气动薄膜调节阀的原理及维护
气动膜片式调节阀工作原理及常见故障处理

气动膜片式调节阀工作原理及常见故障处理一、调节阀简介调节阀通常由电动执行机构或气动执行机构与阀体两部分共同组成。
直行程主要有直通单座式和直通双座式两种,后者具有流通能力大、不平衡力较小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。
角行程主要有:V型电动调节球阀、气动薄膜切断阀,偏心蝶阀等。
二、工作原理当气室输入了0.02~0.10Mpa或0.08~0.24Mpa信号压力之后,薄膜产生推力,使推力盘向下移动,压缩弹簧,带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座,从而使压缩空气流通。
当信号压力维持一定时,阀门就维持在一定的开度上。
1.调节阀组成:由执行机构和阀体二部份组成。
其中,执行机构是调节阀的推动装置,它按信号压力的大小产生相应的推力,使推杆产生相应的位移,从而带动调节阀的阀芯动作。
2.气动执行机构特点:气动薄膜执行机构的特点,结构简单,动作可靠,维修方便,价格低廉,是种应用最广的执行机构。
气动薄膜执行机构是一种最常用的执行机构,它的传统机构如下图所示。
3.动作原理正作用:从上膜盖的气源接口向膜盖与膜片组成的膜室内通入空气,该气压作用于膜片与托盘,压缩弹簧,克服弹簧力向下移动,同时也带动推杆向下移动。
之后,如果膜室内气压降低,则弹簧的回复力使膜片、托盘及推杆向上移动。
反作用:从下膜盖的气源接口向膜盖与膜片组成的膜室内通入空气,该气压作用于膜片与托盘,压缩弹簧,克服弹簧力向上移动,同时也带动推杆向上移动。
之后,如果膜室内气压降低,则弹簧的回复力使膜片、托盘及推杆向下移动。
阀有正装和反装两种类型,当阀芯向下移动时,阀芯与阀座之间流通面积减小,称为正装;反之,称为反装。
气开式调节阀随阀信号压力的增大流通面积也增大;气关式则相反,随信号压力的增大而流通截面积减小。
三、调节阀的分类按用途和作用、主要参数、压力、介质工作温度、特殊用途(即特殊、专用阀)、驱动能源、结构等方式进行了分类,其中最常用的分类法是按结构将调节阀分为九个大类,6种为直行程,3种为角行程。
气动薄膜调节阀原理

气动薄膜调节阀原理
气动薄膜调节阀是一种通过气动力来控制流体流量的装置。
它主要由薄膜、阀体和阀门组成。
薄膜是气动薄膜调节阀的核心部件。
它通常采用柔性材料制成,如橡胶或氟橡胶。
薄膜的一端固定在阀体上,另一端与阀门相连。
当气动信号输入到薄膜的一侧时,薄膜会因气压的变化而产生相应的形变。
这种形变传递到阀门上,通过控制阀门的开闭程度来调节流体的流量。
当气压输入到薄膜背面时,薄膜会向阀座方向弯曲,使阀门关闭。
这样就能够阻断流体的流动。
当气压减小或消失时,薄膜会恢复到原始形状,阀门打开,从而允许流体通过。
通过调节输入的气压信号,可以控制薄膜的形变程度,从而精确地控制阀门的开闭程度。
当薄膜形变较大时,阀门开得较大,流体流量较大;当薄膜形变较小时,阀门开得较小,流体流量较小。
气动薄膜调节阀具有快速响应、结构简单、耐用性强和维护方便等特点。
因此,在许多工业领域的流体控制中广泛应用。
气动执行机构的原理及维护资料

• 3.1 执行机构 • 3.1.1气动薄膜调节阀执行机构的工作原理 • 当调节器或定位器的输出信号输入薄膜室 后,信号压力在薄膜上产生的推力,使推 杆部件移动,并压缩弹簧,直至弹簧的反 作用力与信号压力在薄膜上产生的推力相 平衡为止。这时,推杆的移动就是气动薄 膜执行机构的位移,也称行程。
• 3.1.2 气动薄膜调节阀执行机构的组成 • 气动执行机构具有结构简单,动作可靠,性能稳定,价格 低,维护方便,防火防爆等优点,特别是对于现场有防爆 要求时,应选用气动执行机构,且接线盒为防爆型。在许 多控制系统中获得了广泛地应用,它分为正作用和反作用 两种执行方式。 • 正作用执行机构在输入信号增加时,推杆的位移向外;反 作用执行机构在输入信号增加时,推杆的位移向内。执行 机构尽管在结构上不完全相同,但基本结构都包括放大器、 可逆电机、减速装置、推力机构、机械限位组件和位置反 馈等部件。
• 3 气动薄膜调节阀的组成 • 气动薄膜调节阀按其结构和用途的不同种类很多, 高压氧能大多选用正作用、直通、单座等百分比 调节阀,其标准代号为ZMAP,主要由推力盘、 弹簧、推杆、调节螺母。阀位标尺、阀杆、阀芯、 阀座、填料函、阀体、阀盖和支架等组成。 气动 薄膜调节阀的执行机构,工作时接受调节器或计 算机的控制信号,用来改变被控介质的流量,使 被调参数维持在所要求的范围内,从而达到过程 控制的自动化。
2 气动薄膜调节阀的工作原理及优缺点
• 2.1 气动薄膜调节阀工作原理 • 当气室输入了0.02~0.10MPa信号压力之后, 薄膜产生推力,使推力盘向下移动,压缩 弹簧,带动推杆、阀杆、阀芯向下移动, 阀芯离开了阀座,从而使压缩空气流通。 当信号压力维持一定时,阀门就维持在一 定的开度上。
• 2.2 优点 • 气动薄膜调节阀的执行机构结构简单,使用可靠,最突出 的是价格便宜。在运行中不产生电火花,因此一些易燃环 境下常采用气动薄膜调节阀。此外,在某些腐蚀气体或特 别潮湿环境条件也常使用。 • 2.3 缺点 • 膜片承受的压力较低,最大膜室压力不能超过250KPa, 加上弹簧要抵消绝大部分的压力,余下的输出力就很小了; 为了提高输出力,通常的做法是增大尺寸,使得执行机构 的尺寸和重量变得很大,另一方面,工厂的气源通常是 500~700KPa,它只用到了250KPa,气压没充分利用。
气动薄膜调节阀的工作原理

气动薄膜调节阀的工作原理
气动薄膜调节阀是一种常见的控制阀门,根据工艺过程的需要,通过控制介质流量来实现流量、压力、液位等参数的调节或控制。
其工作原理如下:
1. 薄膜扭矩传递
气动薄膜调节阀的最大特点就是采用了薄膜结构,通过薄膜在气动力的作用下实现阀体的开闭。
气动调节阀的阀幅(开启程度)与气压密切相关,当控制气压变化时,阀幅就相应地发生变化。
调节气源压力可以控制阀门的打开程度,同时可以通过调节压力来实现流量的调节。
2. 气源及比例阀控制
气动薄膜调节阀的控制方式多样,但最常见的是采用气源及比例阀控制。
气源通过调节压力来控制气动薄膜调节阀的开启程度,而比例阀则是在气源压力提供的基础上实现流量调节的。
3. 阀芯的实现
气动薄膜调节阀的阀芯通常是采用球阀结构,当阀门开启时,球阀旋转,介质可以顺利通过阀门;当阀门关闭时,球阀回到原位,阻止了介质的流通。
阀门的严密性以及阀门通过流量的调节是由阀座上的密封性保证的。
4. 撞击结构设计
气动薄膜调节阀的撞击结构设计是为了保证阀门能够正常使用,另一方面,它还能够保护薄膜的寿命。
撞击结构是阀门开启时薄膜和阀座之间的一个瞬间撞击,使阀幅可以被控制,控制精度得到保证。
在设计初始时应该根据使用要求来确定撞击的大小和可承受的范围,这样可以避免薄膜对阀门的磨损和损坏。
气动薄膜调节阀维护要点

气动薄膜调节阀维护要点调节阀的维修一般分成两种类型:第一类是预防性维修,包按安装时所采取的预防性打措施,阀门的现场检查和使用中的某些预防性措施;第二类是调节阀在故障情况下不能满足操作要求时的检修工作,可以在车间进行修理,有时也可以在规定的停车情况下,在管线上完成。
预防性维修:是在阀门发生故障之前的计划检修,可以理解为是日常性维修,它包括以下各项工作:1、消除应力管线由于组合或安装不当会生产各种应力。
例如,阀门的操作介质如果是高温流体也会产生热应力;人为的某些碰撞可能给阀门和管道造成应力;作用在调节阀上的管线应力可能导致调节阀的阀杆、导向件变形而不能和阀座对准中心;对于分体式阀体的阀门,可能引起阀体法兰的脱开;应力还会引起调节阀的变差、阀座泄漏、法兰泄漏、填料函泄漏。
因此,任何时刻都要保证避免或消除应力,把应力导向远离调节阀的地方。
2、检查支撑情况安装调节阀的最佳位置是使阀杆的行程方向与阀体上方的膜室在一个垂直平面上。
如果阀门必须安装在使阀杆水平移动的位置,就应该把执行机构支撑起来。
如果没有支撑住调节阀,就容易形成阀杆的不同心度,导致变差或填料泄漏等故障。
即使调节阀有固定和支撑措施,也必须经常进行检查。
为此,要装充一些必要的梯子和平台,供检查、调节之用。
3、清除铁锈和污物要经常检查管道有没有铁锈、焊渣、脏物、尘土。
如果调节阀容易积聚这些异物,则要考虑在上游安装过滤器或一些临时性筛网。
调节阀在关闭时,一小块铁锈或焊渣就可以把研磨得秀好的阀座破坏掉。
所以在工艺流体容易渗入硬质杂物的场合,一定要安装的过滤装置。
4、气源干净,电源可靠能源是驱动调节阀的关键,气源、电源、电路绝对不能有故障。
气动薄膜调节阀的膜室虽然不能消耗空气,但是气源系统如果含有水分、液滴或其他杂质,则会使阀门定位器、继动器等附件堵塞并发生故障,所以空气系统必须是清洁、干燥和不含油的系统。
5、定期检修和加油填料和注油器在短期使用后需要重新调整。
气动调节阀的工作原理及安装原则和常见故障处理

气动调节阀的工作原理及安装原则和常见故障处理
气动调节阀是一种通过气动装置控制阀芯位置以调节介质流量的阀门。
其工作原理可简述为:当气动装置施加的气动信号改变时,气动调节阀内
的阀芯位置也会相应改变。
阀芯的位置调节会改变阀门的开度,从而改变
介质流量的大小。
1.安装方向正确:按照标志箭头指示,将气动调节阀的进口和出口方
向正确接通。
2.阀门与管道间连接合适:为了保证介质的流畅,阀门与管道间的连
接必须密封可靠,无泄漏现象。
3.阀门位置合理:气动调节阀应安装在易于操作和维修的位置,同时,阀门位置还应考虑介质流动方向,以保证流体的正常流通。
常见的气动调节阀故障处理方法有:
1.阀门卡涩:这可能是由于堵塞或腐蚀导致的,可以通过清洗或更换
阀芯来解决。
2.泄漏:气动调节阀的泄漏问题常见于阀芯密封不良或密封圈老化破损,可以尝试更换阀芯和密封圈。
3.阀门堵塞:阀门内部可能会有异物或堵塞物,可以拆卸阀门进行清
洗或维修。
4.阀芯漏气:如果阀芯孔径过大或密封不良,可能会出现阀芯漏气现象,可以进行阀芯的更换或修复。
5.阀门不稳定:阀门的稳定性可能会受到气动装置的影响,可以检查
和调整气动装置来解决阀门的不稳定问题。
总之,气动调节阀的工作原理是通过气动装置控制阀芯位置来调节介质流量,其安装原则主要包括方向正确、连接合适和位置合理。
常见的故障处理方法包括阀门卡涩、泄漏、阀门堵塞、阀芯漏气和阀门不稳定等。
气动薄膜调节阀工作原理

气动薄膜调节阀工作原理
气动薄膜调节阀是一种常见的工业控制阀,通过气压信号控制阀内膜片的运动,实现流体的调节。
其工作原理如下:
1. 压力调节:气动薄膜调节阀的工作过程中,通过调节进入阀体的压缩空气的压力来控制阀内介质的流量。
当控制系统对阀门进行调节时,控制阀对阀门内的薄膜施加压缩空气。
压缩空气的压力和流量将导致薄膜向上或向下运动,从而引起阀门的开启或关闭。
2. 运动传递:薄膜运动由控制阀的气压信号通过连接管路传递给阀座或阀片。
气压信号会在传递过程中逐渐减少,使阀体内的薄膜受到不同的压力,从而引起薄膜片的运动。
3. 阀门调节:根据控制系统的要求,阀门可以通过薄膜的上下运动来调节介质的流量。
当控制系统需要增加流量时,气压信号将增大,使薄膜向下运动,从而打开阀门。
反之,当控制系统需要减少流量时,气压信号将减小,使薄膜向上运动,从而关闭阀门。
4. 反馈控制:为了保证阀门的稳定性和精度,通常在气动薄膜调节阀上设置了反馈装置。
反馈装置可以实时监测阀门的位置并反馈给控制系统,使控制系统可以对阀门的运动进行调节,以实现精确的流量控制。
综上所述,气动薄膜调节阀通过气压信号控制阀体内薄膜片的
上下运动来调节介质的流量。
其工作原理简单可靠,适用于各种工业场合的流体控制过程。
气动薄膜调节阀维修保养规程

气动薄膜调节阀维修保养规程一、前言气动薄膜调节阀作为流体控制系统中重要的元件,长时间运行后会因使用环境、介质等原因导致其性能下降或出现故障。
定期进行维护保养可以延长气动薄膜调节阀的使用寿命、提高性能并确保系统稳定运行。
二、维护保养内容1. 清洗气动薄膜调节阀长时间使用后,内部易产生积垢、污垢、沉淀物等,必须定期清洗。
清洗时,应先移除阀门传动机构,拆卸阀体,并将内部零部件拆卸下来,用清水或洗涤剂清洗表面及内部,以确保清洁彻底。
注意不要损坏薄膜。
2. 润滑气动薄膜调节阀需要定期润滑,以保证阀门传动机构灵活可靠运行。
使用温度范围在-40℃至+150℃,粘度为20至120mm²/s的油脂进行润滑。
润滑点包括塞螺纹和活塞杆。
3. 更换零件气动薄膜调节阀使用一段时间后,有些零部件可能会出现磨损、老化、裂纹等问题,需要及时更换。
更换时,应选择相应的原厂零部件,并按照说明书进行更换。
4. 调试气动薄膜调节阀在长时间运行后,可能会出现阀门漏气、气动装置动作不灵敏等问题,需要进行调试。
调试时,首先需要确定故障原因,然后进行相应的调整。
注意避免因调试不当造成更大的损坏。
三、维护保养注意事项1. 使用说明书维护保养前,必须详细阅读气动薄膜调节阀的使用说明书,了解其工作原理、结构图、主要零部件、润滑油脂种类和使用方法等。
2. 安全第一维护保养时,必须注意安全,佩戴防护手套,避免手部受伤。
维护保养过程中,如发现异常或不确定问题,应及时停止操作,并寻求专业人员支持。
3. 维护周期维护周期是根据气动薄膜调节阀的工作环境、介质以及使用频率等因素而定。
对于频繁使用的气动薄膜调节阀,应在使用后三个月左右进行一次维护保养。
4. 维修专业如果气动薄膜调节阀出现严重故障,可以寻求专业维修机构的支持。
维修师傅必须具备丰富的机修经验和专业知识,做好记录,在更换部件时要选择原配件。
四、总结气动薄膜调节阀在流体控制系统中发挥着重要的作用,它的稳定运行直接关系到系统的工作效率、生产质量以及设备安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气动薄膜调节阀的原理及维护Prepared on 24 November 2020中化二建集团有限公司工程系列专业技术职务任职资格参评论文论文题目:气动薄膜调节阀的原理及维护单位中化二建电仪公司姓名武斌现专业技术职务助理工程师申报专业技术职务工程师目录摘要 (03)关键词 (03)绪论 (03)一、气动调节阀的特点 (03)二、常用气动调节阀的分类 (03)三、气动薄膜调节阀的工作原理 (04)1、气动薄膜调节阀的组成 (04)2、气动薄膜调节阀的工作原理 (04)3、执行器的工作原理 (05)4、阀门的流量特性 (06)四、调节阀的主要附件 (06)五、气动薄膜调节阀的常见故障及维护 (08)总结 (11)参考文献 (11)摘要:调节阀是自动调节系统中不可缺少的重要组成部分,接受来自调节器的输出信号,从而改变介质的流量,完成调节功能。
随着时代的发展和自动化程度的提高,调节阀起着越来越重要的作用,它的性能和完成动作的好坏,直接影响调节的作用和效果,是自动调节系统的重要环节。
气动薄膜调节阀是经常使用的调节器,因此了解其原理及及时的排除故障是保证整个系统顺利完工及正常投用的重要保障。
关键词:气动薄膜调节阀、阀门定位器、电磁阀绪论:调节阀是自动调节系统中不可缺少的重要组成部分,而气动薄膜调节阀是常见的调节器,在我所参与的大唐煤制气气化装置中,气动薄膜调节阀多达86台,我有幸参与了全部调节阀的安装、接线及调试工作。
本人结合自己的一点经验来谈谈气动薄膜调节阀的原理及其常见故障。
一、气动薄膜调节阀的特点结构简单,操作方便,运行可靠,防火防爆,广泛的应用于石油化工、冶金、电力等行业。
二、常用的气动薄膜调节阀分类常用的气动薄膜调节阀一般分为九个大类:(1)单座调节阀;(2)双座调节阀;(3)套筒调节阀;(4)角形调节阀;(5)三通调节阀;(6)隔膜阀;(7)蝶阀;(8)球阀;(9)偏心旋转阀。
前6种为直行程,后三种为角行程按用途和作用分类a.两位阀:主要用于关闭或接通介质;b.调节阀:主要用于调节系统。
选阀时,需要确定调节阀的流量特性;c.分流阀:用于分配或混合介质;d.切断阀:通常指泄漏率小于十万分之一的阀。
本类阀门在管道中一般应当水平安装。
三、气动薄膜调节阀的工作原理1 气动薄膜调节阀的组成气动薄膜调节阀的主要结构由下列零部件组成:主要由气室、薄膜、推力盘、弹簧、推杆、调节螺母。
阀位标尺、阀杆、阀芯、阀座、填料函、阀体、阀盖和支架等组成。
.2 气动薄膜调节阀的工作原理气动薄膜执行机构主要用作一般调节阀(包括蝶阀)的推动装置,分有弹簧和无弹簧两种情况。
无弹簧的气动薄膜执行机构常用于双位式控制。
有弹簧的气动薄膜执行机构按作用形式分为正作用和反作用两种。
正作用式气动薄膜执行机构当来自控制器或阀门定位器的信号压力增大时,推杆向下动作的叫正作用执行机构;当信号压力增大时,推杆向上动作的叫反作用执行机构。
正作用机构的信号压力是通入波纹膜片上方的薄膜气室,而反作用机构的信号压力是通人波纹膜片下方的薄膜气室。
通过更换个别零件,两者便能互相改装。
3执行器的工作原理当阀芯下移时关小叫正装,反之叫反装。
这样阀芯有正装和反装两种,加之执行机构有正作用和反作用,因此,调节阀的作用形式有四种。
上图中(b)和(c)为气开式,(a)和(d)为气关式(1)正作用执行机构+正装调节机构=气关式执行器(2)反作用执行机构+正装调节机构=气开式执行器(3)正作用执行机构+反装调节机构=气开式执行器(4)反作用执行机构+反装调节机构=气关式执行器气开式-随信号压力的增大流通截面积也增大气关式-随信号压力的增大流通截面积减小正装-指阀芯向下移动时,阀芯与阀座间的流通面积减小反装-指阀芯向下移动时,阀芯与阀座间的流通面积增大4阀门的流量特性调节阀流量特性是阀门重要的参数,在经过阀门的压力降恒定时,随着截流元件(阀板)从关闭位置运动到额定行程的过程中流量系数与截流元件(阀板)行程之间的关系。
典型地,这些特性可以绘制在曲线图上,其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。
由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。
用这种方法测得的典型的阀门特性有线性、等百分比和抛物线特性。
从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。
而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。
四、调节阀的主要附件气动调节阀附件一般会选择:阀门定位器、电磁阀、转换器、气动继动器、空气过滤减压阀等附件1、阀门定位器阀门定位器是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。
阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后的情况发生,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的摩擦力并消除不平衡力的影响,从而保证调节阀的正确定位。
2、电磁阀当系统需要实现程序控制或两位控制时,需要配用电磁阀,选用电磁阀时,除要考虑交、直流电源及电压、频率外,必须注意电磁阀与调节阀作用型式的关系,可配用“常开型”和“常闭型”。
如果要求加大电磁阀的容量,来缩短动作时间,可以并列使用两台电磁阀或把电磁阀作为先导阀与大容量气动继动器组合使用。
3、气动继动器是一种功率放大器,它能将气压信号送到较远的地方,消除由于信号管线加长所带来的滞后,主要用于现场变送器与中央控制室的调节仪表之间,或在调节器与现场调节阀之间,还有一种作用就是放大或缩小信号4、转换器转换器分为气-电转换器和电-气转换器,其功能是实现气、电信号之间一定关系相互转换,主要用于在用电讯号操纵气动执行机构时将4-20mA电讯号转换成20-100Pa气讯号,反之在用气讯号操纵电动执行机构时(比较少见)或者为了集中监控,与计算机连网时则将20-100Kpa气讯号转换为 4-20mA电讯号。
5、过滤器减压阀过滤减压阀是工业自动化仪表中的一种附件,其主要功能是将来自空压机的压缩空气进行过滤净化并将压力稳定在所需要的数值上,可用于各气动仪表,电磁阀、气缸、喷涂设备及小型气动工具的供气源和稳压装置。
6、行程开关行程开关,(又称限位开关)的一种,是一种常用的小电流。
利用生产机械运动部件的碰撞使其触头动作来实现接通或分断控制电路,达到一定的控制目的。
行程开关反映阀门开关两个极限位置,并同时送出指示讯号的装置,控制室可以根据此讯号,判断阀门的开关状态以便采取相应措施。
五、气动薄膜调节阀常见故障及维护措施1、电磁阀不动作接线错误,电磁阀线圈烧坏,信号电压未达到额定值。
应检查线路防止接线错误,检查电压是否达到额定值,更换线圈。
2、阀门动作无反馈这是阀门调试中最常见的问题之一,一般原因为行程开关开关反馈接线错误,行程开关机械触头接触不良或行程不到位,开关内有杂物,开关安装的位置不当。
应先检查线路防止接线错误,手动调节行程开关,清理触头杂物,保证接触良好,把行程开关调整到合适的位置,保证行程准确。
3、没有气源气源球阀未开、气源总管漏气、冬季天冷导致气源管结冰气源堵塞。
在我所参加的大唐煤制气一期、二期工程中,由于冬季寒冷,气温一般在零下30度以下,导压管、气源管内积水若不及时排出,就会结冰堵塞管路。
因此应及时检查线路,处理漏点,及时将管路内的积水排出,遇到气源管结冰可以用蒸汽对气源管进行吹管,将冰吹化,然后通气吹扫将水排出。
4、有气源但没有信号调节器故障,气源管漏气;定位器波纹管漏气。
应及时检查,处理故障,气源接头漏气若连接方式为承插焊连接应用氩弧焊进行焊接焊牢,如果接头为卡套式连接因拧紧使卡套受力或缠绕生料带防止漏气。
若无法修理应进行更换。
5、有信号但阀门不动作阀芯脱落,阀芯与社会或与阀座卡死;阀杆弯曲或折断;阀座阀芯冻结或焦块污物;执行机构弹簧因长期不用而锈死。
应定期进行清洗,排除污物,保证阀门动作良好。
若阀杆损坏断裂无法修理应进行更换或返厂修理。
6、调节阀的动作不稳定。
故障现象和原因如下:(1)气源压力不稳定,压缩机容量太小;减压阀故障。
(2)信号压力不稳定,调节器输出不稳定。
(3)气源压力稳定,信号压力也稳定,但调节阀的动作仍不稳定。
定位器中放大器的球阀受脏物磨损关不严,耗气量特别增大时会产生输出震荡;调试人员应重新进行调试,若调节完成仍达不到要求应更换损坏部件。
7、调节阀的动作迟缓:阀杆只在一个方向动作迟缓。
气动薄膜执行机构中膜片破损泄漏;阀杆在往复动作时均有迟钝现象。
阀体内有粘物堵塞;填料加得太紧,摩擦阻力增大;由于阀杆不直导致摩擦阻力大;没有定位器的气动调节阀也会导致动作迟钝。
应及时对阀杆进行清理修复,如果阀门的性能达不到工艺要求,应上报业主及设计申请更换。
8、调节阀的泄漏量大阀全关时泄漏量大。
阀芯被磨损,内漏严重,阀门未调试好关不到位。
执行机构刚性小,阀门无法关严;阀内有异物。
应及时通知管道专业将阀门拆下进行清理更换,若阀门达不到全关位置应重新进行调试,调试时可用手操器重新确定阀门关位与行程。
9、如果遇到问题无法自行处理,因及时邀请业主及厂家现场指导调试,必要时可以进行返厂处理。
总结:以上是我参加工作担任技术员以来在工作学习过程中的一点经验和心得,希望能帮助其他同事少走弯路,当然因为我上班时间较短,文中难免有不足之处,也希望各位专家予以指正。
我也决心在以后的工作学习中多学习,多实践,为公司单位作出更大的贡献。
参考文献:《气动薄膜调节阀的原理及应用》屈念民《调节阀的原理及故障处理》《气动薄膜调节阀的组成检修及维护》。