第九章超高温杀菌技术

合集下载

超高压杀菌技术及其应用

超高压杀菌技术及其应用

超高压杀菌技术及其应用定义及原理超高压杀菌技术简称UHP,又称超高压技术,高静压技术,或高压食品加工技术,是在密闭的超高压容器内,用水作为介质对软包装食品等物料施以400~600MPa的压力或用高级液压油施加以100~1000map的压力。

从而杀死其中几乎所有的细菌、霉菌和酵母菌,而且不会像高温杀菌那样造成营养成分破坏和风味变化。

超高压杀菌技术作为新兴技术应用于食品保藏,主要机理是能够使微生物细胞膜和细胞壁损伤、改变细胞形态、影响细胞内酶活力及细胞内营养物质和废弃物的运输,从而杀死食品中的腐败菌和致病菌;同时,HHP能够有效或部分钝化食品中的内源酶。

该技术的主要优点,首先是作为一种物理方法在不加热或不添加化学防腐剂的条件下杀死致病菌和腐败菌,从而保障食品的安全、延长食品的货架期;其次,HHP作为一种非热加工手段,在杀菌过程中没有温度的剧烈变化,不会破坏共价键,对小分子物质影响较小,能较好的保持食品原有的色、香、味以及功能与营养成份。

细菌结构不同微生物对HHP技术敏感性是不同的,酵母、霉菌容易在较低的压力下被杀灭,细菌营养体则需要较高的压力,而细菌胞子很难杀死。

目前HHP技术主要应用于高酸性食品。

由于高压高温协同效应能够杀死细菌胞子,近年来高压高温工艺研究引起了广泛关注。

最近,美国NCFST成功开发了PATS工艺, PATS工艺与传统高温杀菌工艺相比,大幅缩短杀菌时间,提高了低酸性食品品质。

因此,HHP技术在低酸性食品的应用会不断增加。

超高压技术不仅能杀灭微生物,而且能使淀粉成糊状、蛋白质成胶凝状,获得与加热处理不一样的食品风味。

超高压技术采用液态介质进行处理,易实现杀菌均匀、瞬时、高效。

但是,UHP技术对杀灭芽孢效果似乎不太理想,在绿茶茶汤中接种耐热细菌芽孢后,采用室温和400MPa静水高压处理,不能杀灭这些芽孢。

另一方面,由于糖和盐对微生物的保护作用,在粘度非常大的高浓度糖溶液中,超高压灭菌效果并不明显。

超高温灭菌系统的原理及基本过程

超高温灭菌系统的原理及基本过程

超高温灭菌系统一.超高温灭菌(Ultra High Temperature,简称UHT)UHT产品是指物料在连续流动的状态下通过热交换器加热至135~150℃,在这一温度下保持一定的时间以达到商业无菌水平,然后在无菌状态下灌装于无菌包装容器中的产品。

UHT产品能在非冷藏条件下分销,可保持相当时间而产品不变质。

现在,UHT产品已从最初的牛奶拓展到了其它不同品种的饮料,如各类果汁、茶饮料等,灭菌温度为100~135℃。

(一).目的:杀死所有能导致产品变质的微生物,使产品能在室温下贮存一段时间。

(二).超高温灭菌加工的类型:超高温灭菌系统所用的加热介质大都为蒸汽或热水,按物料与热介质接触与否,进一步可分为两大类,即直接加热系统和间接加热系统。

根据实际的生产情况,这里主要介绍超高温间接加热系统,按热交换器传热面的不同又可分为板式热交换系统及管式热交换系统,某些特殊产品的加工使用刮板式加热系统。

1.板式热交换系统板式热交换系统具有诸多的优点:a. 热交换器结构比较紧凑,加热段、冷却段和热回收段可有机地结合在一起。

b. 热交换板片的优化组合和形状设计,大大提高了传热系数和单位面积的传热量。

c. 易于拆卸,进行人工清洗加热板面,定期检查板面结垢情况及CIP清洗的效果。

2.管式热交换系统管式热交换系统的优点是:a. 生产过程中能承受较高的温度及压力。

b.有较大的生产能力。

c. 对产品的适应能力强,能对高粘度的产品进行热处理,如布丁等。

3.板式与管式热交换系统的比较对两种系统,从温度的变化情况来看比较接近,从机械设计的角度来看:a. 板式热交换器很小的体积就能提供较大的传热面积,为达到同样的传热量,板式加热系统是最经济的一种系统。

b. 管式加热系统因其结构的特性,更加耐高温和高压,而板式加热系统,则受到了板材及垫圈的限制。

c.板式热交换器,对加热表面的结垢比较敏感,因其流路较窄,垢层很快会阻碍产品的流动。

为了保证流速不变,驱动压力就会增大,但压力的增大会受到结构特别是垫圈的限制;管式热交换器,由于产品与加热介质之间的温差较大,较板式热交换器可能更易结垢,但结垢对产品的流速没有太大的影响,因为系统可以承受较大的内压力,持续生产的制约因素主要是灭菌温度,结垢层影响了传热效率,从而影响了灭菌温度,造成无法进行自动控制。

营养与食品卫生学_第九章 食品新技术及其卫生学问题

营养与食品卫生学_第九章 食品新技术及其卫生学问题
质量和污染食品;
(3)其它污染,膜分离食品为液态食品,防止包 装材料污染。
四、微胶囊化技术及其卫生学问题
1. 概念 (1)微胶囊化技术:将食品物料包裹在另一物料
之中,以保护食品营养、控制风味物质释放、改 善加工性能及延长货架寿命;
(2)芯材:被包裹的食品物料; (3)壁材:包裹食品的物料。
2. 微胶囊化技术意义 (1)改变食品物理状态,液态物质变为细粉装物
质,降低粘度;
(2)实现有效成分的控制释放,立即、延长、长 效
(3)保护食品被氧化、受潮等; (4)屏蔽食品不良味道和气味; (5)阻止活性成分之间的反应。 3. 微胶囊化食品: 粉末油脂、粉末酒类、粉末香精
等添加剂、粉末双歧杆菌、微量元素微胶囊化。
4. 微胶囊化食品生产工艺
(1)喷雾干燥:喷雾后,大分子食品在内,小分 子壁材在外;
1. 超高压技术(高静水压技术):
将包装好的食品放入装有液体介质的高强度容器 中,保持100~ 1000MPa压力一段时间,以杀灭 食品中微生物的一种冷杀菌技术。
2. 原理:高压下微生物细胞膜受破坏、酶活性受抑 制、DNA遗传物质受损而死亡。
3. 超高压食品种类:固体、液体、发酵类食品均有, 为食品灭菌种类。
4. 微波加工技术:快速、节能(30%~50%)、保 留食品营养成分和风味(60%~90%)。
微波干燥技术、微波膨化技术、微波杀菌技术、微 波催化合成技术、微波萃取技术、微波消解技术。
5. 食品的生物工程技术:基因工程、酶工程、细胞 工程、发酵过程。
(1)基因工程技术:用基因技术改造食品原料, 转基因大豆、转基因番茄等。
(4)物理性污染:食品原料、食品包装。
三、膜分离技术及其卫生学问题

第九章_超高温杀菌技术

第九章_超高温杀菌技术

第十章 超高温杀菌第一节 基本原理超高温杀菌是把加热温度为135-150℃、加热时间为2-8s 、加热后产品达到商业无菌要求的杀菌过程叫做超高温杀菌或者UHT 杀菌。

其基本原理包括微生物热致死原理和如何最大限度地保持食品的原有风味及品质原理。

因为微生物对高温的敏感性远远大于多数食品成分对高温的敏感性,故超高温短时杀菌,能在很短时间内有效地杀死微生物,并较好地保持食品应有的品质。

一、UHT 杀菌的微生物致死理论依据微生物的热致死率是加热温度和加热时间的函数。

(一)微生物的耐热性微生物的耐热性受到下列因素的影响1.菌种和菌株;2.菌龄、培育条件、贮存环境;3.热处理的介质、食品成分如酸度;4.原始活菌数;5.热处理温度和时间(主导因素)。

(二)微生物的致死速率与D 值在一定环境和温度下,微生物随时间而死亡时的活菌残存数是按指数递减或按对数周期下降的。

细菌任意时刻的致死速率可以用它残存活菌数下降一个对数周期所需的时间来表示,这便是图中D 值的概念。

D 值是这一直线斜率绝对值的倒数,即:()D D C C C B /1/10log 10log /23=-=''=斜率D 值反映了细菌死亡的快慢。

D 值越大,细菌死亡的速度越慢,即细菌的耐热性越强;反之则死亡速度越快,耐热性越强。

D 值随其它影响微生物耐热性的因素而异,只有在这些因素固定不变的条件下,才能稳定不变。

图10-1(三)微生物的热力致死时间与Z值热力致死时间(Thermal Death Time=TDT)——表示热力致死温度保持不变的条件下,完全杀灭某菌种的细胞或芽孢所必需的最短热处理时间。

微生物热力致死的时间随致死温度而异,两者的关系曲线称为热力致死时间曲线,图10-2表达了不同热力致死温度下细菌芽孢的相对耐热性。

Z 值表达了热致死时间缩短一个对数周期所要求的热处理温度升高的度数,它在数值上等于热力致死时间曲线的直线斜率绝对值的倒数。

食品杀菌新技术—超高压杀菌技术(食品高新技术课件)

食品杀菌新技术—超高压杀菌技术(食品高新技术课件)

(4)超高压对脂类的影响 高压对脂类的影响是可逆的 室温下,呈液态的脂肪在高压下(100~200 MPa)
研究报道,同持续静压处理相比,阶段性压力变化 处理杀菌效果较好
对于易受芽孢菌污染的食物用超高压多次重复 短时处理,杀灭芽孢效果好
3.微生物的种类 不同生长期的微生物对高压的反应不同 处于指数生长期的微生物比处于静止生长期的微
生物对压力反应更敏感 革兰氏阳性菌比革兰氏阴性菌对压力更具抗性
孢子对压力的抵抗力则更强 革兰氏阳性菌中的芽孢杆菌属(Bacillus)和梭 状芽孢杆菌属(Clostridum)的芽孢最为耐压 芽孢壳的结构极其致密,使得芽孢类细菌具备了 抵抗高压的能力,杀灭芽孢需更高的压力并结合其 它处理方式
在200 MPa以上的压力作用下发生显著的变化 对二级结构的影响:
在很高压力下(>700 MPa)发生变化,导致 非可逆变性
超高压(<700 MPa)对蛋白质一级结构无影响, 有利于二级结构的稳定,但会破坏其三级结构和四 级结构
超高压迫使蛋白质的原始结构伸展,分子从有序 而紧密的构造转变为无序而松散的构造,或发生变 形,活性中心受到破坏,失去生物活性
同,细菌对压力的耐受能力也会各有不同 细菌耐压性的差异不仅在于种属的不同,而且还
与来源有关,同一种属的菌株之间也可能有较大差 异
革兰氏阳性菌超高压杀菌的指示菌: 非致病性的无害李斯特菌代替食源性致病菌单核
细胞增生李斯特菌 革兰氏阴性菌超高压杀菌的指示菌:
大肠杆菌科(Enterobacteriaceae)
(3)影响细胞内酶活力 高压还会引起主要酶系的失活,一般来讲压力超
过300MPa对蛋白质的变性将是不可逆的,酶的高 压失活的根本机制是:①改变分子内部结构;②活 性部位上构象发生变化

乳品超高温杀菌工艺研究

乳品超高温杀菌工艺研究

乳品超高温杀菌工艺研究一、本文概述本文旨在探讨乳品超高温杀菌工艺的研究现状和发展趋势。

随着人们生活水平的提高,对乳制品的质量和安全要求也日益严格。

超高温杀菌工艺作为一种先进的乳品加工技术,具有杀菌效果好、处理时间短、营养损失小等优点,因此在乳品工业中得到了广泛应用。

本文首先介绍了超高温杀菌工艺的基本原理和操作流程,然后分析了该工艺对乳品质量和安全性的影响,接着探讨了超高温杀菌工艺的优化方法和发展趋势,最后展望了超高温杀菌工艺在乳品工业中的应用前景。

通过本文的研究,可以为乳品工业提供有益的参考和借鉴,推动乳品加工技术的不断创新和发展。

二、乳品超高温杀菌工艺原理超高温杀菌工艺(UHT,Ultra-High Temperature)是一种广泛应用于乳品加工的技术,其基本原理是利用高温快速杀灭乳品中的微生物,从而达到延长产品保质期、保证食品安全的目的。

UHT工艺的关键在于控制适当的温度和时间,以最大程度地杀灭微生物,同时避免对乳品的营养成分和风味造成显著影响。

UHT工艺通常分为预热、杀菌和冷却三个阶段。

在预热阶段,乳品被加热至一定温度,通常为65℃至75℃,以消除乳品中的部分微生物并防止其在随后的杀菌过程中产生抗热性。

接着是杀菌阶段,乳品被迅速加热至135℃至150℃的高温,并维持几秒钟至几十秒钟,以确保杀死所有微生物,包括芽孢和耐热性强的微生物。

最后是冷却阶段,乳品被迅速冷却至4℃至6℃,以防止微生物的再次生长并维持乳品的质量和风味。

UHT工艺的优点在于其高效、快速和可靠的杀菌效果,以及能够保持乳品原有的营养成分和风味。

UHT工艺还能显著延长乳品的保质期,使其在没有冷藏条件的情况下也能保持数月的稳定性。

然而,需要注意的是,虽然UHT工艺能有效杀灭微生物,但并不能完全消除乳品中的酶和其他可能引起变质的因素,因此仍需要在储存和运输过程中保持适当的条件,以确保乳品的质量和安全性。

以上便是乳品超高温杀菌工艺的基本原理和操作步骤。

第九章杀菌机械与设备

第九章杀菌机械与设备

第九章杀菌机械与设备第九章杀菌机械与设备第一节概述第二节直接加热杀菌机械与设备第三节板式杀菌机械与设备第四节管式杀菌机械与设备第五节高压杀菌机械与设备第六节微波与欧姆杀菌机械与设备 第七节超高压杀菌机械与设备第八节高压脉冲电场杀菌技术与应用第一节第一节第一节 二、方法分类第二节直接加热杀菌机械与设备原理:直接加热杀菌是采用高热纯净的蒸汽直接与待杀菌物料混合接触进行热交换,使物料瞬间被加热到135~160℃。

优点:加热速度快、热处理时间短,食品色泽、风味及营养成分损失少。

缺点:由于在热交换过程中部分蒸汽冷凝进人物料,同时又有部分物料中水份因蒸发而逸出,使易挥发的风味物质亦随之逸出而造成损失。

应用:该方式不适用于果汁杀菌,生产中多用于牛乳等的杀菌。

第二节蒸汽喷射杀菌装置的工作原理10一、APV-6000型直接蒸汽喷射杀菌装置图9-1 APV-6000直接蒸汽喷射杀菌装置流程图1—输送泵;2—第一预热器;3—第二预热器;4—乳泵;5—流量气动阀;6—直接蒸汽喷射杀菌器;7—蒸汽气动阀;8—杀菌温度调节器;9—膨胀罐;10—装有液面传感器缓冲器;11—无菌乳泵;12—均质机;13—灭菌乳冷却器;14、17—蒸汽阀;15—蒸汽气动阀;16—比重调节器;18—喷射冷凝器;10—冷凝掖泵;20—真空调节阀;21—真空泵;22—高压蒸汽;23—低压蒸汽;24、25冷却水二、拉吉奥尔(Laguilharre)杀菌装置10-图9-2 拉吉奥尔超高温装置流程图1—高压泵;2—预热器(水汽);3—预热器(蒸汽);4—加热器;5—闪蒸罐;6—无菌泵;7—冷却器;8—真空泵;Tl、T2——调节器三 、自由降落薄膜式杀菌器图9-3 降膜式杀菌器工作原理剖面图 1—原乳进口;2—微量调节阀;3—压力表;4— 蒸汽进口;5—不锈钢网;6—自由降落薄膜; 7—饱和清洁蒸汽;8—杀菌器外壳;9—液封; 10—液面调节;11—产品出口图9-4自由降落薄膜式杀菌器工艺流程图第三节板式杀菌机械与设备板式杀菌设备的特点 板式杀菌设备的核心部件就是板式换热器,它由许多冲压 成型的不锈钢薄板叠压组合而成,广泛应用于乳品、果汁 饮料、清凉饮料以及啤酒、冰淇淋的生产中的高温短时 (HTST)和超高温瞬时(UHT)杀菌。

食品高新技术加工工艺超高温杀菌-优秀PPT文档

食品高新技术加工工艺超高温杀菌-优秀PPT文档

值(达35),这种孢子用来检验各种超高温处理的效果 PA3679细菌孢子在150℃时的热致死速率(杀死90%PA3679孢子数所需时间)为0.
①加热器、冷却器和保温器均以无缝环形不锈钢管制成,没有密封圈和死角,可以承受特别高的压力;
喷SE射=式lg是(原把始蒸孢汽子喷数射无/到最物疑终料孢流是子体数里很) 。 有说服力的。PA3679细菌孢子在150℃时的热
习惯上,把加热温度为135~150℃,加热时间为2~8s,加热后产品达到商业无菌要求的杀菌过程称为UHT杀菌。
热处理时介质或食品成分如酸度或pH; (一)UHT杀菌的微生物致死理论依据
超高温杀菌处理一般有两种方法,即直接加热法和间接加热法。
二是如何最大限度保持食品的原有风味及品质。
原始活菌数; 超高温杀菌处理前后牛乳pH值的变化却不大。
所(通以二常, ) ,该U检H技验T术U杀H比菌T常杀的规菌品致0杀效质.2菌果保死方8(证S法t5er速能iszi更n,g好率E地f处fe保c(t存)可理食用品杀某后的类品微死的质生及物孢9风的0味芽子%孢作P数为A试减验3对6少象7。9到孢原子先数的所1/1需01时2,间这)无
为 疑
是 极 高 的 质 量 标 准 热处理温度和时间,作为热杀菌,这是主导的操作因素。 , 此 时 所 需 处 理 的 全 部 时 间 是
0.285×12=3.4s,
如果时间进一步延长到4s,总孢子数就会减少到1/ 1014,因此,用超高温工艺在135℃高温处理3~4s时间 就有可能得到极为优质的超高温灭菌产品。
4
超高温工艺杀菌效率的定义是以杀菌前后孢子数 的对数比来表示,以下式来表示为:
SE=lg(原始孢子数/最终孢子数)
5
(二)UHT杀菌的品质保证
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 超高温杀菌
第一节 基本原理
超高温杀菌是把加热温度为135-150℃、加热时间为2-8s 、加热后产品达到商业无菌要求的杀菌过程叫做超高温杀菌或者UHT 杀菌。

其基本原理包括微生物热致死原理和如何最大限度地保持食品的原有风味及品质原理。

因为微生物对高温的敏感性远远大于多数食品成分对高温的敏感性,故超高温短时杀菌,能在很短时间内有效地杀死微生物,并较好地保持食品应有的品质。

一、UHT 杀菌的微生物致死理论依据
微生物的热致死率是加热温度和加热时间的函数。

(一)微生物的耐热性
微生物的耐热性受到下列因素的影响
1.菌种和菌株;
2.菌龄、培育条件、贮存环境;
3.热处理的介质、食品成分如酸度;
4.原始活菌数;
5.热处理温度和时间(主导因素)。

(二)微生物的致死速率与D 值
在一定环境和温度下,微生物随时间而死亡时的活菌残存数是按指数递减或按对数周期下降的。

细菌任意时刻的致死速率可以用它残存活菌数下降一个对数周期所需的时间来表示,这便是图中D 值的概念。

D 值是这一直线斜率绝对值的倒数,即:
()
D D C C C B /1/10log 10log /23=-=''=斜率
D 值反映了细菌死亡的快慢。

D 值越大,细菌死亡的速度越慢,即细菌的耐热性越强;反之则死亡速度越快,耐热性越强。

D 值随其它影响微生物耐热性的因素而异,只有在这些因素固定不变的条件下,才能稳定不变。

图10-1
(三)微生物的热力致死时间与Z值
热力致死时间(Thermal Death Time=TDT)——表示热力致死温度保持不变的条件下,完全杀灭某菌种的细胞或芽孢所必需的最短热处理时间。

微生物热力致死的时间随致死温度而异,两者的关系曲线称为热力致死时间曲线,图10-2表达了不同热力致死温度下细菌芽孢的相对耐热性。

Z 值表达了热致死时间缩短一个对数周期所要求的热处理温度升高的度数,它在数值上等于热力致死时间曲线的直线斜率绝对值的倒数。

即:
Z Z Z TDT TDT A A /1/)10log 10(log /)'log (log 12=-=-=斜率
如果某种微生物在121℃时的TDT 值为F ,则该微生物在任何杀菌温度下的TDT 值可表示为
Z T F TDT /)121()(log -=-
第二节UHT瞬时杀菌的基本过程及设备一、UHT杀菌的基本方法
间接式(间壁式)加热法
基本方法
直接混合式加热法
间接式加热UHT过程是采用高压蒸汽或高压水为加热介质,热量经固体换热壁传递给待加热杀菌的物料。

由于加热介质不直接与食品接触,所以可较好地保持食品原有的风味。

直接式加热法,一是注入式,即将高压蒸汽柱射到待杀菌的物料中;二是喷射式,即将待杀菌物料喷射到蒸汽中。

该法加热快、时间短,但蒸汽净化程度要求高。

二、UHT瞬时杀菌设备流程
(一)直接混合式加热UHT瞬时杀菌设备流程
1.基本步骤
根据被处理物料性质的不同,UHT杀菌的工艺流程也不完全相同,但主要的关键步骤相同,即物料都由泵送至预热器预热,然后进入直接蒸汽喷射杀菌器,杀菌后的物料经闪蒸去除部分水分和降低温度之后进入下道工序。

下面以消毒牛乳为例介绍一下直接混合式加热UHT过程的若干典型装置流程。

图10-6为APY-6000型灭菌乳生产杀菌装置流程图。

原料乳由输送泵1送经第一预热器2进入第二预热器3,牛乳升温至75~80℃。

然后在压力下由泵4抽送,经调节阀5送到直接蒸汽喷射杀菌器6。

在该处,向牛乳喷入压力为1MPa的蒸汽,牛乳瞬间升温至150℃。

在保温管中保持这一温度2、4s时间,然后进入真空膨胀罐9中闪蒸,使牛乳温度急剧冷却到77℃左右。

热的蒸汽由水冷凝器18冷凝,真空泵21使真空罐始终保持一定的真空度。

真空罐内部汽化时,喷入牛乳的蒸汽也部分连同闪蒸的蒸汽一起从真空罐中排出,同时带增可能存在于牛乳中的一些臭味。

另外,从真空罐排
出的热蒸汽中的一部分进入管式热交换的第一预热器2中用来预热原料。

如图,平衡罐1中的牛乳经泵2送至预热器3预热以后,进行脱气4和均质5,再经预热器6进一步预热后进入管式UHT杀菌器。

加热器3,6为交互换热式,以便回收利用余热。

杀菌后的牛乳在预热器3,6中与冷的原乳进行热交换,原乳被预热,而灭菌乳被预冷,最后经冷却器8最终冷却,送往无菌填充机。

(二)间接加热UHT瞬时杀菌设备流程
间接式加热UHT瞬时杀菌是通过间壁式换热器来实现的。

其过程如图10-10。

相关文档
最新文档