机械振动试题 (4)

合集下载

机械振动答案

机械振动答案

机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。

《机械振动基础》期末复习试题5套含答案.doc

《机械振动基础》期末复习试题5套含答案.doc

中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。

2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析()的振动性质的基础。

5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。

(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。

13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。

{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。

(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。

(10 分) 4.简述线性多自由度系统动力响应分析方法。

(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。

新教材高中物理第二章机械振动4单摆作业含解析新人教版选择性必修第一册

新教材高中物理第二章机械振动4单摆作业含解析新人教版选择性必修第一册

单摆【基础巩固】1.关于单摆的简谐运动,下列说法正确的是( )A.摆球做匀速圆周运动B.摆动到最低点时加速度为0C.速度变化的周期等于振动周期D.振动的频率与振幅有关解析:单摆做简谐运动时,摆球经过最低点的速度最大,摆球的运动是变速圆周运动,选项A错误.摆动到最低点时向心加速度最大,选项B错误.速度变化的周期等于振动周期,选项C正确.可知,单摆的频率与振幅无关,选项D错误.根据单摆振动的周期公式T=2π√ll答案:C2.做简谐运动的单摆,其周期( )A.随摆长的增大而增大B.随振幅的增大而增大C.随摆球质量的增大而减小D.随摆球密度的增大而减小知,将单摆的摆长加长,周期变长,选项A正确.根据单摆解析:根据单摆的周期公式T=2π√ll知,单摆的周期与振幅、摆球质量、摆球密度都无关,选项B、C、D错误.的周期公式T=2π√ll答案:A3.(多选)关于单摆的运动,下列说法正确的是( )A.单摆的回复力是摆线的拉力与重力的合力B.单摆的回复力是重力沿摆球运动轨迹切向的分力C.摆球做匀速圆周运动D.单摆做简谐运动的条件是最大偏角很小,一般小于5°解析:单摆的回复力是重力沿摆球运动轨迹切向的分力,不是摆球所受的合力,所以选项A错误,选项B正确.单摆在摆动过程中速度大小是变化的,单摆的运动不是匀速圆周运动,选项C 错误.在摆角很小时,单摆近似做简谐运动,选项D正确.答案:BD4.惠更斯利用摆的等时性原理制成了第一座摆钟.下图为摆钟的结构示意图,圆盘固定在摆杆上,螺母可以沿摆杆上下移动.在甲地走时准确的摆钟移到乙地未做其他调整时摆动加快了,下列说法正确的是 ( )A.甲地的重力加速度较大,若要调准可将螺母适当向下移动B.甲地的重力加速度较大,若要调准可将螺母适当向上移动C.乙地的重力加速度较大,若要调准可将螺母适当向下移动D.乙地的重力加速度较大,若要调准可将螺母适当向上移动解析:由甲地到乙地摆动加快说明周期变小,因T=2π√ll,故重力加速度变大;要使周期不变小,应增加摆长,即将螺母适当向下移动.由以上分析可知,选项C正确.答案:C5.如图所示,固定的光滑圆弧形轨道半径R=0.2 m,B是轨道的最低点,在轨道上的A点(ll⏜所对的圆心角小于10°)和轨道的圆心O处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则 ( )A.两小球同时到达B点B.A点释放的小球先到达B点C.O点释放的小球先到达B点D.不能确定解析:处于A点的小球释放后做等效摆长为R的简谐运动,由A到B所用的时间为周期的四分之一,设这个时间为t A,根据单摆的周期公式有t A=l4=π2√ll;由O点释放的小球做自由落体运动,设运动到B 点所用的时间为t B ,则有t B =√2ll.因t A >t B ,故从O 点释放的小球先到达B 点,选项C 正确. 答案:C6.做简谐运动的单摆,其摆长不变,若摆球的质量增加为原来的94倍,摆球经过平衡位置的速率减为原来的23,则单摆振动的 ()A.周期不变,振幅不变B.周期不变,振幅减小C.周期改变,振幅不变D.周期改变,振幅增大解析:由单摆的周期公式T =2π√l l可知,当摆长l 不变时,周期不变,选项C 、D 错误.由能量守恒定律可知 12mv 2=mgh ,其摆动的高度与质量无关,因摆球经过平衡位置时的速率减小,故最大高度减小,知振幅减小,选项B 正确,选项A 错误. 答案:B7.一个摆长为2 m 的单摆,在地球上某地振动时,测得完成100次全振动所用的时间为284 s .(计算结果保留三位有效数字) (1)求当地的重力加速度g.(2)若把该单摆拿到月球上去,已知月球上的重力加速度是1.60 m/s 2,则该单摆振动周期是多少?解析:(1)周期T =l l =284100s=2.84 s, 由周期公式T =2π√l l得g =4π2l l 2=4×3.142×22.842m/s 2=9.78 m/s 2.(2)由周期公式T'=2π√ll '代入数据解得 T'=2×3.14×√21.60 s=7.02 s .答案:(1)9.78 m/s 2(2)7.02 s【拓展提高】8.甲、乙两单摆的振动图像如图所示,由图像可知( )A.甲、乙两单摆的周期之比是3∶2B.甲、乙两单摆的摆长之比是2∶3C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等解析:由图像可知,甲、乙两单摆的周期之比是2∶3,选项A错误.根据T=2π√ll 可得l=l4π2T2,则甲、乙两单摆的摆长之比是4∶9,选项B错误.因乙摆摆长大,振幅小,故在最高点时离开平衡位置的高度小,则到达最低点时的速度较小,即t b时刻甲、乙两摆球的速度不相同,选项C错误.t a时刻甲、乙两单摆的位移相等,但是由于两摆的摆长不等,摆角不等,选项D正确.答案:D9.如图所示,单摆的周期为T,下列说法正确的是( )A.把摆球质量增加一倍,其他条件不变,单摆的周期变小B.把摆角α变小,其他条件不变,单摆的周期变小C.将此摆从地球移到月球上,其他条件不变,单摆的周期将变长D.将单摆摆长增加为原来的2倍,其他条件不变,单摆的周期将变为2T解析:根据单摆的周期公式T=2π√ll知,周期与摆球的质量和摆角无关,摆长增加为原来的2倍,周期变为原来的√2倍,选项A、B、D错误.月球表面的重力加速度小于地球表面的重力加速度,由周期公式T=2π√ll知,将此摆从地球移到月球上,单摆的周期将变长,选项C正确.答案:C10.(多选)如图所示,用绝缘细丝线悬挂着的带正电的小球在匀强磁场中做简谐运动,则( )A.小球每次通过平衡位置时的动能相同B.小球每次通过平衡位置时的速度相同C.小球每次通过平衡位置时,丝线拉力不相同D.磁场对摆的周期无影响解析:带电小球在磁场中运动时,洛伦兹力不做功,机械能守恒.运动到最低点时,球的速度大小相同,但方向可能不同,选项A正确,选项B错误.小球从左、右两方向通过最低点时,向心力相同,洛伦兹力方向相反,所以拉力不同,选项C正确.由于洛伦兹力不提供回复力,磁场不影响振动周期,选项D正确.答案:ACD11.在盛沙的漏斗下面放一木板,让漏斗左右摆动起来,同时细沙缓慢流出,经历一段时间后,观察木板上沙子的堆积情况.沙堆的剖面图应是下图中的( )A BC D解析:不考虑空气阻力,漏斗在从最左端向最右端运动和从最右端向最左端运动时,到达最低点时的运动速度最大,漏到木板上的细沙最少,两端漏斗运动得最慢,漏到木板上的细沙最多,选项B正确,选项A、C、D错误.答案:B12.(多选)一个单摆做小角度摆动,其振动图像如图所示,下列说法正确的是()A.t1时刻摆球速度为0,悬线对它的拉力最小B.t2时刻摆球速度最大,但加速度不为0C.t3时刻摆球速度为0,悬线对它的拉力最大D.t4时刻摆球速度最大,悬线对它的拉力最大解析:由振动图像可知t1和t3时刻摆球偏离平衡位置的位移最大,此时摆球速度为0,悬线对摆球的拉力最小;t2和t4时刻摆球位移为0,正在通过平衡位置,速度最大,悬线对摆球的拉力最大.选项A、B、D正确.答案:ABD13.几个摆长相同的单摆在不同条件下做小角度摆动,关于它们的周期关系,下列判断正确的是( )甲乙丙丁A.T1>T2>T3>T4B.T1<T2<T3<T4C.T1<T2=T3<T4D.T1>T2=T3>T4解析:据周期公式T=2π√ll可知单摆的周期与振幅和摆球质量无关,与摆长和重力加速度有关.甲中等效重力加速度为a=g sin θ,所以周期为T1=2π√ll sin l;乙中静电力不影响回复力,所以周期为T2=2π√ll ;丙中,周期为T3=2π√ll;丁中的等效重力加速度为a'=g+a,所以周期为T4=2π√ll+l.综合以上分析有,T1>T2=T3>T4,选项D正确.答案:D14.把在北京调准的摆钟由北京移到赤道上时,摆钟的振动(选填“变慢”或“变快”)了,要使它恢复准确,应摆长.解析:把标准摆钟从北京移到赤道上,重力加速度g变小,周期T=2π√ll>T0,摆钟的摆动变慢了.要使它恢复准确,应缩短摆长.答案:变慢 缩短【挑战创新】15.如图所示,在O 点系着一细绳,细绳穿过小球B 通过直径的小孔,B 球能一直顺着绳子滑下来.在O 点正下方有一直径为R 的光滑弧形轨道,圆心位置恰好在O 点,弧形轨道的最低点为O'.在接近O'处有另一小球A,将A 、B 两球同时开始无初速度释放.A 球到达平衡位置时正好能够和B 球相碰,A 、B 球均可视为质点.(1)B 球与绳之间的摩擦力与B 球重力大小之比是多少? (2)比值的最小值为多少?解析:(1)小球A 的运动可看作单摆的振动. A 球做简谐运动,由周期公式得A 运动到O'的时间为t =(2n +1)l 4=(2n +1)π2√ll (n =0,1,2,…),B 球做匀变速运动从O 到O'的时间为t'=√2ll,由题意得t'=t ,解得a =8lπ2(2l +1)2(n =0,1,2,…),对于小球B,由牛顿第二定律得mg -F f =ma , 得l f ll =1- 8π2(2l +1)2(n =0,1,2,…). (2)由lfll =1-8π2(2l +1)2(n =0,1,2,…)可知,当n =0时,比值最小,最小值为1-8π2=0.19. 答案:(1)1-8π2(2l +1)2(n =0,1,2,…) (2)0.19。

大学物理 机械振动 试题(附答案)

大学物理 机械振动 试题(附答案)

w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。

解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。

2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。

若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。

弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。

3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。

清华大学《大学物理》习题库试题及答案 04 机械振动习题

清华大学《大学物理》习题库试题及答案      04   机械振动习题

清华大学《大学物理》习题库试题及答案 04 机械振动习题清华大学《大学物理》习题库试题及答案--04-机械振动习题清华大学《大学物理》习题库试题及答案机械振动习题一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度?,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(a)?(b)?/2(c)0(d)??[]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x1=acos(?t+?)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:11x2?acos(?tπ)x2?acos(?tπ)2(b)2(a)3x2?acos(?tπ)2(d)x2?acos(?t?)(c)[]3.3007:一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为?。

若把此弹簧分割成二等份,将物体m挂在分割后的一根弹簧上,则振动角频率是(a)2??(b)2?(c)?/2(d)?/2[]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律v(m/s)用余弦函数叙述,则其初适当为vm(a)?/6(b)5?/612vm(c)-5?/6(d)-?/6o(e)-2?/3[]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为t1和t2。

将它们拿到月球上去,相应的周期分别为t1?和t2?。

则有(a)t1??t1且t2??t2(b)t1??t1且t2??t2(c)t1??t1且t2??t2(d)t1??t1且t2??t2[]t(s)1x?4?10?2cos(2?t??)3(si)。

6.5178:一质点沿x轴作四极振动,振动方程为从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为11111sssss86432(a)(b)(c)(d)(e)[]7.5179:一弹簧振子,重物的质量为m,弹簧的劲度系数为k,该振子并作振幅为a 的四极振动。

《机械振动》考试试题

《机械振动》考试试题

2009--2011中南大学考试试卷一、填空题(本题15分,每空1分)1、按不同情况进行分类,振动系统大致可分成,线性振动和(非线性振动);(确定性振动)和随机振动;自由振动和(强迫振动);周期振动和(瞬态振动);(连续系统)和离散系统。

2、(惯性)元件、(弹性)元件、(阻尼)元件是离散振动系统的三个最基本元素。

3、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励无关。

4、研究随机振动的方法是(概率统计),工程上常见的随机过程的数字特征有:(均值),(方差),(自相关函数)和(互相关函数)。

二、简答题(本题40分,每小题8分)1、简述机械振动的定义和系统发生振动的原因。

(10分)答:机械振动是指机械或结构在它的静平衡位置附近往复弹性运动。

振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用。

2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

答:实际阻尼是度量系统消耗能量的能力的物理量,阻尼系数c是度量阻尼的量;临界阻尼是c2enm ω=;阻尼比是/eccξ=(8分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?答:共振是指振动系统在激励频率约等于系统的固有频率时的振动状态。

在此过程中,激励力与阻尼力平衡,弹性力与惯性力平衡。

即动能与势能相互转化,激励力提供阻尼消耗。

4、简述线性系统在振动过程中动能和势能之间的关系。

(8分)5、简述刚度矩阵[K]中元素k ij的意义。

答:如果系统的第j个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为保持系统这种变形状态需要在各个自由度施加外力,其中在第i个自由度上施加的外力就是kij(8分)三、计算题(45分)3.1、(10分)求如图1所示的扭转系统的固有频率。

图13.2、(15分)如图2所示系统,轮子可绕水平轴转动,对转轴的转动惯量为I,轮缘绕有软绳,下端挂有重量为P的物体,绳与轮缘之间无滑动。

机械振动题库(含答案)

机械振动题库(含答案)
2
…………2分 …………2分 …………2分 …………2分
16.有两个同方向、同频率的简谐振动,它们的振动表式为:
x1
0.05cos 10t
3 4
x2
0.06 cos 10t
1
4
(SI)
(1)求它们合成振动的振幅和初相位。

(2)若另有一振动 x3 0.07cos(10t 3), 问 3 为何值
7、在两个相同的弹簧下各悬一物体,两物体的质量
比为4∶1,则二者作简谐振动的周期之比为___2_:_1____ 。
8. 一简谐振动的振动曲线如图所示,则由图可得其振幅为
10 cm
_________
2
,其初相为___3______

xcm
10
其周期为__2_54___s___
O
2
x 0.1cos( 5 t 2 )
(A) 6T (B) T / 6 (C) 6T
(D) T
6
4.一个质点作简谐运动,振幅为A,在起始时质点的位移为
A / 2 ,且向x轴正方向运动,代表此简谐运动的旋转矢量
为( B )
A
OA x 2
A
2O
A
x
A
2
O
A
x
A
A O
x
2
(A)
(B)
(C)
(D)
5.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动
竖直放置 放在光滑斜面上
2. 如图所示,以向右为正方向,用向左的力压缩一弹簧,然后
松手任其振动,若从松手时开始计时,则该弹簧振子的初相位
为( D )
(A) 0
(B)
2

机械振动试题及答案

机械振动试题及答案

机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。

2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。

3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。

4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。

5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。

6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。

7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。

8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。

9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。

10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。

12、叠加原理是分析(线性振动系统)和(振动性质)的基础。

⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。

振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。

外在原因是由于外界对系统的激励或者作⽤。

2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。

质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。

3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京工业大学2009—2010学年第1学期 研究生《机械振动学》 考试试卷
一、求图示单自由度系统的固有频率。

(15分)
说明:1、图中K θ为扭转弹簧的刚度;2、杆的质量不计;3、静平衡时质量M 处于垂直向下 解:如图,设小球转动方程sin n t θθω=,
则系统的动能和势能分别为:
222222max 111
222
n T Mv M L M L θωθ=
== 222max 11(1cos )2sin 222
V K MgL K MgL θθθθθθ=
+-=+ 由于θ很小,sin
2
2
θ
θ

由max max T V =
可得:n ω=
二、一位移传感器的固有频率为4Hz ,无阻尼,用以测量频率为12Hz 的简谐振动、测得振幅为0.275cm ,
问实际振幅为多少?若加入一阻尼器,阻尼比为0.7,问测得的振幅为多少,误差为多少?(15分) 解:
仪器振动属于强迫振动,则相对位移的幅值为:2
z y
=
频率比12
34
=
n ωγω==,无阻尼0ξ=,0.275z cm =代入数据得:0.244y cm = 加阻尼后0.7ξ=,代入数据得:10.243z cm = 误差:10.2440.243
100%100%0.41%0.244
y z y --⨯=⨯=
三、求图示三自由度系统振动的固有频率与振型,画出振型图。

解:取质量块123,,m m m 的水平位移123,,x x x 为广义坐标,则由影响系数法列出质量和刚度矩阵为
111M m ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210121012K k -⎛⎫
⎪=-- ⎪ ⎪-⎝⎭
求出特征值:()0K M u λ-=,即{}{}202002k m
k k
k m k u k k m λλλ--⎛⎫ ⎪
---= ⎪ ⎪--⎝⎭
变换令:m p k λ=,有{}{}2101
210012p
k p u p --⎛⎫ ⎪
---= ⎪ ⎪--⎝⎭
则:2(2)(42)0p p p --+=
有12322,2p p p ===
123ωωω=
==
当12p =
110101()1
10100001
r K M λ⎫--⎛⎫⎪ -=--−−→ ⎪ ⎪ -⎝⎭⎝
1(11)T u ∴=
当22p =时,有2010101()101010010000r K M λ-⎛⎫⎛⎫ ⎪ ⎪
-=--−−
→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
2(101)T u ∴=-
当32p =
310101()1
101
00001
r K M λ⎛⎫--⎛⎫
⎪ -=--−−→ ⎪ ⎪ -⎝⎭

3(11)T u ∴= 振型图如下:
四、分别用瑞利法和邓柯莱法计算图示振动系统的基频,简述两种结果存在一定差别的原因。

解:1、瑞利法:取质量块123,,m m m 的水平位移123,,x x x 为广义坐标,则可列出质量和刚度矩阵为
1234M m ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3200253003740044K k -⎛⎫

-- ⎪= ⎪-- ⎪
-⎝⎭
先根据系统的情况选择一个接近系统第一阶模态向量的试算向量,可由各质块对应的重力产生的静位移曲线作为一阶振型的近似,而各质块在重力作用下的静位移为:
123410109878771011014107,,,26636646st st st st m m m m m m m m m m k k k k k k k k k k
δδδδ=
=+==+==+= 因此可选取(6087101107)(1 1.45 1.683 1.783)T
T
u ==
有:112 1.45(1 1.45 1.683 1.783)26.423 1.6834 1.783T u Mu m m ⎛⎫⎛⎫
⎪⎪
⎪⎪== ⎪⎪ ⎪⎪
⎝⎭⎝⎭
320
012530 1.45(1
1.45
1.683 1.783) 1.6082
0374 1.6830044 1.783
T u K u m k -⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪== ⎪⎪-- ⎪⎪-⎝⎭⎝⎭
则2
1111.608210.0608726.42k k
m m
λωω==
==,2、邓柯莱法:依题意得12341234234234m m m m m m m m k k k k k k k k ========,,,,,,,
根据柔度影响系数法求得:
1122334411212312341111311111111125
2612a a a a k k k k k k k k k k k k k k =
==+==++==+++=
,,, 而又:
111222333444222211
2233441
13111125,,,23m m m m
a m a m a m a m k k k k ωωωω========
则:
2
2222
11122
33
44
1
11
1
1
1076m
k
ωωωωω=
+++
=
得1ω=
差别:瑞利法是根据系统的情况选择一个接近系统第一阶模态向量的试算向量,一般由各质量块对应的重力产生的静位移近似,这样计算的基频会存在一定的误差,一般选取的向量u 与(1)
u 之间误差越小,
求出的基频越精确,并且计算出的是基频的上限。

邓柯莱法是采用柔度矩阵列出系统的特征方程,从而求出系统各阶频率与柔度矩阵和质量块的关系,然后仅保留基频的特征值,得出估算基频的计算公式,这样计算出的1ω比实际值要小,而且当
12n n ωω 估算的值才比较精确。

瑞利法计算出的是基频的上限,一般比1ω的精确值要大,而邓柯莱法计算出的1ω比精确值要小,所以存在一定的差别。

五、对图示的扭转振动系统:(15分)
1、求系统的总传递矩阵;
2、由边界条件确定频率方程,求出固有频率。

六、如图所示,两端固定的等直杆,在其中点作用一轴向力F ,当F 突然取消后,求系统的响应。

解:设x 坐标如图。

两端固定的等直杆纵向自由振动时的解为
1
(,)sin
sin()n
n n n n p u x t C x p t a
ϕ∞
==+∑ (1)
式中:,=
n n p a a L π=
ρ为杆单位体积的质量) 依题意,由材料力学可知,初始条件0t =
,022
(,0)(),22
Fx L
x EA
u x F L x L
x L EA ⎧≤≤
⎪⎪=⎨
-⎪≤≤⎪⎩
(,0)0u
x = 将(1)式等式左右两边乘sin
m
p x a
,沿杆全长积分,根据主振型的正交性,并且使0t =得 02sin (,0)sin L
n n n p C u x xdx L a
ϕ=
⎰ (2) 同理,将(1)式对时间t 求一阶导数,然后等式左右两边乘cos
m
p x a
,沿杆全长积分,并使0t =得 02cos (,0)cos L
n n n n p C p u x xdx L a
ϕ=
⎰ (3) 将初始条件代入(3)式,得:,sin 12
n n π
ϕϕ=
=。

代入(2)式,得
20222()
sin sin 22L L n n L n p p Fx F L x C xdx xdx L EA a L EA a
-=+⎰⎰
20
222
1111cos sin cos sin 22()22()L
L
L FL n FL n FL n FL n x
x
EA n EA n L
EA n EA n L
ππππ
ππππ=-++
-
1
2
2
2(1)()n FL EA n π--=
故:1
2221,3,52(1)(,)sin cos n n n FL n u x t x p t EA n L
π
π-∞=-=∑。

相关文档
最新文档