分子诊断技术在肿瘤诊断中的应用
分子生物学技术在肿瘤诊断中的应用与误区解析

分子生物学技术在肿瘤诊断中的应用与误区解析肿瘤是一种严重的疾病,对人类的健康和生命造成了巨大的威胁。
随着科技的发展,分子生物学技术在肿瘤诊断中的应用越来越广泛。
本文将探讨分子生物学技术在肿瘤诊断中的应用,并解析其中的误区。
一、肿瘤标志物的检测肿瘤标志物是指在肿瘤发生和发展过程中产生的一些特定蛋白质、核酸或其他分子。
通过检测肿瘤标志物的水平,可以帮助医生判断患者是否患有肿瘤,并对肿瘤的类型、分期和预后进行评估。
分子生物学技术在肿瘤标志物的检测中发挥着重要作用。
例如,通过PCR技术可以快速、准确地检测出肿瘤相关基因的突变情况。
而通过蛋白质芯片技术可以同时检测多个肿瘤标志物的水平,提高诊断的准确性。
然而,肿瘤标志物的检测也存在一些误区。
首先,不同肿瘤标志物的敏感性和特异性各不相同,有些标志物在某些肿瘤中表达较高,而在其他肿瘤中表达较低,因此单一标志物的检测结果可能存在误诊的风险。
其次,一些肿瘤标志物的水平受到多种因素的影响,如炎症、感染等,这也可能导致误诊。
因此,综合多个指标的检测结果,结合临床表现和其他影像学检查,才能更准确地判断患者是否患有肿瘤。
二、循环肿瘤DNA的检测循环肿瘤DNA是指肿瘤细胞释放到血液中的DNA片段。
通过检测循环肿瘤DNA的突变情况,可以实现无创、快速的肿瘤诊断和监测。
分子生物学技术在循环肿瘤DNA的检测中发挥着重要作用。
例如,通过下一代测序技术可以对循环肿瘤DNA进行全面、高通量的测序,从而发现肿瘤相关基因的突变情况。
而通过数字PCR技术可以对循环肿瘤DNA的突变情况进行精确定量。
然而,循环肿瘤DNA的检测也存在一些误区。
首先,循环肿瘤DNA的水平受到肿瘤负荷的影响,早期肿瘤可能释放的循环肿瘤DNA较少,因此可能无法检测到。
其次,循环肿瘤DNA的突变情况可能存在空间异质性,即不同部位的肿瘤细胞可能存在不同的突变情况,因此单一样本的检测结果可能存在误差。
因此,在循环肿瘤DNA的检测中,需要结合其他检测手段,如组织活检等,来提高诊断的准确性。
分子诊断技术在肿瘤检测中的应用研究

分子诊断技术在肿瘤检测中的应用研究随着科技的不断发展和进步,人们对健康的关注程度也越来越高。
其中,肿瘤检测是人们关注的重点之一。
肿瘤是一种威胁人类健康的疾病,而治疗肿瘤的方法有很多种,但是早期诊断对于肿瘤治疗的成功至关重要。
现代医学中,分子诊断技术被广泛应用于肿瘤检测。
本文将从分子诊断技术的基础原理、应用场景和优点三方面深入探讨分子诊断技术在肿瘤检测中的应用研究。
一、分子诊断技术的基础原理分子诊断技术是一种精准的检测方法,它不仅可以检测出疾病的存在,还可以从分子水平上揭示疾病发生的机制。
其基本原理是对疾病相关分子进行检测和分析,例如,疾病相关伴随体(biomarker)的检测就是分子诊断技术中常用的方法之一。
伴随体使得分子诊断技术具有了高灵敏度和高特异性的优点。
例如,针对肿瘤的伴随体,安捷伦公司研制了多种不同的伴随体检测产品,能够检测出多种不同类型的肿瘤。
二、分子诊断技术的应用场景分子诊断技术在肿瘤检测中的应用非常广泛,尤其在早期肿瘤检测和疗效监测中有着广泛的应用。
1、早期肿瘤检测在细胞癌变的早期阶段,肿瘤释放的伴随体也是较为微弱的,一般很难通过传统检测手段发现。
而分子诊断技术的灵敏性为早期肿瘤的检测提供了较好的保障。
例如,美国生物技术公司Grail研发的血液肿瘤检测技术就可以对40多种肿瘤进行早期检测。
2、疗效监测分子诊断技术可以根据肿瘤细胞进展所产生的不同伴随体的表征,对患者的疗效作出评估。
如针对肾癌治疗效果的监测,目前研究出了许多肾癌治疗相关的伴随体,这些伴随体在治疗过程中的表现将直接影响病情的判断。
通过对上述变化进行监测和分析,医生可以及时了解治疗效果,对治疗方案进行调整。
三、分子诊断技术的优点1、灵敏度高肿瘤伴随体的释放是疾病发生和发展的必然结果,分子诊断技术可以通过对这些伴随体的检测来判断肿瘤是否存在。
而传统的检查方法比如X光和CT则很难检测出这些伴随体的存在。
因此,分子诊断技术具有高灵敏度的特点。
分子病理学诊断技术在肿瘤学中的应用

分子病理学诊断技术在肿瘤学中的应用肿瘤学是研究肿瘤发生、发展、转移及治疗的学科。
肿瘤的发生是由于基因突变、多种环境因素和生活方式等因素综合作用的结果。
分子病理学诊断技术作为一种快速、灵敏、准确的新技术,不仅可以对基因突变的检测、肿瘤细胞的分子特征和表达谱进行研究,还可以对肿瘤的预后和治疗反应进行评估。
本文将从分子病理学诊断技术的概念、技术方法、应用及发展前景等方面详细介绍其在肿瘤学中的应用。
一、分子病理学诊断技术的概念分子病理学诊断技术是指通过对肿瘤组织或体液中的一些分子标志物进行检测,以辅助肿瘤诊断和治疗的技术。
分子标志物包括基因、蛋白质、酶、免疫学指标和肿瘤相关遗传学变异等。
这些分子标志物的表达谱可以显示肿瘤细胞的状态及其分化水平,同时也可以显示肿瘤细胞的分子特征和病理类型,从而提高对肿瘤的鉴别诊断和早期诊断准确率。
分子病理学诊断技术还可以对肿瘤分子靶点进行评估,提供个性化治疗的方案。
二、分子病理学诊断技术的技术方法分子病理学诊断技术的技术方法主要包括基因检测、蛋白质检测、免疫组化和肿瘤标志物检测等。
基因检测是指通过对肿瘤组织和体液中的基因序列进行检测,对肿瘤分子遗传学变异进行评估,并为后续的个性化治疗提供依据。
目前常用的基因检测技术包括荧光原位杂交(FISH)、多聚酶链式反应(PCR)和基因芯片等。
蛋白质检测是指通过对肿瘤组织中的蛋白质进行检测,以评估其表达及功能状态。
蛋白质检测技术包括质谱法、二维凝胶电泳和蛋白质芯片等。
免疫组化是指通过利用抗体与免疫性分子标志物相互作用的特异性来检测组织或细胞中特定的分子标志物。
免疫组化技术可以对肿瘤细胞的表面标志物和内部标志物进行研究,是肿瘤分子诊断中最常用的方法之一。
肿瘤标志物检测是指通过检测肿瘤组织或体液中的特异性分子标志物,评估肿瘤细胞的状态和肿瘤治疗反应。
如前列腺特异性抗原(PSA)用于前列腺癌的诊断和治疗监测;癌胚抗原(CEA)用于结直肠癌和胃癌的诊断和治疗监测等。
分子诊断技术在肿瘤诊断中的应用

分子诊断技术在肿瘤诊断中的应用肿瘤是一种严重威胁人类健康的疾病。
传统的肿瘤诊断方法往往不能满足准确诊断的需求,而分子诊断技术的出现为肿瘤诊断带来了新的希望。
分子诊断技术以分子水平的变化作为依据,可提供更准确和精细化的肿瘤诊断信息。
本文将从肿瘤分子标志物的检测、分子诊断技术的种类及其应用、分子诊断技术在肿瘤治疗中的作用等方面进行论述。
一、肿瘤分子标志物的检测肿瘤分子标志物是指在肿瘤发生、发展过程中产生的某些特定分子,它们可以反映肿瘤的存在、类型、严重程度以及预后等信息。
肿瘤分子标志物的检测是分子诊断技术的基础,常用的方法包括PCR、免疫组化、流式细胞术等。
以肿瘤标志物CEA为例,利用PCR技术可以在患者血液中检测到CEA的特定序列,进而判断其是否患有结直肠癌等相关肿瘤。
二、分子诊断技术的种类及其应用1. 基因组学技术基因组学技术在肿瘤分子诊断中发挥着重要作用。
通过测序技术可以对肿瘤细胞的基因组进行测定,从而发现潜在的致病基因和突变。
此外,基因芯片技术也被广泛用于肿瘤分子诊断中。
通过芯片上的探针可以同时检测成千上万个基因的表达水平,进一步了解肿瘤的生物学特征和发展机制。
2. 蛋白质组学技术蛋白质组学技术可以对肿瘤细胞中的蛋白质进行分析和鉴定,从而寻找肿瘤标志物。
质谱技术是蛋白质组学的核心技术之一,通过质谱仪的分析可以鉴定出肿瘤细胞中表达异常的蛋白质,进而用于肿瘤的诊断和预后评估。
3. 微小RNA技术微小RNA(miRNA)是一类长度约为22nt的小分子RNA,在肿瘤发生和发展过程中起着重要的调控作用。
利用高通量测序技术可以对肿瘤细胞中的miRNA进行筛查和鉴定,从而找到与肿瘤相关的潜在标志物。
此外,还可以通过检测患者血液中的循环miRNA水平来判断肿瘤的存在和预后情况。
三、分子诊断技术在肿瘤治疗中的作用分子诊断技术不仅可以提供肿瘤的准确诊断信息,还可以指导肿瘤治疗的选择和评估治疗效果。
例如,通过检测肿瘤细胞中的某些基因突变,可以确定是否适合采用靶向治疗方法。
举例说明分子生物学检验技术在肿瘤诊治中的应用和意义。

举例说明分子生物学检验技术在肿瘤诊治中的应用和意义。
分子生物学检验技术是当今第四次生物技术革命的重要组成部分。
在肿瘤诊治中,它的应用及其意义也越来越重要。
一是及早发现。
分子生物学检验可以识别特定的基因,从而可以及时发现患者对某种肿瘤的易感性。
比如,如果医生发现患者家族史上出现了多种肿瘤,可以进行分子生物学检验,以确定发病基因是什么,定期测试患者的血液,以便尽早发现病变。
二是定性诊断。
分子生物学检验技术可以检查癌症细胞中特定的基因,从而准确鉴定癌细胞的类型,判断患者的病情及其最佳治疗方案,以减轻患者的痛苦,提高疗效。
三是用于控制药物疗效。
分子生物学检验技术可以检测患者对特定药物的反应,以改变患者的治疗方案,增加药物的有效性,减少副作用,减少患者的治疗成本,获得最佳疗效。
总之,分子生物学检验技术在肿瘤诊治中的应用有着重要的意义,它能够提高肿瘤的诊断准确性,确定最佳治疗方案,控制药物的疗效,改善患者的生活质量和预后水平。
- 1 -。
分子诊断技术在肿瘤检测中的应用

分子诊断技术在肿瘤检测中的应用肿瘤是一种严重的疾病,它的发病机制非常复杂,没有一个特效药物可以完全治愈它。
然而,随着医学技术的发展,近年来,分子诊断技术逐渐应用于肿瘤检测领域,为肿瘤的早期诊断以及治疗提供了更加精准的手段。
本文将从肿瘤形成机制、分子诊断的原理、应用案例等方面探讨分子诊断技术在肿瘤检测中的应用。
一、肿瘤的形成机制肿瘤是指人体组织或细胞在遗传和环境诱因的作用下,失去正常生长调控后,异常增殖形成的肿块。
临床上,肿瘤分为良性肿瘤和恶性肿瘤两种,其中后者更加危险且难以治愈。
恶性肿瘤的形成机制是一个漫长而复杂的过程。
在人体正常细胞分裂、修复损伤、代谢物质和排泄废物等过程中,这些细胞会受到一些基因和环境因素的影响,从而发生了突变。
在这些基因或环境因素的不断干扰下,细胞会逐渐出现异质性,一些异常的细胞逃避了正常的生长调控,狂热地增长,继而形成了恶性肿瘤。
除了突变等内因性因素,外部环境污染和毒物的存在以及不良的生活方式等因素也会对肿瘤形成产生重要的作用。
二、分子诊断技术的原理分子诊断技术是一种治疗性精准医学的手段,它利用分子生物学的技术和指标来诊断疾病,特别是恶性肿瘤。
其实质是将肿瘤诊断从传统的形态学诊断向基因水平的分子诊断转化,从而实现对肿瘤增殖、压抑、凋亡等过程的直接监测和诊断。
目前分子诊断技术的原理主要有两种:1.基于PCR等大分子技术的检测方法:这种方法主要是通过扩增一段特定的基因片段或一些特殊序列,对存在于体液或组织中的微量肿瘤DNA进行高灵敏度的检测。
由于肿瘤细胞的DNA含量通常比其他组织更高,所以利用PCR等技术扩增、检测的敏感性也更高。
2.基于蛋白质、酶、细胞等小分子技术的检测方法:这种方法主要是通过检测肿瘤生长和代谢所产生的一些细胞因子、蛋白质、酶、核酸等物质的变化。
例如,前列腺特异性抗原(PSA)因子在前列腺癌细胞中产生,在尿液、血清中检测可以帮助早期检测前列腺癌。
此外,一些特异性肿瘤标记物也可以发挥重要的检测作用,如胃癌常见的肿瘤标记物糖类抗原19-9(CA19-9)等。
分子诊断技术在肿瘤医学中的应用

分子诊断技术在肿瘤医学中的应用肿瘤医学是现代医学领域的重要一支,而分子诊断技术则是肿瘤医学研究和临床诊疗中的一项全新技术,它给我们的临床诊疗带来了极大的便捷和成效。
本文将从肿瘤分子诊断技术的定义、特点、应用和前景等方面进行探讨。
一、分子诊断技术的定义与特点分子诊断技术是指通过研究组织、器官、个体细胞、DNA、RNA和蛋白质等生物学分子水平上的变化,对人体的代谢、生长、发育、疾病进程等方面进行快速准确的检测、诊断和治疗。
肿瘤分子诊断技术就是将分子诊断技术在肿瘤医学中的应用。
肿瘤分子诊断技术主要有三个特点:1. 高灵敏度。
肿瘤分子诊断技术能够检测到非常小的分子变化,一旦出现病变,就能够及时观察,提高诊断的灵敏度。
2. 高特异性。
肿瘤分子诊断技术能够非常精确地检测到肿瘤特有的分子标志物,提高了诊断的准确性。
3. 高重复性。
肿瘤分子诊断技术能够多次重复进行检测,提高了检测结果的可靠性。
二、分子诊断技术在肿瘤医学中的应用目前,分子诊断技术在肿瘤医学领域中广泛应用,其主要应用有以下几个方面:1. 早期肿瘤筛查随着肿瘤分子标志物的发现和研究,人们发现很多肿瘤早期便已有蛋白质、DNA等分子的异常表达,因此,通过检测血液、尿液等标本中的肿瘤特异性分子标志物,可以在早期发现患者的肿瘤,提高肿瘤诊断的敏感性和特异性。
2. 肿瘤分子分型肿瘤分子分型是指通过对肿瘤内部的分子特征和基因表达进行分析,将肿瘤分为不同的亚型,从而有针对性地推荐治疗方案。
例如,HER2基因的扩增与癌症进展呈正相关性,因此通过HER2基因检测可以指导HER2阳性的乳腺癌患者选择靶向治疗,提高治疗效果。
3. 监测肿瘤治疗效果在肿瘤治疗中,肿瘤标志物可以用来监测治疗效果和患者复发的风险。
例如,前列腺癌的患者在治疗后,PSA(前列腺特异性抗原)的水平下降可以反映治疗进展和预测复发的风险等。
4. 个性化治疗通过肿瘤分子分型可以发现不同肿瘤亚型之间存在显著的生物学差异,因此可以针对不同肿瘤分子特征设计个性化的治疗方案,提高治疗效果。
分子诊疗技术在肿瘤治疗中的应用

分子诊疗技术在肿瘤治疗中的应用随着科学技术的不断进步,分子诊疗技术在肿瘤治疗中的应用越来越广泛。
这项技术不仅可以帮助医生更加准确地诊断和治疗肿瘤患者,还可以提高治疗的效果和患者的生存率。
本文将介绍分子诊疗技术在肿瘤治疗中的应用,并探讨未来这项技术的发展前景。
什么是分子诊疗技术?分子诊疗技术是一种基于分子遗传学的诊断和治疗方法。
它通过对患者的基因组信息进行分析,筛选出与肿瘤相关的基因突变和表达差异,并根据这些信息选择最适合的治疗方案。
分子诊疗技术已经被广泛应用于肿瘤诊断、疾病预测、治疗选择、药物筛选等方面。
如何应用于肿瘤治疗?在肿瘤治疗中,分子诊疗技术主要应用于以下几个方面:1. 确定肿瘤类型和分期通过对患者的肿瘤组织进行基因突变、基因表达等分子分析,医生可以确定肿瘤的类型和分期,进而制定最佳的治疗方案。
例如,HER2阳性乳腺癌患者可以选择使用与HER2相关的靶向治疗药物,这种药物可以针对肿瘤细胞表面的HER2受体进行精准打击,提高治疗效果。
2. 个体化治疗分子诊疗技术可以帮助医生根据患者的个体特征和肿瘤分子表征制定个性化的治疗方案,这种方式被称为个体化治疗。
个体化治疗可以大大提高肿瘤治疗的效果和生存率。
例如,ALK阳性非小细胞肺癌患者可以选择使用与ALK相关的靶向治疗药物,这种药物可以抑制ALK基因突变引起的肿瘤生长和扩散。
3. 免疫治疗分子诊疗技术还可以帮助医生评估患者的免疫系统状态和肿瘤组织中的免疫细胞浸润情况,从而选择最佳的免疫治疗方案。
目前,免疫治疗已经成为肿瘤治疗的重要手段之一。
例如,PD-L1高表达的肿瘤患者可以选择使用PD-1抑制剂这一新型免疫治疗药物,它可以帮助人体免疫系统激活攻击肿瘤细胞。
未来发展前景随着技术的不断完善和价格的不断下降,预计分子诊疗技术将在未来得到更加广泛的应用。
未来,它可能不仅可以用于肿瘤治疗,还可以用于其他疾病的诊断和治疗,例如心血管疾病、神经系统疾病等。
此外,分子诊疗技术还可以用于新型药物的研发和评估,为药物研发提供更加高效、精准的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子诊断技术在肿瘤诊断中的应用1、肿瘤易感基因检测单独遗传因素造成肿瘤的概率低于5%。
肿瘤的发生主要是遗传基因和环境因素共同作用的结果,其中遗传基因是内因,与人体是否具有肿瘤易感基因有关。
肿瘤易感基因检测就是针对人体内与肿瘤发生发展密切相关的易感基因而进行的,它可以检测出人体内是否存在肿瘤易感基因或家族聚集性的致癌因素,根据个人情况给出个性化的指导方案。
肿瘤易感基因检测特别适合家族中有癌症病例的人群,可以帮助这类人群提前了解自身是否存在肿瘤易感基因。
已知的肿瘤易感性基因有Rb1、WT1、p53、APC、hMSH2、hMLH1和BRCA1等,与其相对应的癌症综合征(附表)。
遗传性癌症综合征与易感基因癌症综合征易感基因视网膜母细胞瘤Rb1Wilms瘤WT1LI-Fraumeni综合征p53家族性腺瘤性息肉瘤(FAP)APC遗传性非息肉性结肠癌(HNPCC) hMSH2,hMSH1乳腺癌BRCA1卵巢癌BRCA12、肿瘤相关病毒检测业已证明一部分肿瘤的发生和病毒感染有关,因而检测这些相关病毒不仅可探计肿瘤和病毒的关系,而且可以找出肿瘤的易患人群。
由于病毒太小,且难以培养,一般方法检测病毒效果极差。
而核酸杂交技术与PCR技术用于病毒检测具有特异性强、敏感性高等特点。
人类某些肿瘤可能与病毒有关病毒相关肿瘤HPV6、11亚型 宫颈尖锐湿疣(乳头状瘤)HPV16、18亚型 宫颈上皮内新生物和癌HSV及CMV宫颈恶性病变HBV原发性肝癌EB病毒伯基特淋巴瘤、鼻咽癌HSV6型 霍奇金病和鼻咽癌微小病毒葡萄胎ATL病毒成人T细胞白血病/淋巴瘤3、肿瘤的早期分子诊断研究发现,肿瘤相关基因的突变出现在肿瘤发生的最早期,远早于肿瘤临床症状的出现,是肿瘤早期诊断的重要依据。
通过基因突变检测进行早期诊断能够从最根本的基因上寻找肿瘤发生的微小趋势,第一时间作出肿瘤预警,通过针对性的环境或生活方式调整,能有效预防肿瘤的形成;在肿瘤发生初期实施针对性治疗,能极大程度增加治愈的概率。
K-ras基因突变是一种胰腺癌、结肠癌和肺癌等肿瘤中发生率较高的分子事件,突变集中在第12、13和61编码子。
应用细针穿刺活检材料检测胰腺癌的第12编码子变突,检出率可达100%,应用PCR-RFLP方法检测结肠癌患者粪便中的Ras基因突变,其检出率与瘤组织中相似,可用于高危人群的筛选。
目前临床诊断技术包括影像学检查及生化指标的检测,近年来这些技术手段已经有了很大的发展,但仍存在准确度低、灵敏度不足的缺陷,对疾病的早期诊断易出现假阴性。
基因检测灵敏度高特异性强,多靶标可排除假阳性,早期发现病变,并可用于疾病的早期筛查,提高疾病治愈率。
4、肿瘤的诊断与鉴别诊断肿瘤标记物由肿瘤组织和细胞产生的与肿瘤的形成、发生相关的物质,这些物质存在于肿瘤细胞的胞核、胞质、胞膜上或体液中;不存在于正常成人组织而见于胚胎组织,或在肿瘤组织中含量超过正常含量。
由于肿瘤细胞具有侵袭能力、转移、无限增殖、逃逸凋亡及血管生成等独特的生物学特征,且均由复杂的分子通路介导,因此这些分子通路中任何组成成分均可能作为肿瘤分子标记物。
通过肿瘤分子标记物的存在或量的改变可了解肿瘤的组织发生来源、细胞分化及功能,以进行肿瘤筛查(仅AFP与PSA用于高危人群)、肿瘤分子诊断、分类、判断预后及指导治疗。
(1)肿瘤标记物的分类:肿瘤标志分为基因型标志和基因表型标志:基因型标志是指基因本身突变和表达异常,能反映癌前启动阶段的变化;基因表型标志是指基因表达产物异常,表现为其所编码的表达产物合成紊乱,产生胚胎性抗原、异位蛋白等,一般出现较晚。
因此,寻找特异性肿瘤基因型标志进行肿瘤基因诊断,对于肿瘤的早期发现和诊断,以及肿瘤的预防和治疗具有至关重要的意义。
(2)常见肿瘤与其相关的血清学标志物部分常见肿瘤与其相关的血清学标志物肿瘤名称血清中的肿瘤标志物肝癌AFP、CEA、TPS、TPA、γ-GT等肠道肿瘤CEA、CA199、CA242、CA72-4、TPS等胃癌MG7-Ag、CEA、CA199、TPS等卵巢癌CA125、CA153、CEA、AFP、TPS等乳腺癌CA153、CA125、CEA、TPS等鼻咽癌EBV-IgA、 EBV-IgM、TPA、TPS、SCCA、CEA等胰腺癌CA199、CA242、CEA、TPS等肺癌SCCA、NSE、CA125、CA153、CEA、TPS等恶黑S100、TPS、TPA、CEA等淋巴瘤LDH、TPS、CEA、β2-MG等甲状腺癌TSH 、T3、T4、CEA、TPS、β2-MG等垂体瘤性激素6项(泌乳素等)、HCH、TPS等绒癌HCG、CEA、CA125、TPS等防癌普查C12蛋白芯片、TPS等(3)常见肿瘤与相关的免疫组化标志物鳞 癌CK10&13、CK5&6、CK34bE12、CK(AE3)腺 癌CK8、CK18、CK35bH11乳腺癌GCDFP-15、Mammaglobin、 ER、PR、HER2、EGFR、VEGR、E-cadherin、34bE12、P63卵巢癌ER、PR、PCNA、Ki-67、c-erbB-2、HCG、AFP、CK7+、CK20-、CA125卵巢粘液癌CK7+、CK20-甲状腺癌ER、PR、PCNA、c-erbB-2、P53、nm23、TG、Calcitonin、PH(甲状腺素)消化系统CDX-2、CEA、CA199、CK7、CK20胰腺癌PCNA、P53、nm23、CA199、CK7+、CK20-前列腺癌PSA、PSAP、PSMA、P504S、 ER、PR、AR、P53、P21、CK7+、CK20-、CK34bE12 子宫内膜癌ER、PR、C-erbB-2、P53、CK7+、CK20-肝细胞癌HepPar-1、Glypican-3、AFP、CK8、CK18、CEA、CK7+、CK20-胆管癌CD10、CEA、CK7、CK18、CK19肾细胞癌RCC、PAX2、ER、PR、P53、CK7+、CK20-移行细胞癌P53、P21、CK7+、CK20+肺癌P53、nm23、TTF-1间皮瘤Keratin、Vimentin、HBME-1、Calretinin睾丸肿瘤Oct-4、D2-40、CD117、HCG、AFP、ALAP 、AE1/AE3、CK8GIST CD117、CD34(4)肿瘤染色体与基因重排:下表列举了部分近年来诊断发现的具有特征性染色体易位及相应融合基因的肿瘤,这些分子表达谱(expression profiling)已经被用作重要的诊断和鉴别诊断的依据。
(5)人类肿瘤的代表性癌基因及其分类原癌基因作用癌基因活化机制亚细胞定位人类的肿瘤生长因子: PDGF-β链 FGFsis hst-1 int-2过度表达 过度表达细胞外 细胞外星形细胞,骨肉瘤,乳腺癌等 胃癌,胶质母细胞癌 膀胱癌,乳腺癌,黑色素瘤 生长因子受体: EGFR 家族csf-1受体 erb-B1 erb-B2 erbB-3 fms 过度表达 扩增 过度表达 点突变 透膜 透膜 透膜 透膜肺鳞癌,脑膜瘤,卵巢癌等 乳腺癌,卵巢癌,肺癌,胃癌等 乳腺癌 白血病 GTP 结合蛋白H-ras K-ras N-ras点突变 点突变 点突变 胞膜内 胞膜内 胞膜内甲状腺癌,膀胱癌等 结肠癌、肺癌、胰腺癌等 白血病,甲状腺癌非受体酪氨酸激酶 abl 易 位 胞膜内 慢性髓性及急性淋巴细胞性白血病 转录因子c-myc N-nyc L-myc易位 扩增扩增核内 核内 核内Burkitt 淋巴瘤神经母细胞瘤,肺小细胞癌 肺小细胞癌(6)抑癌基因与人类肿瘤基因 染色体定位 相关肿瘤 基因产物及功能 Rb13q14RB、成骨肉瘤、软组织肉瘤、胃癌、SCLC、乳癌、结肠癌、卵巢癌等p105,控制生长p53 17p13星状细胞瘤、胶质母细胞瘤、结肠癌、乳癌、成骨肉瘤、SCLC、胃癌、磷状细胞肺癌P53 控制生长,对细胞周期和凋亡起关键性作用BRCA 17q21 乳腺癌、卵巢癌、胃癌、肺癌、淋巴瘤 DNA损伤修复及转录调控 PTEN 10q23.3 脑肿瘤、乳腺癌、子宫内膜癌、非小细胞肺癌 通过去磷酸化参与细胞调控FHIT 3p14.2 多种癌如胃癌、肺癌、宫颈癌、肝癌、乳腺癌、结肠癌具有二腺苷三磷酸水解酶活性,与MSI有关。
ATM 11q22-q23 乳腺癌、卵巢癌、宫颈癌、肺癌、淋巴造血系 多功能蛋白激酶,修复DNA损伤APC 5q21 家族性腺瘤性息肉病,大肠癌, 在细胞周期进程和细胞生长调控中起作用WT 11p13 WT、横纹肌肉瘤、肺癌、膀胱癌、乳癌、肝母细胞瘤WT-ZFP,负调控转录因子NF-1 17p12 神经纤维瘤、嗜铬细胞瘤、雪旺氏细胞瘤、神经纤维肉瘤GAP,拮抗p21rasBP16 9p21 多种肿瘤:胶质瘤、肺癌、乳腺癌、骨肿瘤、膀胱癌、肾癌、卵巢癌、淋巴瘤等细胞周期依赖性激酶4抑制因子(CKD4I)(7)细胞凋亡与肿瘤与细胞凋亡过多或不足相关的肿瘤细胞凋亡过多 细胞凋亡不足肿瘤(肿瘤抗原相关的淋巴细胞)、黑色素瘤、肺癌、结肠癌 滤泡性淋巴瘤、P53突变相关的癌、激素依赖性癌(乳腺癌、卵巢癌、前列腺癌)(8)其它标记物:①在肿瘤患者外周血循环DNA中可检测到与原发肿瘤细胞相一致的分子细胞遗传学改变。
如Ras基因突变、p53基因突变,P14 ARF、P16INK4、APC基因的异常甲基化,等位基因失衡,微卫星改变以及DNA免疫球蛋白重链重排等等。
某些肿瘤血清/血浆DNA已检测到的基因变化肿瘤基因突变/扩增微卫星改变(LOH)启动子异常甲基化乳腺癌 P53++ p16INK4A+ 肺癌 K-ras、P53+ + P16、APC、MGMT、GSTP1+头颈部癌P53+ + P16+结直肠癌 K-ras、N-ras、APC、P53+P16、hMLH1+食道癌erB-2+ APC+前列腺癌erB-2+ GSTP1+胰腺癌K-ras+骨骼增生异常综合征N-ras+膀胱癌 + P14ARF+ 肾癌 +黑色素瘤 +肝癌P53+ P15、P16+②增殖标记物:细胞周期相关抗原、增殖细胞核抗原、生长因子及其受体,周期素,周期素依赖性蛋白激酶( cyclin dependent Kinase,CDK)及CDK的抑制蛋白等;③转移潜在性标记物:蛋白酶一尿激酶一血纤维蛋白溶酶原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等;原激活剂组织蛋白D,NM23基因产物(一种核苷二磷酸激酶),以及细胞黏附因子等。
④mRNA作为肿瘤分子标记物:PCR检测特异性mRNA对对肿瘤早期诊断和预测微小转移有一定价值。
5、肿瘤的预后监测分子诊断在肿瘤的监测方面也具有重要的作用,如临床治疗缓解期内白血病的白血病细胞仍达1011,用细胞遗传学方法检出率约为1%~5%,应用核酸杂交技术灵敏度可达0.15%~0.05%,而PCR技术则可使检出率达到10-6左右。