深圳中考数学备考攻略

合集下载

)深圳中考数学知识点归纳推荐文档

)深圳中考数学知识点归纳推荐文档

)深圳中考数学知识点归纳推荐文档深圳中考数学知识点归纳推荐文深圳中考数学知识点归纳深圳中考数学考试是广东省中考的一部分,对学生的数学能力进行综合考核。

在备考期间,全面掌握数学知识点是非常重要的。

下面将对深圳中考数学知识点进行归纳和总结。

一、代数1.四则运算:包括整数、有理数、无理数、分数、小数的加减乘除运算。

2.代数式的化简:将代数式中的各项进行合并、分解、提公因式等运算。

3.方程与不等式:包括一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等的解法。

4.函数:包括一次函数、二次函数、反比例函数等的性质和图像特征。

5.等式与恒等式:利用等式和恒等式解决实际问题。

二、几何1.线段与角:包括线段的比较、角的比较、线段和角的度量等。

2.三角形与四边形:包括三角形的分类、定理、相似三角形的性质、四边形的性质等。

3.圆与圆的相交:包括圆的性质、弧长、扇形面积、相切线、切线定理等。

4.空间几何:包括平行线与平面、直线与平面的位置关系、平面与平面的位置关系等。

5.三视图:利用三视图进行图形的绘制和分析。

三、数据与统计1.统计图表的分析:包括条形图、折线图、饼图等的读取和解读。

2.统计量的计算:包括平均数、中位数、众数、极差等的计算和应用。

3.概率:包括事件的概念、事件的排列组合、概率的计算等。

四、应用题数学知识的应用是中考数学考试的重点,学生需要能够将所学知识灵活运用到实际问题中。

应用题涉及到生活、工作、环境等各个方面,要求学生能够理解问题、分析问题、解决问题。

推荐文档1.《深圳中考数学真题分析与解析》:该书对深圳中考近年来的数学真题进行了详细分析和解析,帮助学生了解题型、知识点和解题思路。

2.《深圳中考数学总复习》:该书对所有考点进行了系统总结和归纳,提供了大量的例题和习题,帮助学生进行系统的复习和巩固。

3.《深圳中考数学考点详解》:该书对深圳中考的数学考点进行了详细讲解,结合实例进行了逐步解析,帮助学生理解和掌握各个考点。

)深圳中考数学知识点归纳推荐文档

)深圳中考数学知识点归纳推荐文档

)深圳中考数学知识点归纳推荐文档深圳中考数学知识点归纳推荐文深圳中考数学知识点归纳中考数学是学生在初中阶段的最后一次数学考试,对于学生的综合能力评价起着重要的作用。

下面将对深圳中考数学的相关知识点进行归纳。

1.几何知识点(1)图形的面积和体积:矩形、正方形、三角形、梯形、圆的面积计算,立方体、长方体、圆柱体、圆锥体、球体的体积计算。

(2)相似与全等:相似三角形的判定与判断,相似三角形的性质,全等三角形的判定与判断。

(3)平行线与交线:平行线的判定,平行线的性质,平行线的性质的证明,直线的判定,平行线的判定与证明。

(4)弧长与扇形面积:圆中的弧度与扇形,弧长与扇形面积的计算。

2.代数知识点(1)分式及其运算:分式的基本概念与性质,分式的化简与比较,分式的四则运算。

(2)方程与不等式:一元一次方程与一元一次不等式的解集求解,一元二次方程的根与解集求解。

(3)函数与图像:函数的概念与性质,函数与方程的关系,函数的图像与性质。

(4)分析与证明:条件与结论的转换,逻辑联结词的运用,数学问题的分析与证明。

3.统计与概率知识点(1)统计学的基本概念:总体与样本,调查与统计,频率与频率分布。

(2)统计量的计算:平均数、中位数、众数的计算,数据的图表与分析。

(3)概率的基本概念:样本空间、随机事件,概率的计算与性质,事件的互斥与相关性。

(4)实际问题的解决:概率与实际问题的计算与分析。

上述只是深圳中考数学知识点的大致范围,不同学校和地区可能会有细微差别。

为了更全面地准备中考数学,学生可以参考以下推荐文档:1.《深圳中考数学复习必备》:该书是一本针对深圳中考数学内容编写的复习指导书,内容详细全面,包含了各个知识点的讲解和练习。

3.《中考数学真题集》:该书是一本整理了多年深圳中考数学真题的题集,通过做真题可以更好地了解考试题型和难度,提高解题能力。

此外,学生还可以参考各个学科的教材和教辅资料进行复习和练习,加强对知识点的理解和掌握。

2023深圳中考数学

2023深圳中考数学

2023深圳中考数学前言2023年即将举行的深圳中考中,数学是必考科目之一。

本文将针对2023深圳中考数学科目的考试内容和备考要点进行详细介绍,帮助考生们顺利备考和取得好成绩。

考试内容2023深圳中考数学科目的考试内容包括:1.数与式:数的认识、整数计算、分数、小数、百分数、数的性质与分类、代数式、简单的代数式的分配定理等。

2.平面几何基础知识:点、直线、线段、角、三角形、四边形、平行线与垂直线等。

3.函数与图像:函数概念、函数的表示、函数的计算、函数的图像、一次函数、平方函数、反比例函数等。

4.数据统计与概率:统计图的认识和应用、概率的认识和计算等。

备考要点想要在2023深圳中考数学科目中取得好成绩,以下是几个备考要点供考生参考:1.系统学习:要系统地学习数学知识,在学习过程中做好笔记,整理知识点,形成系统的知识框架。

2.理解掌握基础概念:要确保对数学基础概念的理解和掌握,理解概念的定义和性质,并能够灵活运用。

3.多练习:数学是一门需要反复练习的科目,通过大量的练习题来巩固知识,提高解题能力和应对考试的自信心。

4.错题总结:在做题过程中,遇到不会的题目不要放弃,而是要仔细分析错题,总结解题方法,找出自己的不足之处,及时加以弥补。

5.查漏补缺:在备考过程中,要时常查漏补缺,将不熟悉或不懂的知识点找出来,再次学习和练习,确保知识的完整性。

总结本文详细介绍了2023年深圳中考数学科目的考试内容和备考要点。

考生们在备考过程中,要注重理解和掌握数学基础概念,灵活运用知识,通过多练习和总结错题来提高解题能力。

希望本文的内容可以帮助到考生们顺利备考并取得好成绩。

注意:以上内容仅供参考,具体备考方法以学校和教师的指导为准。

深圳中考数学知识点归纳推荐文档

深圳中考数学知识点归纳推荐文档

深圳中考数学知识点归纳推荐文档深圳中考数学是中学阶段的重要考试科目之一,对于学生的学习成绩和升学选择具有重要影响。

为了帮助学生系统复习数学知识,下面将对深圳中考数学知识点进行归纳,以便学生有针对性地进行复习。

考试内容:深圳中考数学考试的内容主要包括了初中三年的数学知识。

其中,数与式、图形与变换、数据分析与概率、函数、同比例函数、解线性方程、角与三角函数、二次根式和二次方程等是重点和难点。

此外,还包括了数与代数的综合题、应用题等。

知识点归纳:1.数与式:整数、有理数、无理数、实数等数的性质;数的四则运算规则;绝对值与相反数;分数的四则运算与混合运算;数列的概念与性质。

2.图形与变换:点、线、面、体的性质与分类;平面图形的分类与性质;封闭曲线与开放曲线的性质;图形的相似与全等;平移、旋转、对称等几何变换,以及变换前后图形的位置关系等。

3.数据分析与概率:数据的整理与分析;频数、频率、概率的概念与计算;均数、中位数、众数的计算与应用;统计图表的制作与解读等。

4.函数:函数的概念与性质;函数的自变量与因变量;函数的图像与性质;函数关系式的表示与应用;函数关系与图像的特点等。

5.同比例函数:比例的性质与四则运算;比例方程与比例的应用;直线与比例函数的关系;斜率和截距等。

6.解线性方程:一元一次方程的解法与应用;含有两个未知数的一元一次方程组的解法等。

7.角与三角函数:角与弧度的关系;三角函数的定义与性质;基本三角函数的计算与应用;直角三角形的性质和相关计算等。

8.二次根式和二次方程:二次根式的化简与计算;二次方程的解法与应用;一元二次方程组的解法等。

9.数与代数的综合题:数计算、代数式化简、等式等的运算与应用。

10.应用题:根据实际问题进行数学建模与求解,如图形的计算、三角形的计算、函数的应用等。

推荐文档:1.《深圳市中考数学复习大纲》:该文档对深圳中考数学要求进行了具体的列举与说明,是学生复习的重要参考资料。

深圳中考23数学压轴题

 深圳中考23数学压轴题

深圳中考23数学压轴题
深圳中考23数学压轴题是近年来备受关注的话题。

在这篇文章中,我将从备考难度、解题思路、学生反应等角度来探讨这个话题。

一、备考难度
深圳中考23数学压轴题备考难度让不少学生倍感压力。

这个题目
的难度系数相对较高,要求学生在有限的时间内快速思考并给出正确
答案。

题目涉及多个概念和技巧,需要学生对基础知识的掌握程度较高。

二、解题思路
针对深圳中考23数学压轴题,学生应该从以下几个方面展开思路。

首先,要仔细分析题目,理解题意。

其次,根据题目信息,归纳总结
关键信息,将问题转化为数学模型。

接着,应根据已有知识和技巧,
运用适当的方法解答问题。

最后,要验证答案的正确性,并对解题过
程进行回顾和总结。

三、学生反应
学生对于深圳中考23数学压轴题的反应各有不同。

一些学生认为
题目考察的内容较为简单,能够迅速给出正确答案。

而另一些学生则
感觉这个题目相当困难,需要更多的思考和时间来解决。

不论学生的
反应如何,通过这个题目,他们都能够加深对于相关知识的理解和应用。

总结起来,深圳中考23数学压轴题备考难度较大,但通过正确的解题思路,同学们仍然能够得到较好的成绩。

这个题目也反映出了学生对于数学学科掌握的深度和广度。

在备考过程中,学生们需要注重平时的积累和加强对基础知识的理解和掌握。

此外,注重解题思路的培养和运用也是备考中的关键。

通过不断地练习,培养逻辑思维和数学思维的能力,学生们一定能够应对这个挑战,取得理想成绩。

深圳中考数学知识点归纳

深圳中考数学知识点归纳

深圳中考数学知识点归纳数学是深圳中考中不可或缺的科目之一,掌握好数学知识点对于考生取得好成绩至关重要。

下面是对深圳中考数学知识点的归纳整理。

一、代数与方程1.多项式-同类项的合并与分解-多项式的加减运算-多项式的乘法-因式分解与提公因式2.一元一次方程与不等式-基本方程与不等式的解法-一元一次方程组的解法-一元一次不等式组的解法-如何应用方程与不等式解实际问题3.二次根式-二次根式的化简与运算-无理方程的解法-平方差公式与配方法4.二次函数-二次函数的图像与性质-二次函数与一元二次方程的关系-二次函数与实际问题的应用二、几何与图形1.平面图形-直线、射线与线段的性质-角的度量与性质-三角形的基本性质-等腰三角形、等边三角形与直角三角形的性质-特殊四边形的性质(矩形、正方形、菱形和平行四边形)-针对平面图形的问题应用相关性质求解2.空间图形-空间图形的基本概念(点、线、面、多面体等)-特殊几何体的性质(正方体、长方体、正六面体等)-针对空间图形的问题应用相关性质求解3.相似与全等-两个图形相似的判定与性质-相似比与相似的应用-两个图形全等的判定与证明4.坐标与向量-平面直角坐标系与向量的表示-向量的性质与运算-对称、镜像、旋转与平移的向量表示与性质三、数据与统计1.数据的收集、整理与分类-数据的集中趋势(平均数、中位数等)与离散程度(极差、方差等)的计算-频数表、频率表的制作与解读-条形统计图、饼图的制作与解读2.概率与统计-事件与样本空间的概念-事件的概率计算-随机事件的排列组合与概率计算-现实问题中的概率计算应用四、函数与图像1.函数与函数的应用-函数的概念与图像的表示-函数的性质(奇偶性、单调性等)-对函数的运算(加减乘除、复合、反函数等)-函数在实际问题中的应用2.函数与图像-函数图像的性质(单调性、极值、零点等)-函数图像的平移、翻折与伸缩等变化-函数的解析式与图像之间的关系以上仅是对深圳中考数学知识点的一部分归纳,考生在备考过程中还需要结合具体教材和习题进行全面学习和巩固。

2023年深圳中考数学知识点归纳总结(一)

2023年深圳中考数学知识点归纳总结(一)

2023年深圳中考数学知识点归纳总结(一)
2023年深圳中考数学知识点归纳总结
前言
作为一名资深的创作者,我将为大家总结2023年深圳中考数学的重要知识点。

本文将以标题副标题形式呈现,希望能帮助广大考生更好地备考和应对中考。

正文
1. 代数
•一次函数与二次函数
•幂函数与指数函数
•对数函数与指数方程
•复合函数与反函数关系
2. 几何
•平面几何基本知识
•数字图像与几何变换
•空间几何基本知识
•三角形与平行线
•相似与全等三角形
3. 概率与统计
•随机事件与概率
•样本调查与统计
•数据的收集与整理
•简单的统计分析
4. 函数与方程
•函数的概念与性质
•一元一次方程与一元一次不等式•二元一次方程组与解集
•二次函数与二次方程
•指数函数与对数方程
5. 数据与图表
•数据的收集与整理
•统计图表的应用
•平均数、中位数与众数
•极差与标准差
结尾
通过本文对2023年深圳中考数学知识点的归纳总结,相信大家对中考数学的重要知识点有了更全面和清晰的了解。

希望广大考生能够针对这些重点知识进行有针对性的复习,并注重解题思路和方法的培养。

祝愿所有考生在2023年的中考中取得优异的成绩!。

2024年度6深圳中考数学考点知识点的总结

2024年度6深圳中考数学考点知识点的总结

2024年度深圳中考数学考点、知识点总结2024年度深圳中考的数学试卷主要包括了以下几个考点和知识点:(一)一次函数与二次函数在本次考试中,一次函数和二次函数是考试的重点。

主要涉及一次函数方程和不等式的解法、一次函数的图像与性质、一次函数与二次函数的比较与分析等方面。

例如,通过给出的问题,命题人员可能会要求学生解一元一次方程或不等式,求出方程或不等式的解集;或者要求学生通过计算和整理数据,找出一次函数的解析式并画出其图像;还可能会要求学生根据给定的一次函数与二次函数的表达式,进行比较与分析。

(二)几何与空间几何在几何与空间几何的考点中,主要包括了平行线、相交线、垂线、中线、角平分线、四边形的性质等内容。

命题人员可能通过这些内容出一些定理或题目,要求学生根据给定的条件,进行相关的证明或计算。

例如,学生可能会需要根据给定的条件,判断线段是否平行或垂直;或者计算出线段的长度;还可能需要根据给定的条件,计算出角的度数或证明两个角相等或互补。

(三)平面向量与解析几何在本次考试中,平面向量与解析几何是较难的考点。

主要内容包括向量的基本性质、向量的线性运算、向量的共线性和垂直性、平面解析几何的性质与应用等。

例如,命题人员可能会通过给定的题目,要求学生计算出向量的模、方向角或坐标;或者给出一些条件,让学生计算出向量的和、差、数量积或向量积。

(四)等差数列与等比数列在等差数列与等比数列这个考点中,主要涉及数列基本概念、数列的公式、等差数列与等比数列的性质和应用等。

例如,命题人员可能会给出一些数列的前几项,要求学生计算出数列的公式;或者给出数列的公式,让学生计算出数列的第n项或前n项和。

(五)概率与统计概率与统计也是本次考试的重点内容。

主要包括概率的基本概念、概率的计算、事件的独立与非独立性、抽样调查与统计等方面。

例如,命题人员可能会给出一些条件,要求学生计算事件的概率;或者给出一些数据,让学生进行统计和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学分值占比
二、深圳中考近四年试卷考点分析
三、中考数学分值分析
可以看到,近三年中对于“数与代数”、“统计概率”和“方程与不等式”的考核比较稳定,每年的考核分值大致相当,但是对于”三角形与四边形“的考查力度在逐年增加,对于“变量与函数”的考核则在逐年递减。

三、深圳中考数学命题趋势
1、注重对基础知识,基本技能的考察,避免盲目拔高
2、注重规律探究和推理问题的考察
3、统计与概率的应用题仍会受到命题者的重视
4、注重数学核心知识和数学思想的考察。

四、深圳中考数学重点难点剖析
1、数与式。

要抓准定义和原理,如:相反数、倒数、绝对值、分母有理化、幂的运算、因式分解、分式的化简。

考察重点还是基础知识,基本计算,难度较低,分值在20分左右,这部分是所有学生都应该做对的。

2、方程与不等式组
方程与不等式的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。

从试卷这部分考题来看,难度都不大,关键是学生能否有明确的思路,良好的解题过程。

因此我们在复习的时候,加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。

注意整体思想,换元法的训练。

方程组与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断,还有方程在应用题中的应用。

不等式主要考查不等式的解法及性质。

该部分难度适中,分值在15分左右。

3、图形的认识
几何部分的考查内容主要是:相交线与平行线、全等三角形、相似三角形、等腰三角形、等腰梯形、直角三角形、平行四边形、圆的有关问题。

三角形部分主要会考查三角形中的三线、三角形全等的性质及判定。

分值在15分左右,该部分考题一般较为简单。

四边形部分会延续对平行四边形、矩形、菱形、正方形判定及性质与应用的考查。

分值为9分左右,难度中等。

圆是必考内容,课本上对圆的内容设置难度较低,所以在中考中出现的试题考查的知识点主要集中在垂径定理、切线判定与性质、面积计算的部分。

分值在13分左右,难度中等。

?
4、空间与图形
几何部分的难点在于初中数学中三大变换(平移、旋转、轴对称)与以及与上述三类图形结合的几何综合题,这部分要求学生熟练掌握三大变换的概念和性质,分值一般在8分左右。

在平时的复习中要注重对数学思想的理解,在练习中要有意识地训练我们的数学思维,这样对我们以后的学习是有很大好处的?主要包括如下几个数学思想:①分类讨论的思想;如在等腰三角形中对角的讨论,对边的讨论很重要。

②整体思想换元法;③数形结合思想④配方法⑤递推思想。

该模块还包含视图与投影,主要考察三视图,投影比较少,相对简单。

5、函数及其图像
中考对于函数部分的考查比例非常重,它是代数部分的重点内容,也是难点内容。

?考查的对象
主要是:一次函数、反比例函数、二次函数。

主要研究函数的解析式,取值范围,数形结合的思想,分类讨论的思想。

对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题与归纳。

函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在25分左右。

?
6、统计与概率
统计与概率部分是必考部分,在复习的时候要有针对性。

知识点考查热点有:扇形统计图、平均数、中位数、众数、极差、方差、标准差、概率的意义极其计算(列表法、树状图法)。

?概率统计部分比重较少,基本为两道选择、一道解答,约13分。

这部分考查的内容基本为对概念的理解,难度较低,这部分也该成为学生必得分的部分。

五、中考数学复习策略
(一)中考物理复习一般分为三个阶段:
第一阶段——系统复习阶段,全面复习、夯实基础、沟通联系;
第二阶段——专题训练阶段,把握重点、抓住考点、训练思维;
第三阶段——模拟训练阶段,综合模拟、查漏补缺、调适心态。

(二)第一阶段
要求:
以“课标”为标准,以“单元”、“章节’为顺序,重视基础知识、基本能力、基本方法的复习和良好思维习惯的培养.
这一阶段的教学可以按以下步骤进行:课前自主复习—课堂讲练结合—课后精简作业—自习反馈矫正。

(1)明确单元知识的重点、难点、考点;
(2)充分挖掘教材,引导学生归纳、梳理知识点,形成网络;
(3)重视基础知识、基本技能、基本思想方法的训练;
(4)精选例题、精简作业,以中低档题训练为主,避免重复;
(5)适当控制教学的难度,穿插少量的综合复习,避免偏离复习方向;
(6)注意复习的“新意”,培养学生兴趣,增强学习的内驱力
(三)第二阶段
常见的复习专题:
(1)知识综合型专题:代数综合问题(方程、不等式与函数),几何综合问题(三角形、四边形、圆、几何变换),几何代数综合性问题.
(2)重点题型突破:规律探索性型、开放探究型、实验与操作型、方案设计型、阅读理解型、图表信息型、学科综合型、实际应用型.
(3)数学思想方法专题:主要数学思想有:方程函数思想、数形结合思想、分类讨论思想、转化化归思想、统计思想、整体思想等;
常见解题方法有:待定系数法、定义法、列举法、归纳法、割补法、消元法、配方法、换元法等.
做到:
(1)重视知识的综合,尤其是横向联系,教学要有深度;
(2)重视合情推理能力、动手实践能力和创新意识的培养;
(3)突出数学思想与解题方法;
(4)密切关注社会热点问题,强化应用.
本阶段教学运用启发式复习模式:
出示问题——学生思考——合作交流——师生完成——总结反思——发散提高.
具体复习采用题组复习法:
递进题组——深化问题揭示规律,类比题组——举一反三归类迁移,化归题组——纵横联系提高效率.
第二轮复习非常重要,可以说是对老师水平的考验,对提高学生的分析能力、综合能力、知识的扩展运用能力非常关键,专题的选择要适合学生的基础和水平、重视数学思想和解题方法的提炼.这样才能提高优秀率,才使一部分优秀学生脱颖而出
(四)第三阶段
要求:
模拟训练、全面提高;自由复习和个别辅导相结合;调节心态轻轻松松迎中考。

这一阶段的复习可以遵循这样的步骤:课前做练习——课上讲重点——课后练精细。

相关文档
最新文档