简述影响荧光效率的主要因素
分析化学下册答案

第一章绪论2、对试样中某一成份进行五次测定,所得测定结果(单位ug /L)分别微0.36,0.38, 0.35,0.37,0.39。
(1)计算测定结果的相对标准偏差;(2)如果试样中该成份的真实含量是0.38μg /mL,试计算测定结果的相对误差。
解:(1)依题意可得: 37.0539.037.035.038.036.0=++++=X μg /mL标准偏差:0158.01537.039.037.036.037.035.01)(2222=-)-+(+)-+()-(==⋯⋯--∑n X X S n 相对标准偏差:%=%==27.410037.00158.0⨯X S S r⑵ ∵ X =0.37 μg /mL ,真实值为0.38μg /mL则 %%=--==63.210038.038.037.0⨯-μμX E r 答:测定结果的相对标准偏差为4.2%;测定结果的相对误差为-2.63%。
3、用次甲基蓝-二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度ρB (单位mg /L)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测定吸光度A 分别为0.140,0.160,0.280,0.380,0.410和0.540。
试写出标准曲线的一元线性回归方程,并求出其相关系数。
解:依题意可设一元线性回归方程为 y =a+bx其中X =50.50.15.0+⋯⋯++=2.6mg/mL 318.0=Y则22121)6.20.5()6.25.0()6.20.5)(318.0540.0()318.0140.0)(6.25.0()X()(X b -+⋯⋯+--+⋯⋯+----∑∑==--=)(=n i i i i i X Y Y X =0.0878则 a =x b y -=0.318-0.0878×2.6=0.0897则回归线性方程为y =0.0897+0.0878x2/12/112121)1197.021.15(3358.1])()([))((⨯----∑∑∑=====n i i ni i n i i i Y Y X X Y Y X X r =10.9911答:一元回归线性方程为:y =0.0897+0.0878x ,其相关系数为10.9911。
7.2 荧光强度及影响荧光强度的因素

7.2 荧光强度及影响荧光强度的因素
6.荧光定量公式
荧光强度 If正比于吸收的光强度Ia和荧光量子产率 :
由朗伯-比耳定律:
If = Ia
Ia = I0(1-10- b c ) If = I0(1-10- bc ) = I0(1-e-2.3 b c ) 浓度很低时(A < 0.05),将括号项近似处理后:
苯
苯酚
苯胺
苯甲酸 硝基苯
相对强度
10
18
20
3
0
重原子效应:荧光强度随取代基相对原子质量的增加而减弱
相对强度
氟苯 10
氯苯 7
溴苯 5
碘苯 0
系间窜跃加强,磷光强度增大
7.2 荧光强度及影响荧光强度的因素
3.影响荧光强度的外部因素
(1)溶剂 溶剂的极性、氢键、配位键的形成,荧光发生变化(注明在何种溶剂中) (2)温度 温度降低,荧光强度增大。如荧光素钠的乙醇溶液,在-80℃量子产率接近1 (3)酸度 苯胺在pH 7~12的溶液中,蓝色荧光 pH<2或 pH>13,无荧光(严格控制酸度)
7.2 荧光强度及影响荧光强度的因素
2.荧光与分子结构的关系
判断某物质荧光强弱
(1)跃迁类型:* → 的荧光效率高,系间窜跃速率常数小,有利于荧 光的产生,
(2)共轭效应:提高共轭程度有利于增加荧光效率并产生红移
苯
萘
蒽
量子产率
0.11
0.29
0.46
发射波长/nm
278
321
400
有机荧光物质多含有键的有共轭结构的芳香族化合物及其金属配合物
荧光和磷光的产生过程

荧光和磷光的产生过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1.荧光和磷光的产生过程荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光激发态振动弛豫内转换振动弛豫发射荧光S磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光激发态振动弛豫内转换系间跨越振动弛豫S发射荧光2.激发光谱和发射光谱概念,有何异同(1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长)(2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长)同:都是给样品能量使之发光测量发光强度异:控制的变量不同。
3.化合物荧光与结构的关系a.具有一定的荧光量子产率b.具有合适的结构如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π * π型、取代基为给电子基团4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。
B.荧光猝灭:指荧光物质与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。
C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。
D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。
时间为10-12s5.实时定量PCR与普通PCR的区别所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在之中,通过对每个Ct值的计算,根据获得定量结果。
光化学分析法习题课

• •
问答题
1. 何谓元素的共振线、灵敏线、最后线、分析线,它们之间有何 联系?
解:由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共振线具有最小的激发电位,因此最容易被激发,为该 元素最强的谱线。
灵敏线(sensitive line) 是元素激发电位低、强度较大的谱线, 多是共振线(resonance line)。
1.原子吸收光谱法中的物理干扰可用下述哪一种方法消 除: A.释放剂 ; B.保护剂; C.标准加入法;D.扣除背景; 2.光的波长、频率、能量之间具有下列关系: A.波长越长,频率越低,能量越小; B.波长越长,频率越高,能量越小; C.波长越长,频率越低,能量越大; D.波长越长,频率越高,能量越大; 3.光学分析法中,使用内标法进行定量分析的方法是: A.紫外分光光度法;B.可见光分光光度法; C.原子吸收光谱法;D.发射光谱分析法; 4.发射光谱分析法进行定性分析时的根据是: A.谱线的强度;B.谱线的波长; C.谱线的黑度;D.谱线的多少;
摄取铁光谱是由于铁的光谱谱线较多,而且每条谱线的波 长都已经精确测定,并载于谱线表内,因此可以用铁个谱 线作为波长的标尺,进而确定其它元素的谱线位置。
• 3.请简要写出高频电感耦合等离子炬 (ICP) 光源 的优点。 [答] 温度高可达 10000 K,灵敏度高可达10-9; 稳定性好,准确度高,重现性好; 线性范围宽可达 4~5 个数量级; 可对一个试样同时进行多元素的含量测定; 自吸效应小; 基体效应小; 无电极污染。
7.在原子发射光谱中,公式I=acb,当b=1时,表示 ________________,在低浓度 b=__________。 8.产生红外光谱的必要条件是__________。 9.分析线和内标线符合均称线对的元素应该是 _____电 位和_______电位相近。 10.红外光谱研究最多的就是基本振动频率,而这种分子 振动主要有两种形式,分别为( )振动和( )振 动. 11.AAS是基于( )对特征辐射的吸收而进行分析的方 法;UV-VIS是基于( )对特征辐射的吸收而进行分析 的方法.按其辐射的外形,前者表现为( )光谱,后者为( ) 光谱.
简述影响荧光效率的主要因素。

1.简述影响荧光效率的主要因素。
答:(1)分子结构的影响:发荧光的物质中都含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高;分子的刚性平面结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。
(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强,荧光强度越大;温度对溶液荧光强度影响明显,对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响;表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。
2.试从原理和仪器两方面比较荧光分析法、磷光分析法和化学发光分析法。
答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。
而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。
(2)在仪器方面:荧光分析和磷光分析所用仪器相似,都由光源、激发单色器、液槽、发射单色器、检测器和放大显示器组成。
由于在分析原理上的差别,磷光分析仪器有些特殊部件,如试样室、磷光镜等。
而化学发光分析法所用仪器不同,它不需要光源,但有反应器和反应池及化学反应需要的恒温装置,还有与荧光和磷光分析仪器相同的液槽、单色器、检测器等。
3.如何区别荧光和磷光?其依据是什么?答:为了区别磷光和荧光,常采用一种叫磷光镜的机械切光装置,利用荧光和磷光寿命的差异消除荧光干扰或将磷光和荧光分辨开。
4.采取哪些措施可使磷光物质在室温下有较大的磷光效率?答:(1)在试液中加入表面活性剂,;(2)将被分析物吸附在固体的表面。
分析化学第四版课后答案

分析化学第四版课后答案【篇一:分析化学第四版上册第四章习题参考答案】>2.答: (1)系统误差中的仪器误差。
减免方法:校准天平或更换天平。
(2)系统误差中的仪器误差。
减免方法:校准容量瓶和移液管或更换成配套的容量瓶和移液管。
(3)系统误差中的试剂误差。
减免方法:做空白实验。
(4)随机误差。
(5)过失。
(6)系统误差中的试剂误差。
减免方法:做空白实验。
3 解:滴定管的读数误差为,即读数的绝对误差er1= er2=结果表明,当用去的标准溶液的体积越大,读数的相对误差越小。
8 解:(1)2位;(2)5位;(3)4位;(4)3位;(5)2位;(6)2位9 解:4位或:甲报告的结果是合理的。
因为当分析结果为1%-10%,报告结果应保留3位有效数字。
或:称量的相对误差=甲结果的相对误差=乙结果的相对误差=可见,甲结果的相对误差与称量的相对误差相当,故甲报告的结果是合理的。
11解:12 解:(1)r=xmax-xmin= 55.47%-55.36%=0.11%13解:准确度:∴甲、乙两人测定结果的准确度相当。
精密度:∴甲测定结果的精密度较乙高。
28解:(1)原式=57.6+17.4+0.3=75.3(3)【篇二:高教版分析化学课后习题答案第4至7章】txt>第四章习题习题4-14.1 下列各种弱酸的pka已在括号内注明,求它们的共轭碱的pkb;(1)hcn(9.21);(2)hcooh(3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。
解: (1) hcn pkb=14-9.25=4.79(2) hcoohpkb=14-3.74=10.26 (3)苯酚pkb=14-9.95=4.05 (4) 苯甲酸 pkb=14-4.21=9.794.2. 已知h3po4的pka=2.12,pka=7.20,pka=12.36。
求其共轭碱po43-的pkb1,hpo42-的pkb2.和h2po4- 的p kb3。
《木质素荧光效率的调控机制及应用探索》范文

《木质素荧光效率的调控机制及应用探索》篇一一、引言木质素作为植物细胞壁的重要组成部分,是一种具有高度复杂性和生物活性的天然高分子物质。
近年来,木质素荧光效率的研究逐渐受到科研人员的关注。
荧光是某些化合物在吸收特定波长的光后所表现出的一种发射现象,通过调节其荧光效率可以增强物质的应用效果和拓宽应用范围。
因此,探讨木质素荧光效率的调控机制及其应用,不仅对植物生理生态学的研究有重要意义,也对于开发和利用木质素资源具有实际价值。
二、木质素荧光效率的调控机制1. 木质素的结构与性质木质素主要由苯丙烷单元组成,具有三维网状结构,具有高度的空间复杂性和稳定性。
这种结构使得木质素能够吸收和发射特定波长的光,从而产生荧光现象。
2. 荧光效率的调控因素(1)环境因素:温度、湿度、光照等环境因素对木质素的荧光效率具有显著影响。
例如,温度的升高会促进木质素的荧光效率提高,而光照强度的增加则可能导致荧光强度的增强或减弱。
(2)化学因素:化学结构的变化、化学修饰等手段可以有效地调控木质素的荧光效率。
例如,通过引入共轭双键或改变苯环上的取代基等化学修饰手段,可以增强木质素的荧光强度和稳定性。
(3)生物因素:植物在生长过程中,由于生物合成过程的影响,也会对木质素的荧光效率产生影响。
例如,植物的生长环境、基因型等因素都会影响木质素的合成和荧光性能。
3. 调控机制通过对上述影响因素的调控,可以实现对木质素荧光效率的调控。
具体而言,可以通过改变环境条件、化学修饰或生物合成过程等手段,调整木质素的结构和性质,从而实现对荧光效率的调控。
这种调控机制可以为木质素的应用提供新的思路和方法。
三、木质素荧光效率的应用探索1. 生物成像技术:利用木质素的荧光特性,可以开发出一种新型的生物成像技术。
通过将木质素与生物样品结合,利用其荧光特性进行成像,可以实现对生物样品的可视化观察和定位。
这种技术具有高灵敏度、高分辨率和低毒性等优点,在生物医学领域具有广泛的应用前景。
分析测试中心习题

紫外可见吸收光谱习题一、名词解释1. 比色分析法:利用比较待测溶液本身的颜色或加入试剂后呈现的颜色的深浅来测定溶液中待测物质的浓度的方法就称为比色分析法。
2. 生色团和助色团:所谓生色团是指在200-1000nm波长范围内产生特征吸收带的具有一个或多个不饱和键和未共用电子对的基团。
所谓助色团是一些含有未共用电子对的氧原子、氮原子或卤素原子的基团。
3. 红移和蓝移:由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向长波方向移动的现象称为吸收峰“红移”。
由于取代基或溶剂的影响造成有机化合物结构的变化,使吸收峰向短波方向移动的现象称为吸收峰“蓝移”。
4.增色效应和减色效应:由于有机化合物的结构变化使吸收峰摩尔吸光系数增加的现象称为增色效应。
由于有机化合物的结构变化使吸收峰的摩尔吸光系数减小的现象称为减色效应。
5. 溶剂效应:由于溶剂的极性不同引起某些化合物的吸收峰的波长、强度及形状产生变化,这种现象称为溶剂效应。
二、填空1.朗伯定律是说明在一定条件下,光的吸收与光程成正比;比尔定律是说明在一定条件下,光的吸收与浓度成正比,二者合为一体称为朗伯-比尔定律,其数学表达式为A=Kbc。
2.摩尔吸光系数的单位是L/(mol·cm),它表示物质的浓度1mol/L ,液层厚度为1cm 时,在一定波长下溶液的吸光度。
常用符号A 表示。
因此光的吸收定律的表达式可写为A=εbc。
3.吸光度和透射比的关系是:A=-lgt4. 用分光光度计测量由色配合物的浓度相对标准偏差最小时的吸光度为 0.434。
5. 饱和碳氢化合物分子中只有σ键,只在真空紫外或远紫外或深紫外产生吸收,在200-1000nm范围内不产生吸收峰,故此类化合物在紫外吸收光谱中常用来做溶剂。
6. 在有机化合物中, 常常因取代基的变更或溶剂的改变, 使其吸收带的最大吸收波长发生移动,向长波方向移动称为____红移___, 向短波方向移动称为____蓝移_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述影响荧光效率的主要因素。
答:(1)分子结构的影响:发荧光的物质中都含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高;分子的刚性平面结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。
(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强,荧光强度越大;温度对溶液荧光强度影响明显,对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响;表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。
2.试从原理和仪器两方面比较荧光分析法、磷光分析法和化学发光分析法。
答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。
而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。
(2)在仪器方面:荧光分析和磷光分析所用仪器相似,都由光源、激发单色器、液槽、发射单色器、检测器和放大显示器组成。
由于在分析原理上的差别,磷光分析仪器有些特殊部件,如试样室、磷光镜等。
而化学发光分析法所用仪器不同,它不需要光源,但有反应器和反应池及化学反应需要的恒温装置,还有与荧光和磷光分析仪器相同的液槽、单色器、检测器等。
3.如何区别荧光和磷光?其依据是什么?答:为了区别磷光和荧光,常采用一种叫磷光镜的机械切光装置,利用荧光和磷光寿命的差异消除荧光干扰或将磷光和荧光分辨开。
4.采取哪些措施可使磷光物质在室温下有较大的磷光效率?答:(1)在试液中加入表面活性剂,;(2)将被分析物吸附在固体的表面。
5.化学发光反应要满足哪些条件?答:(1)能快速地释放出足够的能量;(2)反应途径有利于激发态产物的形成;(3)激发态分子能够以辐射跃迁的方式返回基态,或能够将其能量转移给可以产生辐射跃迁的其它分子。
6.简述流动注射式化学发光分析法及其特点。
答:流动注射分析是一种自动化溶液分析技术,它是基于把一定体积的液体试样注射到一个连续流动着的载流中,试样在流动过程中分散、反应,并被载流带到检测器中,再连续记录其光强、吸光度、电极电位等物理参数。
其特点是,具有很高的灵敏度和很好的精密度。
1.谱线自吸对光谱定量分析有何影响?答:在光谱定量分析中,自吸现象的出现,将严重影响谱线的强度,限制可分析的含量范围。
2.激发光源的作用是什么?对其性能有何具体要求?答:激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号;对激发光源的要求是:激发能力强,灵敏度高,稳定性好,结构简单,操作方便,使用安全。
3.常用的激发光源有哪几种类型?简述工作原理和基本特点。
答:目前常用的激发光源有(1)直流电弧光源,其工作原理是:直流电弧被高频引燃装置引燃,阴极产生热电子发射,电子在电场作用下高速奔向阳极,炽热的阳极斑使试样蒸发、解离,解离的气态原子与电子碰撞激发并电离,形成的正离子撞击阴极,阴极不断发射电子,这样电极间形成等离子体,并维持电弧放电,气态原子、离子与等离子体中其它粒子碰撞激发,产生原子、离子的发射光谱;其特点是,电极温度高,分析的绝对灵敏度高,电弧温度一般可达4000~7000 K,激发能力强,但放电的稳定性差,定量分析的精密度不高,适用于矿物和难挥发试样的定性、半定量及痕量元素的分析。
(2)低压交流电弧光源,其工作原理是:为了维持交流电弧放电,发生器由高频高压引燃电路和低压电弧电路组成。
电源接通后,高频高压电路使分析间隙的空气电离,形成等离子气体导电通道,引燃电弧。
同时,低压交流电经低频低压电弧电路在分析间隙产生电弧放电。
随着分析间隙电流增大,出现明显的电压降,当电压降低于维持放电所需电压使,电弧即熄灭。
每交流半周都以相同步骤用高频高压电流引燃一次,反复进行此过程可使低压交流电弧维持不灭。
其特点是:弧焰温度可达4000~8000 K,激发能力强,但电极温度低,其蒸发能力稍差,光源稳定性较好,定量分析的精密度较高,广泛用于金属、合金中低含量元素的定量分析。
(3)高压火花光源,其工作原理是:高压火花发生器使电容器储存很高的能量,产生很大电流密度的火花放电,放电后的电容器的两端电压下降,在交流电第二个半周时,电容器又重新充电、再放电。
反复进行充电、放电以维持火花持续放电。
其特点是:电极温度低,灵敏度低,火花温度高,可激发难激发元素,光源稳定性好,适用于低熔点金属和合金的定量分析。
(4)电感耦合等离子体光源,其工作原理是:用高频火花引燃时,部分Ar工作气体被电离,产生的电子和氩离子在高频电磁场中被加速,它们与中性原子碰撞,使更多的工作气体电离,形成等离子体气体。
导电的等离子体气体在磁场作用下感生出的强大的感生电流产生大量的热能又将等离子体加热,使其温度达到1 104 K,形成ICP放电。
当雾化器产生的气溶胶被载气导入ICP炬中时,试样被蒸发、解离、电离和激发,产生原子发射光谱。
其特点是:激发温度高,一般在5000~8000 K,利于难激发元素的激发,对各元素有很高的灵敏度和很低的检出限,ICP炬放电稳定性很好,分析的精密度高,ICP光源的自吸效应小,可用于痕量组分元素的测定,但仪器价格贵,等离子工作气体的费用较高,对非金属元素的测定灵敏度较低。
3.试述热导池检测器及氢火焰电离检测器的工作原理。
答:热导池检测器是基于被分离组分与载气的导热系数不同进行检测的,当通过热导池池体的气体组成及浓度发生变化时,引起热敏元件温度的改变,由此产生的电阻值变化通过惠斯登电桥检测,其检测信号大小和组分浓度成正比。
氢火焰电离检测器是根据含碳有机物在氢火焰中发生电离的电理而进行检测的。
4.根据速率理论方程式,讨论气相色谱操作条件的选择。
答:见课本214~216页。
5.试述速率理论方程式中A、B/μ、Cμ三项的物理意义。
答:A:涡流扩散项,在填充色谱中,当组分随载气向柱出口迁移时,碰到填充物颗粒阻碍会不断改变流动方向,使组分在气相中形成紊乱的类似“涡流”的流动,因而引起色谱峰的变宽。
B/μ:分子扩散项,是由于色谱柱内沿轴向存在浓度剃度,使组分分子随载气迁移时自发地产生由高浓度向低浓度的扩散,从而使色谱峰变宽。
Cμ:传质阻力项。
6.如何选择气—液色谱固定液?答:(1)极性组分,一般选择非极性固定液。
(2)中等极性的组分,一般选用中等极性的固定液。
(3)强极性组分,选用强极性固定液。
(4)极性与非极性组分的混合物,一般选用极性固定液。
7.色谱定性和定量分析的依据是什么?各有哪些主要定性和定量方法。
答:色谱定性分析的依据是:保留值。
主要的定性分析方法:(1)利用保留值与已知物对照定性。
(2)利用保留值经验规律定性。
(3)根据文献保留数据定性。
色谱定量分析的依据是:被测组分的质量与其色谱峰面积成正比。
主要的定量分析方法:(1)归一化法。
(2)内标法。
(3)标准曲线法1.原子吸收光谱分析法中,背景干扰是怎样产生的?如何抑制和校正光谱背景?简述用氘灯校正背景吸收的原理。
答:原子吸收光谱分析法中的背景干扰是由原子化过程中产生的分子吸收和固体微粒产生的光散射引起的干扰。
在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰,在石墨炉原子吸收光谱分析中,常选用适当基体改进剂,采用选择性挥发来抑制分子吸收的干扰;在原子吸收光谱分析中,可采用仪器调零吸收法、邻近线校正背景法、氘灯校正背景法和塞曼效应校正背景法等方法来校正背景。
氘灯校正背景是采用双光束外光路,氘灯光束为参比光束。
氘灯是一种高压氘气气体(D2)放电灯,辐射190~350 nm 的连续光谱。
切光器使入射强度相等的锐线辐射和连续辐射交替地通过原子化吸收区。
用锐线光源测定地吸光度值为原子吸收和背景吸收的总吸光度值,而用氘灯测定的吸光度仅为背景吸收值,这是因为连续光谱被基态原子的吸收值相对于总吸光度可以忽略不计。
仪器上直接显示出两次测定的吸光度之差,即是经过背景校正后的被测定元素的吸光度值。
2.哪些测定条件影响原子吸收光谱分析的灵敏度?答:(1)分析线,通常选择元素的共振吸收线作为分析线以得到最好的灵敏度;(2)单色器光谱通带,合适的光谱通带可提高灵敏度;(3)灯电流,尽量使用最低的灯电流;(4)原子化条件,在火焰原子吸收中,选择使入射光束从基态原子密度最大区域通过的原子化条件以提高分析的灵敏度,在石墨炉原子吸收法中,在保证完全原子化条件下尽量使用低的原子化温度。
3.说明原子吸收光谱仪的主要组成部件及其作用。
答:原子吸收光谱仪主要由(1)锐线光源,发射谱线宽度很窄的元素共振线;(2)原子化器,将试样蒸发并使待测元素转化为基态原子蒸气;(3)分光系统,使锐线光源辐射的共振发射线正确地通过或聚焦于原子化区,把透过光聚焦于单色器的入射狭缝,并将待测元素的吸收线与邻近谱线分开;(4)检测系统,将待测光信号转换成电信号,经过检波放大、数据处理后显示结果;(5)电源同步调制系统,消除火焰发射产生的直流信号对测定的干扰。
4.在原子吸收光谱仪和原子荧光光谱仪中对光源如何进行调制?为什么要进行光源调制?答:采用和空心阴极灯同频率的脉冲或方波调制电源,组成同步检波放大器,仅放大调频信号,为了消除原子化器中的原子发射干扰。
5.在原子吸收光谱法中,为什么要使用锐线光源?空心阴极灯为什么可以发射出强度大的锐线光源?答:因为原子吸收线的半宽度约为10-3 nm,所以在原子吸收光谱法中应使用锐线光源;由于空心阴极灯的工作电流一般在1~20 mA,放电时的温度较低,被溅射出的阴极自由原子密度也很低,同时又因为是在低压气氛中放电,因此发射线的热变宽∆λD、压力变宽∆λL和自吸变宽都很小,辐射出的特征谱线是半宽度很窄的锐线(10-4~10-3 nm)。
加上空心阴极灯的特殊结构,气态基态原子停留时间长,激发效率高,因而可以发射出强度大的锐线光源。
6.试从原理和仪器装置两方面比较原子吸收分光光度法与紫外-可见分光光度法的异同点。
答:(1)相似之处:a. 都是吸收光谱;b. 工作波段相同190-900 nm;c. 仪器的主要组成部分相同,光源、单色器、吸收池、检测器;d. 定量分析公式相似A = Kc。
(2)不同之处:a. 吸收机理不同,分子吸收为宽频吸收,带状光谱,而原子吸收为窄带、峰值吸收,线状光谱;b. 仪器组成部分的排列不同,分子吸收为光源-单色器-吸收池-检测器,原子吸收为锐线光源-原子化器(吸收池)-单色器-检测器(单色器作用不同);c. 光源不同,分子光谱为连续光源,钨灯、氢灯,原子光谱为锐线光源,空心阴极灯;d. 光源的工作方式不同,分子光谱为直流信号,原子光谱为交流信号;e. 检测器不同,分子光谱为宽频吸收,信号强,普通光电池、光电管。