<

2121)()(x x x f x f -+. 当f(x)=10x

时,上述结论中正确的是.

分析:因为f(x)=10x

,且x 1≠x 2,所以f(x 1+x 2)=21

10

x x +=211010x x ?=f(x 1)·f(x 2),所以①正确;

因为f(x 1·x 2)=2

110

x x ?≠211010x

x +=f(x 1)+f(x 2),②不正确;

因为f(x)=10x

是增函数,所以f(x 1)-f(x 2)与x 1-x 2同号,所以

2

121)

()(x x x f x f -->0,所以③正确.

因为函数f(x)=10x

图象如图2-1-2-9所示是上凹下凸的,可解得④正确

.

图2-1-2-9

答案:①③④ 另解:④

∵10x

1>0,10x

2

>0,x 1≠x 2,∴2101021x x +>211010x x ?∴2

101021x x +>2110x

x +,

即2

101021x x +>2

2110

x x +∴

2121)()(x x x f x f -+>)2

(2

1

x x f +. 三、解答题

1. 设0

322+-x x >a

5

22-+x x 。

解:

∵0

在(-∞,+∞)上为减函数,∵ a 1

322+-x x >a

5

22-+x x , ∴2x 2-3x+1

+2x-5,解得2

9

2. 已知x ∈[-3,2],求f(x)=12141+-x

x 的最小值与最大值。 解:

.f(x)=

43)212(1212412

1412+-=+=+-=+-----x x x x x

x , ∵x ∈[-3,2], ∴8241≤≤-x

.则当2-x =21,即x=1时,f(x)有最小值4

3;当2-x

=8,即x=-3时,f(x)有最大值57。

3.已知函数f(x)=)1(1

1

>+-a a a x

x , (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明f(x)是R 上的增函数。

解:.(1)∵定义域为x R ∈,且f(-x)=)(),(1111x x f a

a a a x

x

x

x ∴-=+-=+---是奇函数; (2)f(x)=,21

20,11,121121<+<∴>++-=+-+x x

x x x a a a a a ∵即f(x)的值域为(-1,1);

(3)设x 1,x 2R ∈,且x 1

1)(1(221111212

1221<++-=+--+-x x x x x x x x a a a a a a a a (∵分母大于零,且

a 1x

2

x ) ∴f(x)是R 上的增函数。

8.(1)求函数y=(

2

1)x x 22-的单调区间,并证明. (2)设a 是实数,f(x)=a 1

22

+-x (x∈R ),试证明对于任意a,f(x)为增函数.

活动:(1)这个函数的单调区间由两个函数决定,指数函数y=(2

1)x 与y=x 2

-2x 的复合函数,(2)函数单

调性的定义证明函数的单调性,要按规定的格式书写.

解法一:设x 1

2

2222)2

1()21(x x x x --=(21)12212222x x x x ---(21))2)((1212-+-x x x x ,

因为x 10.

当x 1,x 2∈(-∞,1]时,x 1+x 2-2<0,这时(x 2-x 1)(x 2+x 1-2)<0, 即

1

2

y y >1,所以y 2>y 1,函数单调递增; 当x 1,x 2∈[1,+∞)时,x 1+x 2-2>0,这时(x 2-x 1)(x 2+x 1-2)>0, 即

1

2

y y <1,所以y 2

10

所以函数y 在(-∞,1]上单调递增,在[1,+∞)上单调递减. 解法二:(用复合函数的单调性): 设u=x 2

-2x,则y=(

2

1)u

, 对任意的1

1)u

是减函数, 所以y 1

2

1)x x 22-在[1,+∞)是减函数. 对任意的x 1u 2,又因为y=(2

1)u

是减函数,

所以y 1

x 22-在(-∞,1]上是增函数.

引申:求函数y=(2

1)x

x 22-的值域(0

点评:(1)求复合函数的单调区间时,利用口诀“同增异减”.

(2)此题虽形式较为复杂,但应严格按照单调性的定义进行证明,还应要求学生注意不同题型的解答方法. 证明:设x 1,x 2∈R ,且x 1

f(x 1)-f(x 2)=)122()122(21+--+-x x a a =12212212+-+x x =)

12)(12()

22(22121++-x

x x x . 由于指数函数y=2x

在R 上是增函数,且x 1

所以2x 1<2x 2,即2x 1-2x

2<0.

又由2x >0得2x 1+1>0,2x

2+1>0,

所以f(x 1)-f(x 2)<0,即f(x 1)

因为此结论与a 取值无关,所以对于a 取任意实数,f(x)为增函数.

4.2 指数和指数函数练习题及答案

指数和指数函数专题 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x (C )y=1)21(-x (D )y=x 21- 10.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51 )32 (C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2 1 )31 11.已知三个实数a,b=a a ,c=a a a ,其中0.9

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数与指数函数专题

指数与指数函数 [基础训练] 1.函数f (x )=a x +b -1(其中0

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数及指数函数知识点

(一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(* ∈N n ()0 10a a =≠ ()10,n n a a n N a -* = ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂: ()102 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>.

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

高考理科数学一轮复习指数与指数函数专题复习题

课时作业8 指数与指数函数 一、选择题 1.化简4a 23 ·b - 1 3 ÷? ?????-2 3a - 13 b 23 的结果为( C ) A .-2a 3b B .-8a b C .-6a b D .-6ab 2.设函数f (x )=????? ? ?? ??12x -7,x <0, x ,x ≥0,若f (a )<1,则实数a 的取值范围是( C ) A .(-∞,-3) B .(1,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 解析:当a <0时,不等式f (a )<1为? ????12a -7<1, 即? ????12a <8,即? ????12a

因为0<1 2<1,所以a >-3, 此时-3-2)与指数函数y =? ?? ??12x 的图象的交点个数是( C ) A .3 B .2 C .1 D .0 解析:因为函数y =-x 2 -4x =-(x +2)2 +4(x >-2),且当x =-2时,y =-x 2 -4x =4, y =? ????12x =4,则在同一直角坐标系中画出y =-x 2-4x (x >-2)与y =? ?? ??12 x 的图象如图所示,由图象可得,两个函数图象的交点个数是1,故选C. 5.(2019·福建厦门一模)已知a =? ?? ??120.3,b =log 12 0.3,c =a b ,则a ,b ,c 的大小关 系是( B ) A .a

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

专题4.1 指数与指数函数(精讲精析篇)(解析版)

专题4.1指数与指数函数(精讲精析篇) 提纲挈领 点点突破 热门考点01 根式的化简与求值 (1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数. (2)(n a )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定. n a ????? n 为偶数,a 为非负实数n 为奇数,a 为任意实数,且n a 符号与a 的符号一致 【典例1】化简下列各式: ①4 (x -2)4; ②5 (x -π)5. 【答案】见解析. 【解析】 ①4 (x -2)4 =|x -2|=? ???? x -2,x ≥2, -x +2,x <2. ②5 (x -π)5=x -π. 【典例2】化简下列各式: (1)x 2-2x +1-x 2+6x +9(-3

【答案】见解析. 【解析】(1)原式=(x -1)2-(x +3)2=|x -1|-|x +3|. ∵-3

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数与指数函数专题复习

指数及指数函数 (一)指数与指数幂的运算 1.根式的概念 结论:当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0() 0(||a a a a a a n n 2.分数指数幂 )1,,,0(* >∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·s r s a a +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>; (3)()r r s ab a a =),0,0(Q r b a ∈>>. (二)指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . (三)指数函数的图象和性质 注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 一、指数 1、化简[32 )5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、化简1111132168421212121212-----??? ???????+++++ ???????????????????,结果是( ) A 、1 1 321122--? ?- ? ?? B 、1 13212--??- ??? C 、13212-- D 、1 321122-??- ??? 3、211 5 113 3 66 2 2 1()(3)()=3 a b a b a b -÷__________. 二、指数函数 3、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( ) A 、(1%)na b - B 、(1%)a nb - C 、[1(%)]n a b - D 、(1%)n a b - 4、若21 (5 )2x f x -=-,则(125)f = .

相关文档
最新文档