新人教版初中数学教案:平方根(第2课时)
(人教版)2020八年级数学上册 第11章 数的开方 11.1 平方根与立方根 1 平方根 第2课时 算术平方根教案

A.重点□B.难点□C.易错点□
这节课的重点是算术平方根的概念教学和正数的算术平方根的求法,在讲解概念时应注意概念的自然的引导和概念的解释,注意平方根与算术平方根的区别与联系,这里一定要强调清楚.
③[师生互动反思]
通过师生间频繁的互动,使学生深刻理解概念,准确表述,并通过练习巩固掌握.
例5若 =2,则(m+2)2=________.
例6算术平方根等于它本身的数有________.
例7若已知 + =0,则x-y的算术平方根为________.
使学生通过所学的知识,在原来的基础上有拓宽、有提升,并能与过去的知识相结合,达到综合应用的目的.
活动
四:
课堂
总结
反思
当堂训练:
1.求下列各数的算术平方根:
例2[课本P3例2]将下列各数开平方:
(1)49(2)
例3[课本P4例3]用计算器求下列各数的算术平方根.
(1)529;(2)44.81(精确到0.01).
体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是 .
旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.
让学生知道平方的逆运算是开平方.
例2是由求算术平方根来得到一个数的平方根,是求平方根的另一种方法
例3是了解用计算器求算术平方根.
【拓展提升】
例4 的算术平方根为________; 的算术平方根是________.
问题解决
经历算术平方根激起性质的产生过程,能用概念及性质解决有关问题.
2022-2023学年七年级数学下册课件之平方根 第二课时(人教版)

所以大正方形的边长是 2 dm.
探究2 2 有多大? 因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415; ……
6.1 平 方 根
第2课时
你能计算 5.89 吗?
知识点 1 估算
探究1 能否用两个面积为1 dm2的小正方形拼成一个面积为 2 dm2的大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的4 个直角三角形拼在一起,就得到一个面积为2 dm2的 大正方形. 你知道这个大正方形的边长是多少吗?
总结
估算 a (a≥0)时,可以采用夹逼法,首先确定 a 的 整数部分,根据算术平方根的定义,有m2<a<n2,其中 m,n 是连续的非负整数,则m< a <n,则 a 的整数部 分为m;同理可得 a 的小数部分,如此进行下去,可得
的近似值.
1 比较下列各组数的大小:
(1) 8与 10 ;
(2) 65与8 ;
则这个正数的算术平方根的小数点就向右(或 向左)移动一位; (3) 0.0125 ≈0.112.
已知 23 ≈4.80, 230 ≈15.17,则 0.002 3 的值约为( B )
A.0.480
B.0.048 0
C.0.151 7
D.1.517
七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。
人教版数学七年级下册《6-1平方根第2课时》教学设计

人教版数学七年级下册《6-1平方根第2课时》教学设计一. 教材分析人教版数学七年级下册《6-1平方根》第2课时,主要内容是平方根的概念和性质。
这部分内容是初中数学的基础,对于学生理解代数和几何中的许多概念具有重要意义。
本节课的主要内容有:平方根的定义、平方根的性质、平方根的运算等。
二. 学情分析七年级的学生已经学习了有理数的乘方,对幂的概念有一定的理解。
但是,平方根的概念和性质较为抽象,需要通过实例和活动让学生加深理解。
此外,学生的数学基础和学习习惯参差不齐,需要在教学过程中充分考虑这一点。
三. 教学目标1.理解平方根的概念,掌握平方根的性质。
2.能够进行平方根的运算。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.平方根的概念和性质。
2.平方根的运算。
五. 教学方法采用问题驱动法、实例分析法、小组合作法等多种教学方法,引导学生主动探究,合作交流,培养学生的数学思维能力。
六. 教学准备1.教材、教案、PPT等教学资料。
2.相关实例和练习题。
3.投影仪、电脑等教学设备。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如物体的高度、温度等,引导学生回顾有理数的乘方,为新课的学习做好铺垫。
2.呈现(15分钟)通过PPT呈现平方根的定义和性质,让学生初步了解平方根的概念。
同时,引导学生发现平方根与有理数乘方的联系和区别。
3.操练(20分钟)让学生分组讨论,运用平方根的性质解决一些实际问题。
如:计算某个数的平方根,判断一个数是否为另一个数的平方根等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生的讨论结果,进行讲解和总结,强化学生对平方根概念和性质的理解。
然后,让学生完成一些相关的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平方根在实际生活中的应用有哪些?让学生举例说明,进一步培养学生的数学应用能力。
6.小结(5分钟)对本节课的主要内容进行总结,强调平方根的概念和性质,提醒学生注意平方根的运算方法。
人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2

负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.
人教版数学七年级下册6-1 平方根 第2课时 教案

6.1 平方根第2课时教学设计课题 6.1 平方根第2课时单元第六单元学科初中数学年级七下学习目标1.会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律;2.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义;3.能用夹逼法求一个数的算术平方根的近似值;4.体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数,培养探求精神,提高学生学习数学的兴趣.重点夹逼法及估计一个(无理)数的大小.难点会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.什么是算术平方根?一般地,如果一个正数x的平方等于a,即x² a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.求下列各式的值.(1)的算术平方根=_______(2)的算术平方根=_______追问:你2知道它有多大吗?【教学建议】让学生说出算术平方根的概念,并让学生回答,最后引出2有多大的疑问?学生思考并回答计算并思考.回顾旧知,引出本节课重点内容,如何求一个算术平方根的近似值.讲授新课【合作探究】能否用两个面积为 1 dm2 的小正方形拼成一个面积为2 dm2 的大正方形?学生分组讨通过探究活动,引出求的一种如图,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为 2 dm2的大正方形.你知道这个大正方形的边长是多少吗?解:设大正方形的边长为x dm,则x2 = 2由算术平方根的意义可知x=所以大正方形的边长是dm.小正方形的对角线的长是多少呢?x=小正方形的对角线的长即为大正方形的边长.学生分组讨论、拼图过程中,教师巡视,了解各组探究情况,最后动态展示拼图过程,由学生代表回答解题思路,教师进行板书示范.最后教师可强调大正方形的面积不能表示成一个有理数的平方,因此它的边长只能用算术平方根的符号,即表示.想一想:2有多大呢?()2=2无限不循环小数是指小数位数无限,且小数部分不循环的小数.播放动画过程中,教师可提问,对于(1)、(2)教师带领学生进行完成,(3)、(4)学生独立完成(1)在哪两个整数之间?(2)精确到0.1时在哪两个数之间?论、拼图,回答教师问题.方法,并举例说明什么是无限不循环小数,让学生理解其概念.(3)精确到0.01时在哪两个数之间?(4)精确到0.001时在哪两个数之间?最后,教师给出无限不循环小数的概念.【小试牛刀】你能估算出的近似值吗(精确到0.01)?解:∵22=4,32=9,∴2<<3.∵ 2.2²=4.84,2.3²=5.29,∴ 2.2<<2.3.∵ 2.23²=4. 9729,2.24²=5. 0176,∴ 2.23 <<2.24.∵ 2.2362 =4.999696,2.2372 =5.004169,∴ 2.236<<2.237,∴≈2.24.归纳:对算术平方根进行估算时,通常利用与被开方数比较接近的两个完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.【合作探究】在估计有理数的算术平方根的过程中,为方便计算,可借助计算器求一个正有理数a 的算术平方根(或其近似值).注意:计算器的型号不同,按键顺序可能有所不同,要注意阅读使用说明书.【典型例题】例1用计算器求下列各式的值:(1) ;(2) (精确到0.001).用计算器计算下列算术平方根,你发现了什么规律?学生思考,回答教师问题.通过例题,使学生掌握使用计算器求算术平方根的方法,做一做中的(2)可以和上面所估计的的大小进行比较.解:规律:被开方数的小数点向右或向左移动2位,算术平方根的小数点相应地向右或向左移1位.想一想:用计算器计算,并利用你发现的规律,求,,的近似值.你能根据的值说出是多少吗?【典型例题】例2 小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2 的长方形纸片,使它的长宽之比为3 : 2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm ,宽为2x cm,根据边长与面积的关系得3x∙ 2x = 300,6x2 = 300 ,x2 = 50,x = ,因此长方形纸片的长为3cm .∵50 > 49,∴> 7.由上可知 3 > 21,则长方形纸片的长应该大于21 cm. 思考并积极回答.例题给出了一个实际问题背景,学生一般会认为一定能用一块面积大的纸片裁出一块面积小的纸片,通过学习可以纠正学生的认识.重点使学生掌握通过平方数比较有理数与无理数大小的一种方法.∵= 20,∴正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法. 小丽不能用这块正方形纸片裁出符合要求的长方形纸片.例2先由学生尝试,教师再进行讲解.【随堂练习】1.用计算器求下列各式的值:(1) ;(2) (精确到0.01).2.估算的值 ( B )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.学生自主练习学生通过练习,可以更好的理解如何用计算器求一个数的算术平方根,进一步提高分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.求算术平方根的方法(1)夹逼法(2)用计算器求解2.例题讲解。
人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。
在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。
本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。
二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。
在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。
在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。
三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:平方根的定义、性质和求法。
2.难点:平方根在实际问题中的应用。
五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。
2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。
3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。
六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。
2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。
2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。
同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。
3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。
七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

4.(2019·台州)若一个数的平方等于5,则这个数等于_____5___. 5.若-2 是m的一个平方根,则m+7的平方根是__±__3____.
知识点二 平方根与算术平方根的关系
8.若正方形的边长为a,面积为S,则(B )
A.S的平方根是a
B.a是S的算术平方根
C.a=± S
D.S= a
9.若一个数的算术平方根是5,则这个数的平方根为( D )
A.25
B.±25
C.-5
D.±5
10.若一个数的算术平方根是6,则比它大2的数的平方根是_____3_8__.
11.已知25x2-144=0,且x是正数,求5x+13的平方根.
解:由25x2-144=0,得x=± 12 .
5
∵x是正数,∴x= 12 ,∴5x+13=5× 12 +13=25,
5
解:∵2a-1的平方根为± 3 ,∴2a-1=3,解得a=2. ∵3a-2b+1的平方根为±3,∴3×2-2b+1=9,解得b=-1, ∴4a-b=4×2-(-1)=9,∴4a-b的平方根为±3.
17.若x2=9,y2=16,且x>y,求x-y的平方根. 解:依题意,得x=3,y=-4或x=-3,y=-4, ∴x-y=7或1,∴x-y的平方根为± 7 或±1.
18.已知a,b,c满足b= (a 3)2 +4,c的平方根等于它本身,求 a b c 的值. 解:由题意,得-(a-3)2≥0,∴a=3,∴ b (a 3)2 4 4. ∵c的平方根等于它本身,∴c=0,∴ a b c 3 4 0 5.
19.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少? 解:(1)根据题意,得(2a-1)+(a-5)=0,解得a=2, ∴这个非负数是(2a-1)2=(2×2-1)2=9.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 .1平方根(第2课时)
一、教学目标
1.感受无理数,初步了解无限不循环小数的特点.
2.会用计算器求算术平方根.
二、重点和难点
1.重点:感受无理数.
2.难点:感受无理数.
(本节课使用计算器,最好每个同学都要有计算器)
三、合作探究
1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的_______________,记作_______.
2.填空:
(1)因为_____2
=36,所以36的算术平方根是____________;
(2)因为(____)2=964,所以964的算术平方根是____________;
(3)因为_____2
=0.81,所以0.81的算术平方根是_______=_____;
(4)因为_____2=0.572,所以0.572
的算术平方根是_______=_____.
3.师抽卡片生口答.
(课前制作若干张卡片,
一面是算术平方根的值,
a 2
等形式) (二)
(看下图)
这个正方形的面积等于4,它的边长等于多少?
谁会用算术平方根来说这个正方形边长和面积的关系?
这个正方形的面积等于1,它的边长等于多少?
用算术平方根来说这个正方形边长和面积的关系?
(指准图)这个正方形的边长等于面积1
(边讲边板书:
生:等于1.(师板书:=1)
(看下图)这个正方形的面积等于2,它的边长等于什么?(稍停)
.(上面三个图的位置如下所示)
2
1,
=?)
怎么求? 在1和2之间的数有很多,
第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线
.
我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共同用计算器计算)
1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?(师生共同用计算器计算)
2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?
1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点面积=4面积=1面积=2边长=4=2边长=2边长=1=1面积=2面积=1面积=4
不同,有什么不同呢?第一,这个小数是无限小数(板书:无限)
.
.
.四、精讲精练
例用计算器求下列各式的值:
0.001);
(按键时,教师要领着学生做;解题格式要与课本上的相同)
练习
1.填空:
(1)面积为9=;
(2)面积为7≈(利用计算器求值,精确到0.001).
2.用计算器求值:
=;
=;
≈(精确到0.01).
3.选做题:
(1)用计算器计算,并将计算结果填入下表:
(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:
=,=,
=,= .
五、课堂小结
无理数
六、作业。