几何体中距离的最值
几何求最大值的方法

几何求最大值的方法几何求最大值的方法是一个涵盖多个领域的复杂问题,涉及数学、物理、工程等多个学科。
在几何学中,求最大值的问题通常涉及到图形的性质、空间结构和优化理论。
下面将详细介绍一些常用的几何求最大值的方法,并阐述它们的原理和应用。
一、基础概念在几何学中,最大值问题通常涉及到距离、角度、面积、体积等几何量。
求这些量的最大值,需要理解几何对象的基本性质,如点、线、面、体之间的关系和性质。
二、基本方法解析几何法:通过建立坐标系,将几何问题转化为代数问题,利用代数方法求解最大值。
例如,在平面几何中,可以通过求解二次函数的极值来找到某个图形的最大面积或最大距离。
几何不等式法:利用几何不等式来求解最大值。
例如,在三角形中,利用三角形的三边关系、角度关系等不等式,可以求解三角形的最大面积或最大周长。
几何变换法:通过平移、旋转、对称等几何变换,将问题转化为更简单的形式,从而求解最大值。
例如,在立体几何中,可以通过旋转体来求解某个几何体的最大体积。
三、实际应用几何求最大值的方法在实际生活中有着广泛的应用。
例如,在建筑设计中,可以利用几何求最大值的方法来优化建筑的空间布局,提高建筑的使用效率;在交通运输中,可以利用几何求最大值的方法来规划最优的运输路线,降低运输成本;在机器人路径规划中,也可以利用几何求最大值的方法来找到机器人的最优运动轨迹。
四、案例分析以一个具体的案例为例,假设我们有一个固定的圆形区域,需要在其中放置尽可能多的相同大小的圆形物体。
这个问题可以转化为求解圆形区域内能够容纳的最大圆形物体数量。
通过解析几何法和几何不等式法,我们可以找到最优的排列方式,使得圆形区域内能够容纳的圆形物体数量达到最大。
五、结论与展望几何求最大值的方法是一个复杂而重要的领域,具有广泛的应用前景。
随着数学、物理、工程等学科的不断发展,几何求最大值的方法也将不断更新和完善。
未来,我们可以期待更多创新的方法和理论的出现,为实际问题的解决提供更多有效的工具和手段。
2 第2课时 空间距离与立体几何中的最值(范围)问题(选用)

第2课时 空间距离与立体几何中的最值(范围)问题(选用)空间中的距离问题如图,平面P AD ⊥平面ABCD ,四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,点E ,F ,G 分别是线段P A ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面P AB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面P AB ,且P A ∩AB =A , 所以EF ⊥平面P AB .又EF ⊂平面EFG ,所以平面EFG ⊥平面P AB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以{y =0,,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin 〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ABCD 是正四棱锥,ABCD -A 1B 1C 1D 1是正方体,其中AB =2,P A =6,则B 1到平面P AD 的距离为________.解析:以A 1为原点,以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系A 1xyz ,则AD →=(0,2,0),AP →=(1,1,2),设平面P AD 的法向量是m =(x ,y ,z ),所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面P AD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1,所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系B 1xyz ,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161, 故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(范围)问题(1)(2020·宁波十校联考)如图,平面P AB ⊥平面α,AB ⊂α,且△P AB 为正三角形,点D 是平面α内的动点,ABCD 是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A.-3+372B.3+372C.7 D .3(2)(2020·温州高考模拟)如图,在三棱锥A -BCD 中,平面ABC ⊥平面BCD ,△BAC 与△BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ 与AC 成30°的角,则线段P A 长的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎣⎡⎦⎤0,63 C.⎝⎛⎭⎫22,2 D.⎝⎛⎭⎫63,2【解析】 (1)如图,不妨以CD 在AB 前侧为例.以点O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系O -xyz ,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝⎛⎭⎫23sin θ,23cos θ-13,0, 所以QP →=⎝⎛⎭⎫-23sin θ,13-23cos θ,3, 设α内与AB 垂直的向量n =(1,0,0),PQ 与直线l 所成角为φ, 则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67. 则cos φ有最大值为16-67,此时sin φ取最小值为67-15.所以正切值的最小值为67-1516-67=3+372.故选B. (2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系C xyz ,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角, 所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎨⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎡⎦⎤0,63,所以线段P A 长的取值范围是⎣⎡⎦⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值范围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2020·浙江省五校联考模拟)如图,棱长为4的正方体ABCD -A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于点O ,交α于点E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x , C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y = 16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43, 所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2). 2.(2020·浙江省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系C -xyz ,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎪⎨⎪⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1=1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎡⎦⎤77,12.[基础题组练]1.(2020·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1ABC 中,∠BAC =π2,AB =AC=AA 1=1,已知点G 和E 分别为A 1B 1和CC 1的中点,点D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A.⎣⎡⎭⎫55,1B.⎣⎡⎦⎤55,1C.⎝⎛⎭⎫255,1D.⎣⎡⎭⎫255,1解析:选A.建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),E ⎝⎛⎭⎫0,1,12,G ⎝⎛⎭⎫12,0,1, F (x ,0,0),D (0,y ,0), 由于GD ⊥EF ,所以x +2y -1=0, DF =x 2+y 2=5⎝⎛⎭⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A. 2.(2020·杭州市学军中学高考数学模拟)如图,三棱锥P -ABC 中,已知P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,PD =x ,∠BPC =θ,所以可求得AC =2,AB =5,P A =x 2-1,PC =x 2+1,BP =x 2+4,所以在△PBC 中,由余弦定理知 cos θ=PB 2+PC 2-BC 22BP ·PC=2x 2+42x 2+1x 2+4.所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x 2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12 x ·2x =24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2020·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,点M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值范围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d =sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sinα=12或1时,d =32,则2≤d <32.答案:⎣⎡⎭⎫2,32 4.(2020·杭州市学军中学高考数学模拟)如图,在二面角A -CD -B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A CD B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ, 即x 2-4x cosθ-1=0,即cos θ=x 2-14x .因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎪⎨⎪⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]5.(2020·金丽衢十二校联考)如图,在三棱锥D -ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2020·温州十五校联合体期末考试)在正四面体P -ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值范围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系O -xyz ,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0).所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73. 则cos α=12 t 2t 2-4t +6=12 6⎝⎛⎭⎫1t 2-4·1t +1,因为13<37≤1t ≤35,所以51938≤cos α≤71938. 答案:⎣⎡⎦⎤51938,71938 7.如图,在△ABC 中,∠B =π2,AB =BC =2,点P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,点E 为A ′C 的中点,求证:A ′B ⊥DE .解:(1)设P A =x ,则P A ′=x ,所以V A ′PBCD =13P A ′·S 底面PBCD =13x ⎝⎛⎭⎫2-x 22. 令f (x )=13x ⎝⎛⎭⎫2-x 22=2x 3-x 36(0<x <2), 则f ′(x )=23-x 22.当x 变化时,f ′(x ),f (x )的变化情况如下表: x⎝⎛⎭⎫0,233 233 ⎝⎛⎭⎫233,2 f ′(x )+ 0 - f (x ) 单调递增 极大值 单调递减由上表易知,当P A =x =23时,V A ′PBCD 取最大值. (2)证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD . 所以四边形EFPD 是平行四边形,所以ED ∥FP .因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF .所以A ′B ⊥DE .8.(2020·杭州市第一次高考科目数学质量检测)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1BC A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,因为平面A 1BC ⊥平面A 1ABB 1,平面A 1BC ∩平面A 1ABB 1=A 1B ,所以AD ⊥平面A 1BC ,又因为BC ⊂平面A 1BC ,所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC .又因为AA 1∩AD =A ,所以BC ⊥侧面A 1ABB 1,又因为AB ⊂平面A 1ABB 1,故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角.又∠ABA 1是二面角A 1BC A 的平面角.则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC ,在Rt △ADB 中, sin φ=AD AB.由AB <AC , 得sin θ<sin φ,又0<θ,φ<π2, 所以θ<φ.[综合题组练]1.(2020·温州市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C -AB -E 为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设点F 是BE 的中点,二面角E -AC -F 的平面角的大小为θ,当λ∈[2,3]时,求cos θ的取值范围.解:(1)证明:因为二面角C -AB -E 为直二面角,AB ⊥BC,所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE .因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系E -xyz ,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0, 则EA →=(0,1,0),EC →=(λ2-1,0,1),设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面F AC 的一个法向量为n =(2,λ2-1,-λ2-1). 所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2 . 因为λ∈[2,3],所以cos θ∈⎣⎡⎦⎤53,104. 2.如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0, 即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数, 所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.。
专题4.4 立体几何中最值问题-2021届高考数学压轴题讲义(选填题)(原卷版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A .B .C .D .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .3、如右图所示,在棱长为2的正方体1111ABCD A B C D -中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P 所在线段,得解. 【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为( )A .B .C .D .2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21 D .41 3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .类型三 体积的最值问题 【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是( )A.B.C.D.【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. 182B. 362C. 18D. 36 2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A.243B.16C.48D.1443.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A .B .C .D .类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P 为AD 的中点,点Q 为上的动点,给出下列说法:可能与平面平行;与BC 所成的最大角为; 与PQ 一定垂直; 与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.三.强化训练 一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为( )A .B .C .D .2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A .B .C .4D .2 3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为( ) A .12B .6C .32D .244.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M 在俯视图上的对应点为A ,三棱锥表面上的点N 在左视图上的对应点为B ,则线段MN 的长度的最大值为A .B .C .D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 24 C. 12 D. 236.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O ,底面ABCD 在半球O 底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O ,圆柱的下底面在半球O 底面所在平面上,圆柱的上底面内接于球O ,则该圆柱的体积的最大值为_____.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.。
立体几何中的最值问题-高三数学备考练习

问题29立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB , 又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD 又因为BD ⊆平面ABCD , 所以PQ BD ⊥. 同理可证11PQ A C ⊥, 而,,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =. 由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角. 在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且.设PM m =,QN t =,则QH m =. 在Rt QNH ∆中, ,在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。
学案6:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

§1.1 第1课时棱柱、棱锥、棱台的结构特征【课标要求】1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征.2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算.【核心扫描】1.在观察认知棱柱、棱锥、棱台的结构特征过程中培养抽象概括能力和空间想象能力.(重点)2.通过棱柱、棱锥、棱台结构特征的应用提高分析解决问题的能力,增强应用意识.(难点)【新知探究】新知导学1.空间几何体、多面体的概念(1)空间几何体如果只考虑物体的和,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)多面体一般地,由若干个围成的几何体叫做多面体.围成多面体的各个叫做多面体的面;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.温馨提示:(1)按多面体是否在任一面的同侧关系分,可分为凸多面体(把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧)和凹多面体.我们所研究的多面体若不特别说明,都是指凸多面体.(2)多面体按围成它的面的个数分,可分为四面体、五面体、六面体……2.简单的多面体——棱柱、棱锥、棱台多面体结构特征图形表示法棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱些面所围成的多面体叫做棱柱.棱柱中,的面叫做棱柱的底面,简称底;叫做棱柱的侧面;相邻的侧面的叫做棱柱的侧棱;侧面与底面的叫做棱柱的顶点柱,可记为棱柱ABCD-A′B′C′D′棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥.这个面叫做棱锥的底面或底;有公共顶点的各个叫做棱锥的侧面;各侧面的叫做棱锥的顶点;相邻侧面的叫做棱锥的侧棱如图所示,该棱锥可表示为棱锥S-ABCD棱台用一个的平面去截棱锥,底面和截面之间的部分叫做棱台.原棱锥的和分别叫做棱台的下底面和上底面如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱台,可记为棱台ABCD-A′B′C′D′温馨提示:棱柱、棱锥、棱台的形状虽然不同,但它们可以互相转化:当台体的上、下底全等时,棱台转化为棱柱,当棱台的上底面收缩为一点时,棱台转化为棱锥,即:因此,棱柱与棱锥都是棱台的特例.互动探究探究点1 面数最少的多面体有几个面?探究点2 (1)有一个面是多边形,其余各面都是平行四边形的几何体一定是棱柱吗?(2)有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?探究点3 (1)棱台的上下底面一定平行且相似吗?棱台的一个侧面可为平行四边形吗?(2)有两个面平行且相似,其余各面都是梯形的几何体一定是棱台吗?【题型探究】类型一棱柱、棱锥、棱台的结构特征【例1】下列三个命题中,正确的有().①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④五棱台的各侧棱的延长线可能无法交于一点.A.0个B.1个C.2个D.3个[思路探索]根据棱柱、棱锥、棱台的结构特征判断.[规律方法]解决这类问题,关键在于准确把握简单多面体的结构特征,也就是以概念的本质内涵为依据,以具体实物和图形为模型来进行判定.【活学活用1】判断下列说法是否正确.(1)三棱柱有6个顶点,(2)三棱锥有4个顶点;(3)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.类型二空间几何体的平面展开图【例2】如图是三个几何体的侧面展开图,请问各是什么几何体?[思路探索]可动手做一模型解决问题.[规律方法]立体图形的展开或平面图形的折叠是培养空间想象能力的好方法,解此类问题可以结合常见几何体的定义与结构特征,进行空间想象,或亲自动手制作平面展开图进行实践.【活学活用2】如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是().A.①③B.②④C.③④D.①②类型三多面体的有关计算【例3】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高(过顶点向底面作垂线,顶点与垂足的距离).[思路探索]求出底面正三角形的中心到三角形顶点的距离,再利用它与棱锥的高、侧棱构成的直角三角形解决.[规律方法](1)要把侧面的高与几何体的高分开,不能混为一谈.(2)注意结合条件,构造直角三角形来解决问题.而对于棱台的有关计算常恢复到棱锥并借助相似比来解决.【活学活用3】一个棱台的上、下底面积之比为4∶9,若棱台的高是4 cm,求截得这个棱台的棱锥的高.方法技巧多面体表面距离最短问题表面距离最短问题,一般方法是展成平面图形,利用两点间距离最短来解决.【示例】如图(1)所示,在侧棱长为23的正棱锥VABC中(底面为正三角形,过顶点与底面垂直的直线过底面的中心),∠AVB=∠BVC=∠CVA=40°,过A作截面△AEF,求截面△AEF周长的最小值.[思路分析]把正三棱锥的侧面展开成平面图形,当△AEF的各边在同一直线上时,其周长最小.[题后反思] 有关几何体的距离的最值问题有两类基本方法:(1)函数思想:设出变量,把所求距离写出关于变量的函数表达式,再利用函数方法求最值.(2)转化思想:通过表面展开,转化为平面问题变曲为直,利用几何性质求解.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的含义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.【课堂达标】1.三棱锥的四个面中可以作为底面的有().A.1个B.2个C.3个D.4个2.棱台不具备的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3.不在棱柱同一个平面上的两个顶点的连线叫做棱柱的体对角线,则长方体共有________条体对角线.4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右图的平面图形,则标“△”的面的方位是________.5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点(3)每个面的三角形面积为多少?【参考答案】【新知探究】新知导学1.(1) 形状大小(2)平面多边形多边形公共边公共点2.多面体结构特征图形表示法棱柱平行四边形平行两个互相平行其余各面公共边公共顶点棱锥多边形三角形多边形三角形面公共顶点公共边棱台平行于棱锥底面底面截面互动探究探究点1提示面数最少的多面体是四面体(三棱锥),有4个面.探究点2提示(1)不一定.如图所示(1)的几何体就不是棱柱.图(1)图(2)(2)不一定.如图(2)所示的几何体就不是棱锥.探究点3提示(1)棱台的上下底面一定平行且相似;棱台的一个侧面不能为平行四边形,否则侧棱延长后不能相交于一点.(2)不一定.当两个面平行且相似,对应边成比例;其余各面都是梯形才是棱台如图(1);当两个面平行且相似,对应边不成比例,其余各面都是梯形,也不是棱台如图(2).【题型探究】类型一棱柱、棱锥、棱台的结构特征【例1】解析①错误.底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误.如图所示的几何体各面均为三角形,但不是棱锥.③错误.因为不能保证侧棱相交于同一点(如探究3中的图形).④错误.棱台的侧棱延长后一定相交于同一点.答案A【活学活用1】解(1)正确.符合棱柱顶点的定义.(2)不正确.对于一个三棱锥,只能一个顶点,一个底面.(3)不正确.因为截面不一定与底面平行.(4)不正确.如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.类型二空间几何体的平面展开图【例2】解①五棱柱;②五棱锥;③三棱台.如图所示.【活学活用2】解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体. 答案 C类型三 多面体的有关计算 【例3】解 底面正三角形中,边长为3,高为3×sin 60°=332,中心到顶点距离为332×23=3,则棱锥的高为22-32=1.【活学活用3】解 如图所示,将棱台还原为棱锥,设PO 是原棱锥的高,O 1O 是棱台的高, ∵棱台的上、下底面积之比为4∶9,∴它们的底面对应边之比A 1B 1∶AB =2∶3,∴P A 1∶P A =2∶3. 由于A 1O 1∥AO ,∴P A 1P A =PO 1PO ,即PO -O 1O PO =PO -4PO =23.∴PO =12 (cm),即原棱锥的高是12 cm. 【示例】解 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图(2)所示, 线段 AA 1的长为所求△AEF 周长的最小值,取AA 1的中点D ,则VD ⊥AA 1,∠AVD =60°,可求AD =3,则AA 1=6. 【课堂达标】1.解析 由于三棱锥的每一个面均可作为底面,应选D. 答案 D2.解析 用棱台的定义去判断. 答案 C3.解析 通过观察实物(如粉笔盒)可知长方体有4条对角线. 答案 44. 解析 如图所示的正方体ABCD A 1B 1C 1D 1,沿棱DD 1,D 1C 1,C 1C 剪开,使正方形DCC 1D 1向北方向展开;沿棱AA 1,A 1B 1,B 1D 剪开,使正方形ABB 1A 1向南方向展开,然后将正方体沿BC剪开并展开,则标“△”的面的方位是北.答案北5.解(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=3 2a2.。
专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
正方体对点的最短距离

正方体对点的最短距离正方体是一种立体几何体,它有六个面,每个面都是一个正方形。
在数学中,正方体也是一个非常重要的概念,它具有许多有趣的性质和特点。
其中一个特点就是正方体对点的最短距离。
我们需要明确正方体对点的定义。
正方体对点是指正方体内两个不相邻的顶点之间的最短距离。
由于正方体的六个面都是正方形,因此正方体的对角线是由两个不相邻的顶点构成的。
所以,正方体对点的最短距离就是正方体的对角线的长度。
那么,如何计算正方体的对角线长度呢?我们可以利用勾股定理来求解。
勾股定理是一个三角形中的基本定理,它表明:一个直角三角形的两条直角边的平方和等于斜边的平方。
对于正方体来说,其对角线可以看作是一个立方体的对角线。
假设正方体的边长为a,我们可以通过勾股定理求解对角线的长度d。
根据勾股定理,我们可以得到方程:d² = a² + a² + a²。
简化方程得到:d² = 3a²。
然后,我们可以开平方根得到d的值:d = √(3a²)。
在求解正方体对点的最短距离时,我们可以利用上述公式来计算。
以一个正方体边长为5为例,我们可以得到对角线的长度为√(3*5²) = √(3*25) = √75 ≈ 8.66。
所以,对于边长为5的正方体来说,其对角线的长度约为8.66。
除了利用公式计算正方体对点的最短距离外,我们还可以通过几何推理来解决这个问题。
考虑一个边长为a的正方体,我们可以将其展开为六个正方形构成的平面图形。
在这个平面图形中,我们可以找到两个不相邻的顶点,并通过画一条直线连接它们来得到正方体的对角线。
然后,我们可以利用几何知识来计算这条直线的长度。
在计算正方体对点的最短距离时,我们还可以考虑到正方体的对称性。
由于正方体具有六个面,其顶点的位置是对称分布的。
因此,我们可以利用这个对称性来简化计算过程。
例如,如果我们已经计算出了正方体一个顶点到对角顶点的距离,那么我们可以利用对称性得出其他顶点到对角顶点的距离。
立体几何第三讲 空间几何体得最值问题

分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的
最值.如该题中确定三棱锥底面的面积最值是关键.
【玩转跟踪】在棱长为 1 的正方体 ABCD A1B1C1D1 中,点 P1, P2 分别是线段 AB 、BD1(不
包括端点)上的动点,且线段 P1P2 平行于 平面 A1 ADD1 ,则四面体 P1P2 AB 的体积的最大值
锥 P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.
【解析】因为 PA 平面 ABC, BC 平面 ABC,所以 PABC 又因为 BCAC, PA AC A ,所以 BC 平面 PAC,又 AF 平面 PAC,所以 BCAF , 又 AFPC, PC BC C ,所以 AF 平面 PBC,即 AFEF 。EF 是 AE 在平面 PBC 上的 射影,因为 AEPB ,所以 EFPB ,即 PE 平面 AEF。在三棱锥 P AEF 中, AP AB 2, AEPB ,
5
.
5
又 P 在 BD 上运动,且当 P 运动到点 O 时,PQ 最小,等于 OQ 的长为 2 5 ,也就是异面直 5
线 BD 和 SC 的公垂线段的长.故选 B. 2.几何体表面上的最短距离问题
【例 2】正三棱柱 ABC—A1B1C1 中,各棱长均为 2,M 为 AA1 中点,N 为 BC 的中点,则 在棱柱的表面上从点 M 到点 N 的最短距离是多少?并求之.
又∵ 0<α+β<π,∴(α+β)max=π-arctan 2 ,(α+β)min=π-arctan2 2 .
【迁移运用】
1.【西藏日喀则一中高三 10 月检测】已知正三C 的距离为1,点 是线段 的中点,过点 作球 的截面,则截面面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考加油站2 有关空间几何体中距离的最值问题
高考加油站是由好学教育老师对“2016届高三数学最新模拟试题”经过好学教育老师精心整理、分类、解析形成一套精品,希望对大家有所帮助.每周将更新一篇,讲解在每周周日上午八点到十点
【2016年阜阳二中第一学期期末考试12】如图,在棱长为2的正四面体A BCD
-中,平面α与棱,,,
AB AD CD BC分别交于点,E F,,G H,则四边形EFGH周长的最小值为()
A. 3
B. 4
C. 5
D. 6
【答案】B
【解析】如图,把正四面体展开,图(2)把面ABC沿着AB翻折到与面ABD共面;图(3)把面ADC 沿着AD翻折到与面ABD共面;图(4)把面BCD沿着BC翻折到与面ABD共面;
EF+FG+GH+HE≥GE+G'E≥GG'=4等价形构造等价线长即可
G的等价点G的等价点
H C
G
E
F G'
G'
F
E
G
D
F E
H
H
G
(5)(4)
(3)(2)
(1)
H
E
B
D
F
D F
E
B
A
所以四边形EFGH 周长等于4EF FG GH HE GE G E GG ''+++≥+≥=(四点共线)
【方法点睛】多面体和旋转体表面上的最短距离问题的解法:求多面体表面上两点的最短距离,一般将表面展开为平面图形,从而转化为平面图形内两点连线的最短距离长度问题,要注意的是,如果不是指定两点间的某种特殊路径,其表面上两点的距离应是按各种可能方式展开平面图形后各自所得距离中的最小值,旋转体侧面上两点间的最短距离,如同多面体一样,将侧面展开,转化为展开面内两点连线的最短长度问题来解决.
【变式1】正六棱柱111111ABCDEF A B C D E F -的底面边长为3,侧棱长为1,则动点从A 沿表
面移到点1D 时的最短的路程是 .
【变式2】一只蚂蚁从棱长为1cm 的正方体的表面上某一点P 出发,走遍正方体的每个面的中
心的最短距离()d f P =,那么d 的最大值是__________.
【变式3】如图,在棱长为2的正四面体A BCD -中,E 是棱AD 的中点,若P 是棱AC 上一动点,则BP+PE 的最小值为( )
.3A .7B .13C + .5D
【参考答案】
【变式1】【答案】19
【解析】
试题分析:如下图所示,作出正六棱柱111111ABCDEF A B C D E F -的展开图,
如果动点从A 经侧面通过11,BB CC 移到点1D 时,则路程为
()
2
233127+=;如果动点从A
经经11A B 沿上底面移到点1D 时,根据题目条件,11111334BD BB B D =+=+⋅=,则路程为
2
2
4319+=;而1927<,所以最短的路程是19.
考点:1、棱锥的展开图;2、最值问题.
【变式2】
【答案】252
+ 【解析】
试题分析:欲求d 的最大值,先将起始点定在正方体的一个顶点A 点,再将正方体展开,找到6个面的中心点,经观察可知蚂蚁爬行最短程为6个正方体的棱长+展开图形中半个正方形对角线的长.
欲求d 的最大值,先将起始点定在正方体的一个顶点A 点,正方体展开图形为:
则蚂蚁爬行最短程的最大值222
5112152
S =++=+ 考点:平面展开-最短路径问题
【方法点睛】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。
处理这类题型的关键是抓住两图的特征关系;折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材;解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化,这
些未变化的已知条件都是我们分析问题和解决问题的依据。
而表面展开问题是折叠问题的逆向.。