二次函数经典解题技巧

合集下载

数学二次函数应用题解题技巧

数学二次函数应用题解题技巧

数学二次函数应用题解题技巧
数学二次函数应用题解题技巧包括以下几个方面:
1. 熟悉二次函数的基本性质:二次函数有三个重要的性质,即抛物线的基本性质、对称性和伸缩性。

2. 理解二次函数的图像特点:二次函数的图像通常呈现出抛物线的特点,即开口方向朝上或朝下,对称轴通常是抛物线的横坐标,且经过原点。

3. 利用二次函数的顶点式和一般式:顶点式是二次函数的一种特殊形式,一般式也是二次函数的一种形式。

对于顶点式和一般式,可以利用它们的性质进行变形,从而得到有关函数值、图像等信息。

4. 利用二次函数的求导法则:求导法则是解决二次函数问题的重要工具。

通过求导法则,可以求出函数在某一点处的导数,进而求出函数在该点的函数值。

5. 利用二次函数的图像性质和求导法则,通过图像进行推理和猜测,找到函数的取值范围或者零点位置。

6. 掌握常见的二次函数应用场景:常见的二次函数应用场景包
括求解几何图形、计算函数值、构造函数图像等。

7. 常规解题方法:对于常规问题,可以使用二次函数的基本概念、求导法则和图像特点等工具进行求解。

二次函数问题需要结合函数的性质和图像特点进行思考,同时掌
握求导法则和常见的应用场景,才能进行高效的解题。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

初中数学二次函数题型答题技巧和方法

初中数学二次函数题型答题技巧和方法

初中数学二次函数题型答题技巧和方法一、理论基础1. 二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c分别为二次项系数、一次项系数和常数项。

2. 二次函数的图像特征二次函数的图像是抛物线,开口朝上还是朝下取决于a的正负性;顶点的横坐标为-x=b/2a;若a>0,则二次函数的图像开口朝上,最小值为y轴的对称轴;若a<0,则二次函数的图像开口朝下,最大值为y 轴的对称轴。

3. 二次函数的零点和值域二次函数的零点即其图像与x轴的交点,可通过解二次方程求得;值域是二次函数在定义域内所有纵坐标的集合。

二、基本题型及解题技巧1. 求二次函数的图像特征首先计算顶点的坐标,并根据a的正负性判断开口方向;然后通过y=ax^2的形式,可知函数的对称轴为x=0,即y轴;进而可以根据a 的值判断最值是最大值还是最小值。

2. 求二次函数的零点通过解二次方程的方法,将二次函数与x轴相交的点作为函数的零点。

3. 求二次函数的值域首先求得函数的最值,然后根据a的正负性来确定值域的范围。

三、提高解题能力的方法1. 多练习经典题目通过练习一些经典的二次函数题目,可以加深对二次函数的理解,掌握基本的解题技巧。

2. 多思考图像特征在解题过程中,要多思考二次函数的图像特征,如顶点坐标、开口方向、对称轴等,这样可以帮助更快地理解题目并找到解题方法。

3. 注意解题方法和步骤解二次函数题目时,要注意分类讨论,分步解题,并注意逻辑推理的合理性。

四、常见错误与纠正1. 混淆二次函数的图像特征有些学生容易混淆二次函数图像的开口方向和对称轴位置,应该在理论学习和练习中多加注意,加深对二次函数图像特征的印象。

2. 解题步骤混乱有些学生在解题时,步骤混乱,缺乏逻辑性,应该在解题过程中多加练习,养成条理清晰的解题习惯。

五、案例分析及解决方案1. 案例:已知二次函数f(x)=2x^2-4x+3,求解以下问题:(1)求f(x)的顶点坐标;(2)求f(x)的零点;(3)求f(x)的值域范围。

二次函数解题思路十大技巧

二次函数解题思路十大技巧

二次函数解题思路十大技巧
1、先求出二次函数的顶点:
设二次函数为y=ax2+bx+c,那么顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。

2、确定函数的性质:
判断a的正负,可以确定函数的单调性,从而确定函数的大致形状。

3、利用函数的性质,确定函数的根:
若函数为单调递增,则函数的根在顶点左边;若函数为单调递减,则函数的根在顶点右边。

4、利用绝对值函数的性质,确定函数的根:
若函数为绝对值函数,则函数的根在顶点两边,且根的绝对值相等。

5、利用函数的性质,确定函数的最大值和最小值:
若函数为单调递增,则函数的最大值在顶点右边;若函数为单调递减,则函数的最小值在顶点左边。

6、利用函数的性质,确定函数的极值:
若函数为单调递增,则函数的极大值在顶点右边;若函数为单调递减,则函数的极小值在顶点左边。

7、利用函数的性质,确定函数的极值点:
若函数为单调递增,则函数的极大值点在顶点右边;若函数为单调递减,则函数的极小值点在顶点左边。

8、利用函数的性质,确定函数的增量和减量:
若函数为单调递增,则函数的增量在顶点右边;若函数为单调递减,则函数的减量在顶点左边。

二次函数的判别式与解题技巧

二次函数的判别式与解题技巧

二次函数的判别式与解题技巧二次函数是高中数学中的一个重要内容,它在数学和实际问题中都有广泛的应用。

了解二次函数的判别式与解题技巧,可以帮助我们更好地理解和应用二次函数。

本文将介绍二次函数的判别式以及解题的一些技巧和方法。

一、二次函数的判别式判别式是判断二次函数的性质和解的个数的关键工具。

二次函数的一般形式为:f(x) = ax^2 + bx + c (1)其中,a、b、c为实数且a ≠ 0。

二次函数的判别式为Δ = b^2 - 4ac。

根据判别式Δ的值,可以判断二次函数的性质和方程的解的个数:1. 当Δ > 0时,二次函数有两个不相等的实数根,方程有两个不相等的实数解;2. 当Δ = 0时,二次函数有两个相等的实数根,方程有两个相等的实数解;3. 当Δ < 0时,二次函数没有实数根,方程没有实数解。

二、解题技巧和方法1. 求解二次方程要求解二次方程f(x) = 0,可以利用判别式的值来判断方程的解的个数,然后根据判别式的不同情况,采用不同的解题方法:a) 当Δ > 0时,可以使用求根公式来求解方程的解。

根据求根公式:x1 = (-b + √Δ) / (2a),x2 = (-b - √Δ) / (2a)b) 当Δ = 0时,方程有两个相等的实数解。

可以通过求根公式或其他方法来求解。

c) 当Δ < 0时,方程没有实数解。

但可以用复数来表示,也可以用其他方法求解。

2. 探究二次函数的性质通过判别式的值,我们可以了解二次函数的性质,例如:顶点、开口方向和开口程度。

a) 当a > 0且Δ > 0时,二次函数开口向上,具有最小值,即顶点为最小值点;b) 当a < 0且Δ > 0时,二次函数开口向下,具有最大值,即顶点为最大值点;c) 当Δ = 0时,二次函数的开口方向不变,即开口向上或向下,且具有顶点。

3. 解决实际问题除了解方程外,二次函数还可以用于解决实际问题。

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。

本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。

正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。

在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。

- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。

- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。

例如,抛物线可以用来描述通货膨胀率的变化。

2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。

- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。

- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。

- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。

3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。

例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。

此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。

二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。

掌握这些技巧,可以帮助我们更好地理解和解决实际问题。

初中数学二次函数解题技巧

初中数学二次函数解题技巧

初中数学二次函数解题技巧初中数学中,二次函数是一个比较难理解的知识点。

它的定义是一个形如y=ax²+bx+c 的二次函数,其中a,b,c 是常数,而x 和y 则是变量。

它常用于物理、工程学等领域中的问题求解。

当然,许多同学都觉得二次函数非常难,但它其实并不难。

只要我们了解一些解题技巧,就能够轻松地应对二次函数的题目。

接下来,本文将为大家详细介绍一些初中数学二次函数解题技巧。

一. 推导二次函数通式首先,我们需要熟悉二次函数的形式以及相应的技巧。

我们来探讨一下怎样推导二次函数的通式。

一般地,我们常用相加相除的方法消去x²再化简。

利用与二次函数有关的图像来找到具有相关性的量之间的关系,可以帮助我们推导出二次函数的通式。

通式为:y=a(x-p)²+q,其中 a 是抛物线的开口方向,p 是抛物线的顶点,q 是抛物线与y 轴的交点。

二、使用因式分解法其次,因式分解法是二次函数中的一种应用方法。

你可以用它来快速解决二次函数题目。

在使用因式分解法时,只需找到方程式中可以分解为两个值的因数。

因式分解法在解决有些年级的数学问题时非常有用。

例如,对于y=2x²+4x+2的问题,我们只需要将2x²+4x+2 进行因式分解,即可得到y=2(x+1)²-2。

三、更深入的考虑单根或两个实根的情况在解决二次函数相关的问题时,我们还必须注意所涉及的方程式的单根或两个实根的情况。

许多同学常常会遇到这种问题,但不知道怎样应对。

实际上,这种情况需要你更深入地思考。

例如,如果二次函数为y=ax²+bx+c,你需要先计算出它的根。

如果根是实根,就需要用它来推导出二次函数的通式。

如果根为单根,则需要用一些组合公式来进一步解决问题。

有一些像求解二次函数的极值等问题,也需要用到组合公式。

四、使用二次函数图像最后,这是一种相对简单的解决二次函数问题的方法。

我们可以根据二次函数的图像来推导出相应的通式。

二次函数典型题解题技巧

二次函数典型题解题技巧

二次函数典型题解题技巧一有关角1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点点A 在点B 的左边,与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式;2连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.思路点拨:对于第1问,需要注意的是CD 和x 轴平行过点C 作x 轴的平行线与抛物线交于点D对于第2问,比较角的大小a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条解:1∵CD ∥x 轴且点C0,3,∴设点D 的坐标为x,3 .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D -2,3 .根据抛物线的对称性,设顶点的坐标为M -1,y,又∵直线y= x+5经过M 点,∴y =-1+5,y =4.即M -1,4.∴设抛物线的解析式为2(1)4y a x =++. ∵点C0,3在抛物线上,∴a=-1.即抛物线的解析式为223y x x =--+.…………3分 2作BP ⊥AC 于点P,MN ⊥AB 于点N .由1中抛物线223y x x =--+可得 点A -3,0,B1,0,∴AB=4,AO=CO=3,AC=32. ∴∠PAB =45°.∵∠ABP=45°,∴PA=PB=22.∴PC=AC -PA=2.在Rt △BPC 中,tan ∠BCP=PBPC =2.在Rt △ANM 中,∵M-1,4,∴MN=4.∴AN=2.tan ∠NAM=MN AN =2.∴∠BCP =∠NAM .即∠ACB =∠MAB .后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角圆分开再说,所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.I 求抛物线的解析式;II 探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形若存在,求出P 点坐标,若不存在,请说明理由;III 直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.思路点拨:II 问题的关键是直角,已知的是AC 边,那么AC 边可能为直角边,可能为斜边,当AC 为斜边的时,可知P 点是已AC 为直径的圆与坐标轴的交点,且不能与A 、C 重合,明显只有O 点;当AC 为直角边时,又有两种情况,即A 、C 分别为直角顶点,这时候我们要知道无论是A 或者C 为直角顶点,总有一个锐角等于∠OCA 或Rt △PAC 和Rt △OAC 相似,利用这点就可以求出OP 的长度了III 从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全是特殊角30°,45°,60°,90°,在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能在没有学反三角函数的前提下,就是他们的差是特殊角,再联系到∠ABC=45°,可知,这两个角的差就是45°,那么我们需要证明的就是∠ABD=∠CBE,再想想上一题所说的,就明白是利用相似三角形来证明了,即证明△BCE 是一个直角三角形且与△BAD 相似解:I ()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.代入32-+=bx ax y ,得 {{12030339=-==--=-+∴a b b a b a322--=∴x x yII ①当190,PAC ∠=︒时可证AO P 1∆∽ACO ∆ 31tan tan 11=∠=∠∆∴ACO AO P AO P Rt 中,.)31,0(1P ∴②同理: 如图当)0,9(9022P CA P 时,︒=∠③当)0,0(9033P A CP 时,︒=∠综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是)31,0(1P )0,9(2P ,)0,0(3P . III ()1,0,131D x y 得由+-=.()4,1322---=E x x y ,得顶点由. ∴52,2,23===BE CE BC .为直角三角形BCE BE ∆∴=+,CE BC 222.31tan ==∴CB CE β. 又31tan ==∠∆∴OB OD DBO DOB Rt 中.β∠=∠∴DBO . ︒=∠=∠-∠=∠-∠45OBC DBO αβα.二线段最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果我们公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值3、抛物线()20y ax bx c a =++≠交x 轴于A 、B 两点,交y 轴于点C,已知抛物线的对称轴为直线x = -1,B1,0,C0,-3.⑴ 求二次函数()20y ax bx c a =++≠的解析式;⑵ 在抛物线对称轴上是否存在一点P,使点P 到A 、C 两点距离之差最大 若存在,求出点P 坐标;若不存在,请说明理由.思路点拨:点P 到A 、C 两点距离之差最大,即求|PA -PC|的最大值,因P 点在对称轴上,有PA=PB,也就是求|PB -PC|,到了这儿,易知当P 点是BC 所在直线与对称轴的交点,易知最大值就是线段BC 的长;具体解题过程略4、研究发现,二次函数2ax y =0≠a 图象上任何一点到定点0,a 41和到定直线ay 41-=的距离相等.我们把定点0,a 41叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.1写出函数241x y =图象的焦点坐标和准线方程; 2等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点, 求等边三角形的边长;3M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P1,3 为定点,求MP+MF 的最小值.思路点拨:2因△OAB 是等边三角形,易知AB 平行于X 轴,且∠AOB=60°,知OA 、OB 于y 轴的夹角等于30°,利用这点容易求出三角形的边长3由题目可知MF 的长度等于M 点到直线y=-1的距离,那么MP+MF 就是P 点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P 点做y=-1的垂线段的长 解:1焦点坐标为0,1, 准线方程是1-=y ;2设等边ΔOAB 的边长为x,则AD=x 21,OD=x 23. 故A 点的坐标为x 21,x 23. 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x 舍去,或38=x .∴ 等边三角形的边长为38.3如图,过M 作准线1-=y 的垂线,垂足为N,则MN=MF.过P 作准线1-=y 的垂线PQ,垂足为Q,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. 5、思路点拨:2要求AE 和AM 的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA 和OE 的长以及E 点到x 轴的距离,我们作EG ⊥x 轴,垂足为G,那么容易求出OG 的长,从而求出AE 的长;要求AM 的长,先做OK ⊥AE,垂足为K,要求AM 的长,首先我们利用已知的OA 的长和∠EAO 的函数值来求出AK 和OK 的长,利用OK 的长和三角形OMN 是等边三角形求出MK 和NK 的长,AM 的长也就知道了3这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P 点在什么位置时,PA+PB+PO 才能取最小值,P 点应该在线段AE 上,至于具体的位置我们还不知道,我们就在线段AE 上任取一点P,把PA 、PB 、PO 连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△OAB 内的M 点重合,PA 的长就是AM 的长,m 的最小值就是AE 的长答案详见前段时间发过的从近近几年北京中考模拟及中考压轴题谈起额外讲解一个与二次函数无关的有关线段最值的问题6、2009年中考第25题如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A -6,0,B 6,0,C 0,43,延长AC 到点D ,使AC CD 21=,过D 点作DE ∥AB 交BC 的延长线于点E . 1求D 点的坐标;2作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点.若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短. 要求:简述确定G 点位置的方法,但不要求证明思路点拨:3首先要把速度转化成路程,也就是线段的长度,直线与y 轴的交点假设为M,则OM=63,设P 点在y 轴上的速度为2v,那么在GA 上的速度为v,P 点到达A 点所用的时间为,要使时间最短,也就是求AG+GM/2的最小值,那么我们要把它转化成我们熟悉的两条线段的和,因为∠BMO=30°,GM/2也就是G 点到BM 的距离,我们作GK ⊥BM,垂足为K,问题转化成求GA+GM 的最小值,易知,A 、G 、M 必须共线且垂直BM,所以G 点就是过A 点作BM 的垂线与y 轴的交点解:1∵A -6,0,C 0,43,∴OA =6,OC =43.设DE 与y 轴交于点M .由DE ∥AB 可得△DMC ∽△AOC .又AC CD 21=,21===∴CA CD CO CM OA MD . ∴CM =23,MD =3.同理可得EM =3.∴OM =63.∴D 点的坐标为3,63.2由1可得点M 的坐标为0,63.由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.由点B6,0,点M0,63在直线y=kx+b上,可得直线BM的解析式为y=-3x+63.第25题答图3确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°.∴∠BAH=30°.在Rt△OAG中,OG=AO·tan∠BAH=23.∴G点的坐标为0,23.或G点的位置为线段OC的中点三平移对称旋转问题引子:平移问题以前讲过了,现在重点将对称旋转问题我们知道a,b关于x轴对称的点的坐标为a,-b,关于y轴对称的点的坐标为-a,b,关于原点对称的点的坐标为-a,-b,关于直线x=m的对称点为2m-a,b,关于直线y=n的对称点为a,2n-b,关于点m,n的对称点为2m-a,2n-b任意两点x1,y1和x2,y2的中点为对于抛物线关于x轴、y轴、x=a、y=b的对称抛物线,应该都会了吧,现在重点讲解抛物线关于某点m,n的对称抛物线解析式其他平移、关于直线对称都可以用这个方法解决,为了方便,选取抛物线的顶点式来证明例:对于一个抛物线y=ax-h2+ka≠0来说,坐标为x,y的所有点都在他的图像上,关于m,n的对称点为2m-x,2n-y,那么坐标为2m-x,2n-y都在抛物线关于m,n对称的抛物线上,我们把2m-x,2n-y代入y=ax-h2+ka≠0就可以得到它关于m,n对称的抛物线的解析式为2n-y=a2m-x-h2+k,变形为y=-ax-2m+h2+2n-k现在利用待定系数法来验证这个方法是否正确首先y=ax-h2+ka≠0和它关于点m,n的对称的抛物线的开口大小是一样的,所以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为相反数;其次原抛物线与对称抛物线的顶点是关于m,n对称的,原抛物线的顶点为h,k,它关于m,n的对称点的坐标为2m-h,2n-k,那么对称抛物线的解析式可以写成y=-ax-2m+h2+2n-k,和利用上述方法所得结果一致7、已知抛物线C1:y=ax2-2amx+am2+2m+1a>0,m>1的顶点为A,抛物线C2的对称轴是y轴,顶点为B,且抛物线C1和C2关于P1,3成中心对称(1)用含m的代数式表示抛物线C1的顶点坐标(2)求m的值和抛物线C2的解析式(3)设抛物线C2与x正半轴的交点是C,当△ABC为等腰三角形时,求a的值思路点拨:1很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐标,y=ax -m2+2m+1,故顶点坐标为m,2m+1(2)C1和C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2详解过程略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文教育学科教师辅导讲义
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

解:(1)根据题意,得
⎪⎩



+

-

=
-
+
-

-
-

=
.
4
5
,
)1
(
4
)1
(
2
2
c
a
c
a
…2分
解得



-
=
=
.5
,1
c
a
…………………………3分
∴二次函数的表达式为5
4
2-
-
=x
x
y.……4分
(2)令y=0,得二次函数5
4
2-
-
=x
x
y的图象与x轴
的另一个交点坐标C(5, 0).……………5分
由于P是对称轴2
=
x上一点,
连结AB,由于26
2
2=
+
=OB
OA
AB,

要使△ABP的周长最小,只要PB
PA+最小.…………………………………6分
由于点A与点C关于对称轴2
=
x对称,连结BC交对称轴于点P,则PB
PA+= BP+PC =BC,根据两点之间,线段最短,可得PB
PA+
的最小值为BC.
因而BC与对称轴2
=
x的交点P就是所求的点.……………………………………8分
设直线BC的解析式为b
kx
y+
=,根据题意,可得



+
=
-
=
.
5
,5
b
k
b
解得



-
=
=
.5
,1
b
k
所以直线BC的解析式为5
-
=x
y.…………………………………………………9分
因此直线BC与对称轴2
=
x的交点坐标是方程组



-
=
=
5
,2
x
y
x
的解,解得



-
=
=
.3
,2
y
x
所求的点P的坐标为(2,-3).……………………………10分
压轴题中求最值
,
此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。

典型例题:
1如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式;
⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值.
|
解:⑴ x ,D 点 :
⑵ ①当0<x ≤2时,△EFG 在梯形ABCD 内部,所以y =4
3x 2; ②分两种情况:
Ⅰ.当2<x <3时,如图1,点E 、点F 在线段BC 上, △EFG 与梯形ABCD 重叠部分为四边形EFNM ,
∵∠FNC =∠FCN =30°,∴FN =FC =6-2x.∴GN =3x -6. 由于在Rt △NMG 中,∠G =60°,
所以,此时 y =
4
3
x 2-
8
3(3x -6)2=2392398372-
+-x x . Ⅱ.当3≤x ≤6时,如图2,点E 在线段BC 上,点F 在射线CH 上,
△EFG 与梯形ABCD 重叠部分为△ECP , ∵EC =6-x, 【 ∴y =
8
3(6-x )2=239233832+
-x x . ⑶当0<x ≤2时,∵y =4
3x 2
在x >0时,y 随x 增大而增大, ∴x =2时,y 最大=
3;
当2<x <3时,∵y =2
3
92398372-
+-x x 在x =718时,y 最大=739; 当3≤x ≤6时,∵y =2
3
9233832+-x x 在x <6时,y 随x 增大而减小, ∴x =3时,y 最大=8
3
9.
综上所述:当x =718时,y 最大=73
9
如图,直线
64
3+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45
=与AB 交于点C ,与过点A 且平行于y 轴的直线交于点D.
点E 从点A 出发,以每秒1个单位的速度沿x 轴向左运动.过点E 作x 轴的垂线,分别交直线AB 、OD 于P 、Q 两点,以PQ 为边向右作正方形PQMN.设正方形PQMN 与△ACD 重叠部分(阴影部分)的面积为S (平方单位),点E 的运动时间为t (秒). (1)求点C 的坐标.
}
(2)当0<t<5时,求S 与t 之间的函数关系式. (3)求(2)中S 的最大值. (4)当t>0时,直接写出点(4,
2
9
)在正方形PQMN 内部时t 的取值范围. 【参考公式:二次函数y=ax 2+bx+c 图象的顶点坐标为(a
b a
c a b 44,22
--).】
B E → F → C
A D
G
B E F C
A D
G
N
}
图1
B E
C A
D G P H
.。

相关文档
最新文档