高中数学解析几何解答题专题训练 (1)(有解析)
高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)

最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)一、解答题(共20题;共195分)1.已知在△ABC中,点A(﹣1,0),B(0,√3),C(1,﹣2).(Ⅰ)求边AB上高所在直线的方程;(Ⅱ)求△ABC的面积S△ABC.2.已知三角形△ABC的三个顶点是A(4,0),B(6,7),C(0,8).(1)求BC边上的高所在直线的方程;(2)求BC边上的中线所在直线的方程.3.已知椭圆C:x2a +y2b=1(a>b>0)的右焦点为F(√2,0),过点F且垂直于x轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C的方程;(2)过椭圆内一点P(0,t),斜率为k的直线l交椭圆于M,N两点,设直线OM,PN(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数λ,使得k1+k2=λk,求实数λ的取值范围.4.在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).(1)求BC边上的高所在的直线方程;(2)设AC中点为D,求△DBC的面积.5.焦距为2c的椭圆Γ:x2a2+y2b2=1( a>b>0),如果满足“ 2b=a+c”,则称此椭圆为“等差椭圆”.(1)如果椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,求ba的值;(2)如果椭圆Γ:x2a +y2b=1( a>b>0)是“等差椭圆”,过D(0,a)作直线l与此“等差椭圆”只有一个公共点,求此直线的斜率;(3)椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;(4)对于焦距为12的“等差椭圆”,点A为椭圆短轴的上顶点,P为椭圆上异于A点的任一点,Q为P关于原点O的对称点(Q也异于A),直线AP、AQ分别与x轴交于M、N两点,判断以线段MN为直径的圆是否过定点?说明理由.6.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.7.已知圆心为C的圆经过A(0,1)和B(3,4),且圆心C在直线l:x+2y−7=0上.(1)求圆C的标准方程;(2)求过原点且与圆C相切的直线方程.8.已知椭圆C:x2a2+y2b2=1(a>b>0),F(﹣c,0)为其左焦点,点P(﹣a2c,0),A1,A2分别为椭圆的左、右顶点,且|A1A2|=4,|PA1|= 2√33|A1F|.(1)求椭圆C的方程;(2)过点A1作两条射线分别与椭圆交于M、N两点(均异于点A1),且A1M⊥A1N,证明:直线MN恒过x轴上的一个定点.9.已知动点P与两个定点O(0,0),A(3,0)的距离的比为12.(1)求动点P的轨迹C的方程;(2)过点B(−2,1)的直线l与曲线C交于M、N两点,求线段MN长度的最小值;(3)已知圆Q的圆心为Q(t,t)(t>0),且圆Q与x轴相切,若圆Q与曲线C有公共点,求实数t的取值范围.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,过右焦点且垂直于长轴的直线与椭圆C交于P,Q两点,且|PQ|=√2.(1)求椭圆C的方程;(2)A,B是椭圆C上的两个不同点,若直线OA,OB的斜率之积为−12(以O为坐标原点),M是OA的中点,连接BM并延长交椭圆C于点N,求|BN||BM|的值.11.已知抛物线y2=2px(p>0)上的两个动点A(x1,y1)和B(x2,y2),焦点为F.线段AB的中点为M(3,y0),且A,B两点到抛物线的焦点F的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB 的垂直平分线与x 轴交于点C ,求 △ABC 面积的最大值. 12.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的长轴长为4,焦距为 2√3 .(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)设直线 l : y =kx +m 与椭圆 C 交于 P , Q 两个不同的点,且 OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0 , O 为坐标原点,问:是否存在实数 λ ,使得 |PQ ⃗⃗⃗⃗⃗ |=λ|OP ⃗⃗⃗⃗⃗ |⋅|OQ ⃗⃗⃗⃗⃗⃗ | 恒成立?若存在,请求出实数 λ ,若不存在,请说明理由.13.在平面直角坐标系xOy 中,已知椭圆E : x 2a 2+y 2b 2=1 (a >b >0)的离心率为 12 ,且椭圆E 的短轴的端点到焦点的距离等于2. (1)求椭圆E 的标准方程;(2)己知A ,B 分别为椭圆E 的左、右顶点,过x 轴上一点P (异于原点)作斜率为k(k≠0)的直线l 与椭圆E 相交于C ,D 两点,且直线AC 与BD 相交于点Q .①若k =1,求线段CD 中点横坐标的取值范围;②判断 OP⇀⋅OQ ⇀ 是否为定值,并说明理由. 14.已知椭圆M :x 2a 2+y 2b 2 =1(a >b >0)的离心率为 12 ,左焦点F 1到直线 x =−a 2c 的距离为3,圆N 的方程为(x ﹣c )2+y 2=a 2+c 2(c 为半焦距),直线l :y=kx+m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆M 的方程和直线l 的方程;(2)在圆N 上是否存在点P ,使 |PB||PA|=2√2 ,若存在,求出P 点坐标,若不存在,说明理由.15.已知抛物线 E 的顶点在原点,焦点 F 在 x 轴上,若点 P(2,2) 在抛物线上.(1)求抛物线 E 的方程;(2)如图,过点 P 且斜率为 k(−2≤k ≤−12) 的直线 l 与抛物线 E 的另一个交点为 A ,过点 P 与直线 l 垂直的直线 m 交 y 轴于点 B ,求直线 AB 的斜率的取值范围. 16.已知双曲线与椭圆x 225+y 29=1 有相同焦点,且经过点(4,6).(1)求双曲线方程;(2)若双曲线的左,右焦点分别是F 1 , F 2 , 试问在双曲线上是否存在点P ,使得|PF 1|=5|PF 2|.请说明理由.17.过抛物线 C:y 2=2px(p >0) )的焦点F 且斜率为 1 的直线交抛物线C 于M ,N 两点,且 |MN|=2 .(1)求p 的值;(2)抛物线C 上一点 Q(x 0,1) ,直线 l:y =kx +m (其中 k ≠0 )与抛物线C 交于A ,B 两个不同的点(A ,B 均与点Q 不重合).设直线QA ,QB 的斜率分别为 k 1,k 2 , k 1k 2=−12 .直线l 是否过定点?如果是,请求出所有定点;如果不是,请说明理由; 18.椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 12 ,且过点 (−1,32) .(1)求椭圆 C 的方程;(2)设 P(x,y) 为椭圆 C 上任一点, F 为其右焦点,点 P ′ 满足 PP ′⇀=(4−x,0) .①证明: |PP ′⇀||PF ⇀| 为定值; ②设直线 y =12x +m 与椭圆 C 有两个不同的交点 A 、B ,与 y 轴交于点 M .若 |AF|,|MF|,|BF| 成等差数列,求 m 的值. 19.已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2 √2 。
高考解析几何专题练习(含讲解)

解析几何专题练习一、选择题(每题4分,共32分)1、若椭圆的一个焦点是(-2,0),则a等于()2、若双曲线的焦点到它相对应的准线的距离为2,则k等于()A.1 B. 4 C. 6 D. 83、在椭圆中,短轴的两个端点与一个焦点恰好构成正三角形,若短轴长为2,则两准线间的距离为()4、已知双曲线,则点M到x轴的距离为()5、双曲线的焦点分别为以线段为边长作等边三角形,若双曲线恰好平分正三角形的另外两边,则双曲线的离心率为()6、椭圆长轴上的一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积为()7、若椭圆的左、右焦点分别为线段被抛物线的焦点分成5:3两段,则椭圆的离心率为()8、点P(-3,1)在椭圆的左准线上,过点P且方向为的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()二、填空题(每题5分,共20分)1、若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程为。
2、若抛物线上一点M与该抛物线的焦点F的距离,则点M到x轴的距离为。
3、抛物线的焦点到准线的距离为。
4、抛物线在点P和Q处的切线斜率分别为1和-1,则。
三、解答题(本大题共有4题,满分48分)1、经过抛物线的焦点的直线l与抛物线交于点A、B,若抛物线的准线上存在一点C,使△ABC为等边三角形,求直线l的斜率的取值范围.2、已知曲线,一条长为8的弦AB的两个端点在H上运动,弦AB的中点为M,求距y轴最近的点M的坐标.3、已知点为椭圆上一定点,过点A作两条直线与椭圆交于B、C两点.若直线AB、AC与x轴围成以点A为顶点的等腰三角形,求直线BC的斜率,并求在什么条件下△ABC的面积最大?最大面积是多少?4、如图,直角三角形PAQ的顶点P(-3,0),点A在y轴上,点Q在x轴正半轴上,∠PAQ=90°.在AQ的延长线上取点M,使.(1)当点A在y轴上移动时,求动点M的轨迹C;(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G、H两点,过点G作平行轨迹C的对称轴的直线n且n∩l=E.试问:点E、O、H(O为坐标原点)是否在同一条直线上?说理由.答案与解析:一、选择题1、选B解析:从椭圆的标准方程切入,由题设知,所给方程为椭圆第一标准方程:∴这里有于是可得,应选B.2、选C.解析:双曲线标准方程为∴∴双曲线的焦点到相应准线的距离∴由题设得∴应选C.3、选A.解析:由题设得a=2b又b=1,∴a=2,∴两准线间的距离∴应选A.4、选C.解析:应用双曲线定义.设得,①又②∴由①②得③∴∴∴即点M到x轴的距离为,应选C.5、选A.解析:由题设易知等边三角形的另一顶点P在y轴上,且中线OP的长为设故有由此解得或(舍去)∴应选A.6、选A.解析:椭圆标准方程为取A(-2,0),由题设易知以A为顶点的等腰直角三角形BAC的顶点B、C关于x轴对称.不妨设B点坐标为则由等腰直角三角形ABC得∴将点B坐标代入椭圆方程得∴或于是有∴应选A.7、选D.解析:由题设得①②∴由①②得故应选D.8、选A.解析:从确立反射光线的方程突破.椭圆左准线方程,左焦点由题意得①又过点p方向为点(-3,1)关于直线y=-2的对称点为(-3,-5)∴由光学知识得反射光线斜率为,反射光线经过点(-3,-5)∴反射光线方程为②在②中令y=0得x=-1,即反射光线与x轴的交点为(-1,0),∴椭圆左焦点坐标为(-1,0),即c=1③于是由①③得应选A.二、填空题1、答案:解析:由题意得①②∴将①②代入∴∴双曲线方程为2、答案:解析:这里令则由抛物线定义得∴∴∴点M到x轴的距离为.3、答案:.解析:抛物线方程为∴当a>0时,焦点到准线的距离;当a<0时,焦点到准线的距离;当a≠0时,焦点到准线的距离.4、答案:2p.解析:设过点p的抛物线的切线方程为y=x+b①则由题设知过点Q的抛物线的切线方程为y=-x-b②又设将①代入③∴由直线①与抛物线相切得∴∴由③得由此解得∴因此得点评:根据已知条件与抛物线关于x轴的对称性,两切线经过x轴上的同一点,它们在y轴上的截距互为相反数.由此断定.这是求解本题的关键.三、解答题.1、分析:注意到本题的目标,首选对交点A、B的坐标“既设又解”,对点C坐标“解而不设”.对于△ABC为正三角形的条件,则考虑利用正三角形的性质转化,为此,在循着熟悉的思路奠基之后,从寻求弦AB的垂直平分线方程突破.解:抛物线的焦点F(1,0),准线方程为x=-1.由题意设直线l的方程为y=k(x-1)①把①代入得且②∴即∴弦AB的垂直平分线方程为,∴它与准线x=-1的交点C的坐标为注意到△ABC为正三角形∴③又由抛物线定义得④⑤∴④⑤代入③解得∴所求直线l的斜率的取值范围为.点评:这里对A、B坐标的求解是“半心半意”,解题中途运用常用定理,因此,为避免引入新的参数,我们对点C坐标采取“解而不设”,以便于实现用同一参数k表示△ABC为正三角形的条件的设想.我们的这一设想一旦实现,解题便胜券在握.2、分析:体现点M到y轴的距离的线段MM′平行于双曲线的对称轴.注意到线段MM′与表示A、B到(右)准线的距离的线段之间的密切联系,考虑运用双曲线第二定义,故而对A、B 坐标“设而不解”.解:曲线为双曲线的右支.这里∴e=2右准线l:设作则∴∴①又双曲线右焦点由双曲线第二定义得②∴②代入①得③当且仅当,即AB为焦点弦时等号成立.∴由③当且仅当弦AB通过焦点时等号成立.注意到曲线H过焦点垂直于对称轴的弦长为6<8,故条件可以满足.∴④此时,,,而,于是有⑤因此由④⑤得,距y轴最近的点M的坐标为.点评:(1)解析几何中寻求某量的最值或寻求某量取何最值的有关曲线上的点的坐标,基本解法之一是“先找后解”,即首先利用曲线的性质或平面几何知识寻求该量取得最值时的点(或线段),而后运用代数求解的手段解出这一量或这一点的坐标,本题的求解便是运用了这一手法.(2)这里应用了焦点弦的命题:,同学们不妨给予证明,或寻找解题的另一途径.3、分析:由题设容易确定椭圆的方程.由直线AB、AC与x轴围成以A为顶点的等腰三角形知直线AB与AC的倾斜角互补,因而它们的斜率互为相反数(即两斜率之和为0)这便是我们求解目标的一个等量关系.为便于由这一等量关系求解,我们在第一阶段对B、C坐标“解而不设”.当求出直线BC的斜率之后,进而研究△ABC面积的最大值时再考虑对B、C坐标“既设又解”(半心半意地“解”).解:(1)将点坐标代入椭圆方程得n=6∴椭圆方程为①由题设知等腰三角形ABC的两腰不能与x轴垂直,故设两腰AB、AC所在直线的斜率分别为,,则直线AB的方程为②直线AC的方程为③∴由①②联立解得点B坐标为∴由①③联立解得点C坐标为由题设知∴直线BC的斜率(2)设直线BC的方程为④④代入椭圆方程得∴判别式△>0⑤且∴⑥又点A到直线BC的距离∴△ABC的面积当且仅当时等号成立∴,当且仅当(满足⑤式)时取得.于是可知,当或时,△ABC的面积S取得最大值,此时,直线BC的方程为,即.此时又易知BC∥OA(O为原点),B、C两点恰好分别为长轴、短轴的端点.点评:本题的难点在于求直线BC的斜率.对此,从已知条件中认识到直线AB和AC的倾角互补,进而是解题的关键环节.对于B、C两点坐标,立足于“求解”,虽然计算量大一些,但思路简明,解题的技术含量较低,反而容易寻出目标.对于直线与圆锥曲线相交的问题,在适宜的条件下以“求解”回避审题需要的深刻与细腻,也是解题的基本方略.4、分析:(1)条件的转化,化繁为简的策略之一,是线段向x轴或向y轴的投影转化.注意到这里点A在y轴上,故考虑运用这一策略进行转化.(2)此为常见的直线与抛物线相交的问题,故考虑对点G、H、E的坐标“既设又解”.解:(1)设M(x,y),且过点M作MN⊥OY于N则∴∴点A坐标为由题设得PA⊥AM化简得①注意到当x=0时,点M与点N重合,点Q与原点重合,这与已知条件不符因此,动点M的轨迹方程为,其轨迹是顶点在原点,焦点为F(1,0)的抛物线(不含顶点).(2)由(1)知,轨迹C的焦点F(1,0),准线l:x=-1(ⅰ)当直线m不与x轴垂直时,设直线m的方程为y=k(x-1)(k≠0)①将①与联立,消去x得∴由韦达定理得②又直线n的方程为∴∴∴∴点E、O、H三点共线(ⅱ)当直线m⊥ox时,直线m的方程为x=1,此时易证点E、O、H三点共线.于是,由(ⅰ)(ⅱ)知,题设条件下的点E、O、H一定在同一条直线上.点评:对于(1),已知条件的投影转化促使点M,A的关系明朗,从而为运用“直接法”求轨迹方程奠定基础.对于(2),要证点E、O、H三点共线,重点证也是常用方法.只是不可忽略直线m⊥x轴的情形.“一般”与“特殊”共同组成解题或证明的完整过程.此题的求解也是展示一般与特殊之间辩证关系的一个范例.。
高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为(1)求此时椭圆G的方程;(2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中即椭圆方程可为………3分设H(x,y)为椭圆上一点,则…………… 4分若,则有最大值…………………5分由(舍去)(或b2+3b+927,故无解)…………… 6分若…………………7分由所求椭圆方程为………………… 8分(1)设,则由两式相减得……③又直线PQ直线m直线PQ方程为将点Q()代入上式得,……④…………………11分由③④得Q()…………………12分而Q点必在椭圆内部,由此得 ,故当时,E、F两点关于点P、Q的直线对称14分2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为 .(Ⅰ)求的取值范围,并求的最小值;(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.解:(Ⅰ)与圆相切, ……①由 ,得 ,,故的取值范围为 .由于,当时,取最小值 .6分(Ⅱ)由已知可得的坐标分别为,由①,得,为定值.12分3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点A关于轴的对称点为D.(1)求抛物线的方程。
(2)证明:点在直线上;(3)设,求的面积。
.解:(1)设,,,的方程为.(2)将代人并整理得,从而直线的方程为,即令所以点在直线上(3)由①知,因为,故,解得所以的方程为又由①知故4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线.(I)求椭圆的方程及直线的斜率;(Ⅱ)求面积的最大值.解:(I)设椭圆的方程为,则,得, .所以椭圆的方程为.…………………3分设直线AB的方程为 (依题意可知直线的斜率存在),设,则由,得,由,得,,设,易知,由OT与OP斜率相等可得,即,所以椭圆的方程为,直线AB的斜率为 (6)分(II)设直线AB的方程为,即,由得,,.………………8分点P到直线AB的距离为 .于是的面积为……………………10分设,,其中 .在区间内,,是减函数;在区间内,,是增函数.所以的最大值为 .于是的最大值为18.…………………12分5、设椭圆的焦点分别为、,直线:交轴于点,且.(Ⅰ)试求椭圆的方程;(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.解:(Ⅰ)由题意, -------1分为的中点------------2分即:椭圆方程为 ------------3分(Ⅱ)当直线与轴垂直时,,此时,四边形的面积不符合题意故舍掉;------------4分同理当与轴垂直时,也有四边形的面积不符合题意故舍掉;------------5分当直线,均与轴不垂直时,设 : ,代入消去得: ------------6分设 ------------7分所以,------------8分所以,------------9分同理 ------------11分所以四边形的面积由,------------12分所以直线或或或 ---------13分6、已知抛物线P:x2=2py(p0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点到焦点F的距离与到准线距离相等,即到的距离为3;,解得.抛物线的方程为.4分(ⅱ)抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为.由,消y得,6分,解得.7分切线方程为.8分(Ⅱ)直线的斜率显然存在,设:,设,,由消y得.且.∵ ,直线:,与联立可得,同理得.10分∵焦点,,,12分以为直径的圆过焦点.14分7、在平面直角坐标系中,设点,以线段为直径的圆经过(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论. 解:(I)由题意可得,2分所以,即 4分即,即动点的轨迹的方程为 5分(II)设直线的方程为 , ,则 .由消整理得,6分则,即 .7分.9分直线12分即所以,直线恒过定点 .13分8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.解:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周所以,1分又椭圆的离心率为,即,所以,2分所以, .4分所以,椭圆的方程为 .5分(Ⅱ)方法一:不妨设的方程,则的方程为 . 由得,6分设,,因为,所以,7分同理可得,8分所以,,10分,12分设,则,13分当且仅当时取等号,所以面积的最大值为 .14分方法二:不妨设直线的方程 .由消去得,6分设,,则有,.①7分因为以为直径的圆过点,所以 .由,得 .8分将代入上式,得 .将①代入上式,解得或(舍).10分所以(此时直线经过定点,与椭圆有两个交点),所以.12分设,则 .所以当时,取得最大值 .14分9、过抛物线C: 上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)

解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何解答题专题训练 (1)一、解答题(本大题共30小题,共360.0分) 1. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为√22,斜率为k 的直线l 过F 1且与椭圆E 相交于A ,B 两点,△ABF 2的周长为8√2. (1)求椭圆E 的标准方程;(2)设线段AB 的中垂线m 交x 轴于N ,在以NA ,NB 为邻边的平行四边形NAMB 中,顶点M 恰好在椭圆E 上,求直线l 的方程.2. 如图,设抛物线方程为x 2=2py(p >0),M 为直线y =−2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B . (Ⅰ)设线段AB 的中点为N ; (ⅰ)求证:MN 平行于y 轴;(ⅰ)已知当M 点的坐标为(2,−2p)时,|AB|=4√10,求此时抛物线的方程;(Ⅱ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线x 2=2py(p >0)上,其中,点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.3. 已知椭圆C :x 2a2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,过点F 1的直线l 的倾斜角为锐角,P 为椭圆的上顶点,且PF 1⊥PF 2. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l与椭圆C交异于点P的两点A,B,且直线PA,PB与直线x+y−2=0分别交于不同两点M、N,当|MN|最小时,求直线l的方程.4.已知椭圆M:x2a +y2b=1(a>b>0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点N(√2,√22).(1)求椭圆M的方程;(2)若斜率为−12的直线l1与椭圆M交于P,Q两点(点P,Q不在坐标轴上);证明:直线OP,PQ,OQ的斜率依次成等比数列.(3)设直线l2与椭圆M交于A,B两点,且以线段AB为直径的圆过椭圆的右顶点C,求ABC面积的最大值.5.如图所示,在平面直角坐标系xOy中,已知椭圆E:x2a +y2b=1(a>b>0)的离心率为√32,A为椭圆E上位于第一象限上的点,B为椭圆E的上顶点,直线AB与x轴相交于点C,|AB|=|AO|,△BOC的面积为√3.(1)求椭圆E的标准方程;(2)设直线l过椭圆E的右焦点,且与椭圆E相交于M,N两点(M,N在直线OA的同侧),若∠CAM=∠OAN,求直线l的方程.6. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆C 短轴两顶点和两焦点构成的四边形为正方形,且周长为4√2,经过F 2与坐标轴不垂直的直线l 交椭圆于M ,N 两点. (1)求椭圆C 的标准方程;(2)若椭圆C 短轴上的点T(0,t),满足|TM|=|TN|,求实数t 的取值范围. 7. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为√22,且△TFO 面积的最大值为12. (1)求椭圆的方程;(2)设点A(0,1),直线l :y =kx +t(t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM|⋅|ON|=2,求证:直线l 经过定点.8. 已知过点M(0,m)(m >0)的直线l 与抛物线C :x 2=4y 交于A ,B 两点.(1)分别以A ,B 为切点作抛物线的两条切线PA ,PB ,交点为P ,当m =1时,求点P 的轨迹方程;(2)若1|AM|2+1|BM|2为定值,求m 的值. 9. 已知椭圆x 24+y 25=1的上焦点为F ,曲线C 1上动点M(x,y)(y ≥0)到F 的距离|MF|比点M 到x 轴的距离长1个单位. (1)求曲线C 1的方程;(2)若直线L :y =kx +t 与曲线C 1相交于A 、B 两点,过A 、B 分别作曲线C 1的切线相交于点P ,直线PA 、PB 分别与x 轴相交于C 、D ,若AB 与y 轴相交于点Q . ①四边形PCQD 是否为平行四边形?说明理由.②四边形PCQD 能否为矩形?若能,求出点Q 的坐标;若不能,请说明理由.10. 在平面直角坐标系xOy 中,已知点P 是椭圆E :x 24+y 2=1上的动点,不经过点P 的直线l 交椭圆E 于A ,B 两点.(1)若直线l 经过坐标原点,证明:直线PA 与直线PB 的斜率之积为定值;(2)若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =0⃗ ,直线l 与直线PO 交于点Q ,试判断动点Q 的轨迹与直线PA 的位置关系,并说明理由.11.已知直线y=2p与抛物线C:x2=2py(p>0)交于P,Q两点,且|PQ|=8.(1)求抛物线C的方程;(2)斜率为k(k≠0)的直线l经过C的焦点F,l与C交于A,B两点,线段AB的垂直平分线与y为定值,求点E的坐标.轴交于点D,点E在y轴上,|AB||DE|12.在平面直角坐标系xOy中,设m≥1,过点(m,0)的直线l与圆P:x2+y2=1相切,且与抛物线Q:y2=2x相交于A,B两点.(1)当m在区间[1,+∞)上变动时,求AB中点的轨迹;(2)设抛物线焦点为F,求△ABF的周长(用m表示),并写出m=2时该周长的具体取值.13.如图,抛物线x2=2py(p>0)的焦点为F,过焦点F的直线l抛物线交于A、B两点,点A到x轴的距离等于|AF|−1.(1)求抛物线方程;(2)过F与AB垂直的直线和过B与x轴垂直的直线相交于点M,AM与y轴交于点N,求点N的纵坐标的取值范围.14.如图,设F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,直线:x=−a2c与x轴交于P点,AB为椭圆的长轴,已知|AB|=8,且|PA|= 2|AF|,过P点作斜率为k直线l与椭圆相交于不同的两点M、N,(1)当k=14时,线段MN的中点为H,过H作HG⊥MN交x轴于点G,求|GF|;(2)求△MNF面积的最大值.15.已知:抛物线C1:y=x2+2,过C1外点P作C1的两条切线,切点分别为A、B.(Ⅰ)若P(2,0),求两条切线的方程;(Ⅱ)点P是椭圆C2:x24+y2=1上的动点,求△PAB面积的取值范围.16. 如图,O 为坐标原点,椭圆C :x 2a2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,|OA|+|OB|=3,△OAB 的面积为1. (1)求C 的方程;(2)若M ,N 是椭圆C 上的两点,且MN//AB ,记直线BM ,AN 的斜率分别为k 1,k 2(k 1k 2≠0),证明:k 1⋅k 2为定值.17. 椭圆E 的方程为x 2a 2+y 2=1,(a >1),A ,B 为椭圆E 的短轴端点,P 为椭圆E 上除A 、B 外一点,且直线PA 、PB 斜率积为−12,直线l :x =my +t 与圆O :x 2+y 2=23相切,且与椭圆E 交于M 、N 两点. (1)求椭圆E 的方程; (2)证明OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ 为定值.18.已知椭圆C:x2a2+y2b2=l(a>b>0),四点P1(1,1)、P2(0,1)、P3(−1,√32)、P4(1,√32)中恰有三点在椭圆C上.(Ⅰ)求C的方程.(Ⅱ)设直线l不经过点P2且与C相交于A、B两点,已知直线P2A与直线P2B的斜率的和为3.试问:直线l是否过定点?如过定点,求出定点坐标;如不过定点,说明理由.19.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1 (a>b>0)的右焦点为F,左顶点为A,下顶点为B,连结BF并延长交椭圆于点P,连结PA,AB.记椭圆的离心率为e.(1)若e=12,AB=√7,求椭圆C的标准方程;(2)若直线PA与PB的斜率之积为16,求e的值.20. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的上顶点M 与左、右焦点F 1,F 2构成一个面积为1的直角三角形.(1)求C 的标准方程;(2)过点M 分别作直线MA ,MB 交C 于A ,B 两点,这两条直线的斜率分别记为k 1,k 2,且k 1+k 2=2,证明直线AB 过定点,并求出定点的坐标.21. 已知A(1,2)为抛物线y 2=2px(p >0)上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE的斜率与直线AF 的斜率互为相反数. (1)求直线EF 的斜率;(2)设直线l 过点M(m,0)并交抛物线于P ,Q 两点,且PM ⃗⃗⃗⃗⃗⃗ =λMQ ⃗⃗⃗⃗⃗⃗⃗ (λ>0),直线x =−m 与x 轴交于点N ,试探究MN ⃗⃗⃗⃗⃗⃗⃗ 与NP ⃗⃗⃗⃗⃗⃗ −λNQ ⃗⃗⃗⃗⃗⃗ 的夹角是否为定值,若是则求出定值,若不是,说明理由.22. 已知椭圆E :x 2a2+y 2b 2=1(a >b >0)一个焦点和抛物线了y 2=4x 的焦点重合,且过点(1,−32),椭圆E 的长轴的两端点为A 、B . (1)求椭圆E 的;(2)点P 为椭圆上异于A ,B 的动点,定直线x =4与直线PA ,PB 分别交于M ,N 两点以MN 为直径的圆是否经过x 轴上的定点?若存在,求定点坐标;若不存在,说明理由.23. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,若点B(0,√3)在椭圆上,且△BF 1F 2为等边三角形.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 与椭圆C 交于M 、N 两点,若点F 2在以MN 为直径的圆外,求直线l 斜率k 的取值范围.24. 如图,在平面直角坐标系xOy 中,已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0),其右焦点F 到其右准线的距离为1,离心率为√22,A ,B 分别为椭圆Γ的上、下顶点,过点F 且不与x 轴重合的直线l 与椭圆Γ交于C ,D 两点,与y 轴交于点P ,直线AC 与BD 交于点Q . (1)求椭圆Γ的标准方程;(2)当CD =85√2时,求直线l 的方程; (3)求证:OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ 为定值.25.已知抛物线C1:y2=2px(p>0)的准线与半椭圆C2:x24+y2=1(x≤0)相交于A,B两点,且|AB|=√3.(Ⅰ)求抛物线C1的方程;(Ⅱ)若点P是半椭圆C2上一动点,过点P作抛物线C1的两条切线,切点分别为C,D,求△PCD 面积的取值范围.26.如图,已知椭圆C:x2a2+y2b2=1经过(2,0)和(0,√2),过原点的一条直线l交椭圆于A,B两点(A在第一象限),椭圆C上点D满足AD⊥AB,连直线BD与x轴、y轴分别交于M、N两点,△ABD的重心在直线x=1321的左侧.(1)求椭圆的标准方程;(2)记△AOM、△OMN面积分别为S1、S2,求S1−S2的取值范围.27.如图所示,在直角坐标系xOy中,A,B是抛物线C1:y2=2px(p>0)上两点,M,N是椭圆C2:x2 6+y23=1两点,若AB与MN相交于点E(2,0),OA⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =−p2.(Ⅰ)求实数p的值及抛物线C,的准线方程.(Ⅱ)设△OMN的面积为S,△OMN、△OAB的重心分别为G,T,当GT平行于x轴时,求|GT|+S2的最大值.28.已知圆C经过坐标原点O和点G(−2,2),且圆心C在直线x+y−2=0上.(1)求圆C的方程;(2)设PA、PB是圆C的两条切线,其中A、B为切点.①若点P在直线x−y−2=0上运动,求证:直线AB经过定点;②若点P在曲线y=14x2(其中x>4)上运动,记直线PA、PB与x轴的交点分别为M、N,求△PMN 面积的最小值.29.如图,已知点M(1,1),N(2,1),Q(4,1)抛物线y2=2px过点M,过点Q的直线与抛物线交于A,B两点,直线AN,BN与抛物线的另一交点分别为C,D,记△ABN,△CDN的面积分别为S1,S2.(1)求抛物线的方程;(2)S1S2是否为定值?并说明理由.30.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点是F1(−1,0),F2(1,0),且离心率e=12.(1)求椭圆C的标准方程;(2)过点(0,t)作椭圆C的一条切线l交圆O:x2+y2=4于M,N两点,求△OMN面积的最大值.-------- 答案与解析 --------1.答案:解:(1)由△ABF 2的周长为8√2,则有4a =8√2,所以a =2√2,又椭圆E 的离心率e =√22,则c =2,b =2,故椭圆E 的标准方程为:x 28+y 24=1.(2)由题意可知,直线l 的斜率k ≠0,设直线l :y =k(x +2),A(x 1,y 1),B(x 2,y 2),由{y =k(x +2)x 2+2y 2=8可得(1+2k 2)x 2+8k 2x +8k 2−8=0, 显然△>0,x 1+x 2=−8k 21+2k2,x 1x 2=8k 2−81+2k 2,则AB 中点Q(−4k 21+2k 2,2k1+2k 2),AB 中垂线m 方程为:y −2k1+2k 2=−1k (x +4k 21+2k 2), 所以N(−2k 21+2k 2,0),由四边形NAMB 为平行四边形,则NM ⃗⃗⃗⃗⃗⃗⃗ =NA ⃗⃗⃗⃗⃗⃗ +NB⃗⃗⃗⃗⃗⃗ , 即(x M +2k 21+2k 2,y M )=(x 1+2k 21+2k 2,y 1)+(x 2+2k 21+2k 2,y 2),所以x M =x 1+x 2+2k 21+2k 2=−6k 21+2k 2,y M =y 1+y 2=4k1+2k 2 由M(−6k 21+2k 2,4k1+2k 2)在椭圆E 上,则36k 48(1+2k 2)2+16k 24(1+2k 2)2=1, 解得k 4=2,即k =±√24, 故直线l 的方程为y =±√24(x +2).解析:(1)由△ABF 2的周长为8√2,以及椭圆的离心率求解a ,b 得到椭圆方程.(2)直线l 的斜率k ≠0,设直线l :y =k(x +2),A(x 1,y 1),B(x 2,y 2),由{y =k(x +2)x 2+2y 2=8可得(1+2k 2)x 2+8k 2x +8k 2−8=0,利用韦达定理,求出中点坐标,得到中垂线方程,结合向量关系,推出M 坐标,代入椭圆方程求解即可.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.2.答案:(Ⅰ)(ⅰ)证明:由题意设A(x 1,x 122p ),B(x 2,x 222p ),x 1<x 2,N(x 3,y 3),M(x 0,−2p).由x 2=2py 得y =x22p ,则y′=xp ,所以k MA =x 1p ,k MB=x 2p .因此直线MA 的方程为y +2p =x 1p(x −x 0),直线MB 的方程为y +2p =x 2p(x −x 0).所以x 122p+2p =x 1p (x 1−x 0),①x 222p +2p =x 2p(x 2−x 0).②由①、②得x 1+x 22=x 1+x 2−x 0,因此x 0=x 1+x 22,即2x 2=x 1+x 2=2x 3.所以MN平行于y轴.(ⅰ)解:由(ⅰ)知,当x0=2时,将其代入①、②并整理得:x12−4x1−4p2=0,x22−4x2−4p2=0,所以x1,x2是方程x2−4x−4p2=0的两根,因此x1+x2=4,x1x2=−4p2,又kAB =x222p−x122px2−x1=x1+x22p=x0p,所以k AB=2p.由弦长公式的|AB|=√1+k2√(x1+x2)2−4x1x2=√1+4p2√16+16p2.又|AB|=4√10,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y.(Ⅱ)解:设D(x3,y3),由题意得C(x1+x2,y1+y2),则CD的中点坐标为Q(x1+x2+x32,y1+y2+y32),设直线AB的方程为y−y1=x0p(x−x1),由点Q在直线AB上,并注意到点(x1+x22,y1+y22)也在直线AB上,代入得y3=x0p x3.若D(x3,y3)在抛物线上,则x32=2py3=2x0x3,因此x3=0或x3=2x0.即D(0,0)或D(2x0,2x02p).(1)当x0=0时,则x1+x2=2x0=0,此时,点M(0,−2p)适合题意.(2)当x0≠0,对于D(0,0),此时C(2x0,x12+x222p ),kCD=x12+x222p2x0=x12+x224px0,又k AB=x0p,AB⊥CD,所以k AB⋅k CD=x0p ⋅x12+x224px0=x12+x224p2=−1,即x12+x22=−4p2,矛盾.对于D(2x0,2x02p ),因为C(2x0,x12+x222p),此时直线CD平行于y轴,又k AB=x0p≠0,所以直线AB与直线CD不垂直,与题设矛盾,所以x0≠0时,不存在符合题意得M点.综上所述,仅存在一点M(0,−2p)适合题意.解析:(Ⅰ)(ⅰ)设A(x1,x122p ),B(x2,x222p),x1<x2,N(x3,y3),M(x0,−2p).化抛物线方程为函数,利用函数的导数求解切线方程,转化推出中点横坐标,判断结果即可.。