手性药物分析
手性药物分析概述-20180806

目前,国际上手性和手性药物的研究正处于方兴未艾的阶段,手性制药是医药行业的前沿领域。
临床上使用的手性药物大都以消旋体给药, 而由于体内蛋白质、酶和受体对两个对映体分子处理的差异, 结果会导致对映体疗效和毒性不同。
因此, 单一对映体给药已成为一种趋势。
建立对映体药物的手性拆分方法, 在药品质量控制及药物药理、药动学研究领域中日益突出了其重要作用。
高效液相色谱(HPLC)、气相色谱(GC)、超临界流体色谱(SFC)和高效毛细管电泳(HPCE)是手性拆分的主要手段。
截止目前,HPLC被认为是测定对应异构体纯度和分离制备光学单一对应异构体的最好方法。
它适用范围广,操作条件温和,不会发生分离物构型变化或生物活性被破坏等现象。
为适应临床对单需求我公司研发中心决定开展黄酮类和洛尔类手性药物研发,现阶段研究结果如下:一、黄酮类药物手性分析黄酮类化合物在抗氧化、抗肿瘤、抗癌、抗菌、抗炎、抗衰老等方面有很强的药理活性,前期共合成了9对结构全新的黄酮类对映体,这些对映体的手性分析是这类药物研发的攻克难点。
我们首先采用反相高效液相色谱法,以β-环糊精等多种手性流动相添加剂进行手性拆分,通过改变手性添加剂的用量调整分离效果,但是试验结果表明手性流动相添加剂法不适用这9对黄酮类对映体的分离分析。
同时,我们购买了不同填料的手性固定相色谱柱,采用正相高效液相色谱进行拆分试验,通过大量的试验摸索,试验数据表明,纤维素Chiralcel OZ-H 手性柱对这9对黄酮类对映体显示了不同的拆分效果,且流动相中有机添加剂醇的比例和种类对于这两种柱的手性识别均有一定程度的影响。
直链淀粉Chiralpak AD -H 柱对于流动相中醇的种类变化更敏感,不同醇流动相的拆分结果(分离度Rs)差别较大; 而纤维素Chiralcel OZ -H 手性柱对此的差别小。
两种手性柱均对二氢黄酮类化合物表现出良好的手性选择性,但手性柱Chiralcel OZ -H 显示了更好的适用性。
手性药物分析 - 浙江大学药学院

姚彤炜主讲
手性现象
手性是自然界的基本属 性之一,手性普遍存在, 如攀缓和缠绕植物的茎 蔓旋向,海螺的旋向, 按照右手螺旋定则,它 们的缠绕方向绝大部分 都是右旋的。 NDA的双 螺旋结构是右旋的。组 成核酸的核糖和去氧核 糖均为左旋的 D 型糖; 组成蛋白质的氨基酸都 是L-氨基酸(甘氨酸除 外 ) ;
蛋白质键合相 纤维素和多糖衍生物 合成手性聚合物相 分子烙印手性固定相
•环糊精相 •配体交换相 •Pirkie相 •大环抗生素
例:牛血清白蛋白手性柱拆分亚叶酸钙消旋体 色谱柱:德国Macherey-Nagel EC 150/4 RESOLVOSIL BSA-7 (15 cm×4 mm i.d. ,4µm) 牛血清白蛋白手性柱。 流动相:采用磷酸盐缓冲液,比较了不同流动相pH、 不同磷酸盐浓度等对分离的影响。
5-苯基-5-乙基乙内酰脲
产物对映体选择性代谢:非手性分子代
谢生成一个新的手性中心,并以不同速 率形成对映体。
OH
R1 酶
HN R O N H O
R1 R2
O HN N H O OH + HN O N H O
R
R2
苯妥英
R1
Rx
R-p-HPPH
S-p-HPPH
前手性中心
手性中心
手性转化 ——指对映体在代谢过程中发 生构型的转化
• 手性物质的两个对映体在自然界中的存在量 是不同的,有的仅以单一对映体存在。 • 许多天然存在的手性小分子也主要以一种对 映体形式存在,这种现象称为手性优择 (chiral preference)。手性优择使得作 为生命活动重要基础物质的生物大分子如核 酸、蛋白质、酶等以及受体、离子通道等具 有不对称的性质,因此当手性化合物的两个 对映体与这些生物大分子作用时,就会显示 不同的作用方式,产生不同的效果。
手性药物分析

CHO
CHO
H C OH
CH2OH (D)
HO C H
CH2OH (L)
R和S系统
手性中心连接的取代基按原子序数大小依次排 列,a﹥ b﹥ c﹥ d,把d作为手性碳四面体的 顶端,a,b,c分别为四面体底部的3个角。
d
aCc b
d
c Ca b
从底部向顶端看,按从大到小顺序: 顺时针排列的为R型(rectus,右) 逆时针排列的为S型(sinister,左)
R1
R1
R
R2
dl-
R3
酶
R1
R
R2
R3
R1
d-异构体
R
R3
R2
R
R3
Rx
生成与l- 异构体相同构型 或非手性产物(Rx=R1)
例:美芬妥因立体选择性代谢反应
S-MP
O H5C2
CH3 N
O N H
R-MP
O H5C2
CH3 N
O N H
羟化反应( 迅速) CYP 2C19 HO 少量
非选择性 N-脱甲基( 缓慢)
药物 1850种
天然药、 半合成药
523种 (98%以上 为手性)
化学合成 药物
1327种 (40%为 手性)
非手性 6种
手性 517种
非手性 799种
手性 528种
对映体给药 509种(对映 体给药占98% 以上)
外消旋体给 药8种
对映体给药61 种(对映体给 药约12%)
外消旋体给药 467种
• 许多天然存在的手性小分子也主要以一种对 映体形式存在,这种现象称为手性优择 (chiral preference)。手性优择使得作 为生命活动重要基础物质的生物大分子如核 酸、蛋白质、酶等以及受体、离子通道等具 有不对称的性质,因此当手性化合物的两个 对映体与这些生物大分子作用时,就会显示 不同的作用方式,产生不同的效果。
手性药物拆分技术及分析

手性药物拆分技术及分析在药物研究和开发中,手性药物是一个非常重要的领域。
手性药物指的是分子结构中含有手性中心(手性碳原子)的化合物,左旋和右旋两种异构体具有不同的生物活性和体内代谢途径。
因此,正确地分析和分离手性药物对于药物研究和有效性的评估至关重要。
手性药物分析技术主要包括色谱法、光学活性法和核磁共振(NMR)法。
色谱法是一种常用的手性药物分析方法。
它基于手性药物的两种对映异构体在手性固定相上的不同吸附能力进行分离。
常见的色谱法包括高效液相色谱法(HPLC)和毛细管电泳法。
HPLC通常使用手性固定相柱,通过选择性地吸附左旋或右旋手性分子,实现对手性药物的分离。
毛细管电泳是一种高效的手性药物分析方法,基于对映异构体在电场中的迁移速率不同,通过毛细管中背景电解质的浓度和pH值调节来分离手性药物。
光学活性法是一种基于光学活性性质来分析和测定手性药物的方法。
光学活性手性药物由于具有旋光性,可以引起光的偏振方向发生旋转。
常用的光学活性法包括旋光仪法和圆二色光谱法。
旋光仪法是通过测定手性分子对光的旋转角度来判断手性药物的对映异构体的含量和比例。
圆二色光谱法则是测量手性分子对不同波长光的吸收性质,通过对波长的差异来判断手性药物的对映异构体。
核磁共振(NMR)是一种基于核磁共振现象来分析手性药物的方法。
NMR技术通过检测手性碳原子或核自旋的信号来确定手性药物的结构和对映异构体的比例。
通过对样品进行核磁共振实验后,通过解释谱图的峰位和峰形等信息,可以得到手性药物的分析结果。
此外,还有一些其他的手性药物分析方法,如质谱法、X射线衍射法和环光谱法等。
这些方法在手性药物分析中各有优劣,适用于不同类别和性质的手性药物。
总之,手性药物分析技术对于药物研究和评估的重要性不可忽视。
科学家们通过不断研究和发展新的手性分析技术,为新药开发和治疗提供了更可靠和准确的手性药物分析方法。
药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧手性药物是指药物分子结构中引入手性中心后,得到的一对互为实物与镜像的对映异构体。
液相色谱法成为目前手性药物分离测定的首选方法,根据实际工作中需要的手性分离问题,总结如下:1、流动相手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。
正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。
乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。
一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。
流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。
一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。
手性药物分离分析技术概况

手性药物分离分析技术概况手性药物是指具有立体异构性质的药物,它们的左右对称体被称为对映体。
由于对映体的结构和性质存在差异,它们对体内的相互作用和药效也可能有显著影响。
因此,对手性药物进行分离分析是药物研究和制备过程中非常重要的一环。
手性药物的分离分析技术包括物理分离方法和化学分析方法。
物理分离方法是基于对映体之间物理性质的差异进行区分,常用的技术包括手性色谱、手性电泳和手性萃取。
化学分析方法则是通过制备具有对映体选择性的试剂进行分析,包括手性固相微萃取、手性气相色谱和核磁共振等。
手性色谱是分离分析手性药物常用的技术之一,包括手性高效液相色谱(HPLC)、手性毛细管电泳(CE)和手性薄层色谱(TLC)。
其中,HPLC是最常用的手性色谱技术。
它利用手性色谱柱上的膜相对对映体进行区分,可分离不同的对映体。
HPLC分离手性药物的条件包括手性色谱柱类型、流动相组成和温度控制等。
手性电泳是基于电泳效应进行分离,包括毛细管区带电泳和开管电泳。
手性电泳技术能够快速分离对映体,具有高效、高分辨率和低样品消耗的特点。
手性萃取是通过特定的手性选择性试剂将对映体分离出来,常用的手性萃取试剂包括环糊精和几丁聚糖等。
手性萃取技术通常结合其他分析方法进行测定。
手性固相微萃取是一种基于固相萃取原理的手性分离技术,它利用手性固相微柱提取对映体物质,再通过其他方法进行分析。
它具有简单、灵敏和高效的特点。
手性气相色谱是通过将样品分离的物质与手性气相色谱柱上的手性烷基硅氧烷相互作用,达到对映体的分离。
手性气相色谱具有高分辨率、高灵敏度和高选择性。
核磁共振是通过核磁共振技术对手性药物进行分析,其中最常用的是氢核磁共振技术。
核磁共振技术能够提供对映体的结构、构象和化学位移等信息。
同时,光谱仪也可以通过测定两个对映体的旋光度差异进行分析。
总之,手性药物分离分析技术是药物研究和制备过程中必不可少的技术。
通过选择适当的分离技术,可以有效地分离对映体,获得具有高纯度的手性药物,并研究其生物活性和作用机制。
药物分析手性hplc

一、手性药物的拆分方法与机制
1950年Dalgliesh采用纸色谱拆分了手性药物芳族氨基 酸,由此提出三点相互作用的理论概念,这就是“三点 手性识别模式”他认为至少有三个作用力,其中一个要 有立体选择性,可以是吸引的也可以是排斥的。这些作 用力可以是氢键、偶极-偶极作用、π-π作用,经典作用 疏水作用或空间作用
Байду номын сангаас
• 三种手性分离方法的比较
CDR优点:条件相对简易,只需采用普通HPLC的 固定相和流动相即可,而且通过衍生化有利于增 加检测灵敏度;缺点:样品中相关化合物须预先 分离、衍生化手性试剂的光学纯度的要求高以及 异构体对的衍生化反应速率不一 CMP优点:不必做柱前衍生化;对固定相也无特 殊要求;样品的非对映异构化络合具有可逆性而 且有利于制备。缺点:可拆分的化合物范围有限; 某些添加剂不够稳定而且往往会干扰检测 CSP优点:能广泛用于各类化合物,制备分离方便, 定量分析的可靠性较高。缺点:样品有时须做柱 前衍生化,对样品结果有一定的限制,其适用性 尚不及普通HPLC的固定相那样广泛
(一)柱前手性衍生化法
对映异构体与手性试剂反应,其产物为相应的非对映异构 体对。本法需要高化学纯度的手性衍生化试剂,衍生化反 应往往比较繁琐时,各对映体生化反应的速率有时也不同
(二)手性流动相拆分法
1.配基交换型手性添加剂 2.环糊精类添加剂 3.手性离子对络合剂 (三)手性固定相拆分法
药物分析中的手性分析技术应用

药物分析中的手性分析技术应用手性分析是药物分析领域中的重要技术之一。
由于药物分子中存在手性中心,即分子中存在手性异构体,其对于药物活性、代谢和药效等方面具有重要的影响。
因此,手性分析技术在药物研发、质量控制和临床应用中扮演着重要的角色。
本文将就药物分析中的手性分析技术应用进行论述。
一、手性分析技术概述手性分析技术是对手性药物的立体特性进行定性和定量分析的一类分析方法。
常见的手性分析技术包括极性手性色谱法(CSP)、核磁共振技术(NMR)和圆二色光谱技术(CD)等。
这些技术可以对手性药物进行手性异构体的分离和结构鉴定,进而研究手性药物的性质和应用。
二、极性手性色谱法(CSP)在药物分析中的应用极性手性色谱法是一种高效的手性分析方法,广泛应用于药物分析领域。
该方法利用手性色谱柱对手性异构体进行分离,通过优化色谱条件实现手性化合物的定性和定量分析。
极性手性色谱法在药物质量控制、药代动力学研究和药效学等方面发挥着重要的作用。
三、核磁共振技术(NMR)在手性分析中的应用核磁共振技术是一种基于核磁共振现象的手性分析方法。
通过测定手性异构体的化学位移差异,可以实现对手性异构体的身份鉴定和含量分析。
核磁共振技术具有无损、高灵敏度和高分辨率等优点,在药物分析中得到广泛应用。
四、圆二色光谱技术(CD)在手性分析中的应用圆二色光谱技术是对手性分子的光学旋光性质进行分析的一种有效手段。
通过测量手性化合物在紫外-可见光区域的旋光角度,可以确定手性异构体的构型和含量。
圆二色光谱技术具有高选择性和灵敏度,广泛应用于药物分子的手性分析和结构研究。
五、手性分析技术在药物研发中的应用手性分析技术在药物研发中起到了至关重要的作用。
在新药研发过程中,药物化学师需要对合成的手性药物进行手性分析,确定主要手性异构体的存在与含量,并进一步评估其药代动力学和药效学特性。
手性分析技术的应用使得药物研发人员能够更全面地了解手性药物的特性,指导药物设计和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肾脏排泄的立体选择性主要表现在肾小管分泌、主动转运和肾代谢 过程,导致对映体间发生相互作用。
随着对手性药物药理活性研究的不断深入,人们已经 认识并开始重视手性药物对映体生理作用和代谢过程的差 别。特别是1992年美国食品与药品监督管理局(FDA) 提出发展单一对映体生产计划和对映体药物纯度的鉴定规 定后,如何能快速而准确的分离和测定手性药物已成为医 药界关注的重大课题。
对映体的作用互补性
如:多巴酚丁胺的左旋体具有α-受体激动剂作用,对β-受体的作用弱, 而右旋体为β-受体激动剂,而对α-受体的作用弱,所以外消旋体给药能增 加心肌收缩力,但不增加心率和血压。
不同的作用靶点表现不同的特性
药物作用于不同的组织(靶点、受体)呈现不同的特性,这类药物往往 是多功能的,作用是多方面的。
缺点
★样品有时也须作柱前衍生(但不一定是手性衍生化试剂), ★对样品结构有一定限制,其适用性尚不及普通HPLC固定相(包括正相和反相) 那样广泛。 ★迄今为止,CSP柱商品已有40多种,价格大多昂贵,尚未有一种具有类似ODS柱 的普遍适用性。
手性固定相的类型:
刷型手性固定相
❖ 手性聚合物固定相 环糊精手性固定相 大环抗生素手性固定相 蛋白质手性固定相 手性配体交换固定相 冠醚手性固定相
手性药物的拆分方法
利用物理性质——溶解度、吸附力等的差异,如:结
晶法、色谱法等;
利用反应速度差异的动力学拆分法; 利用酶的高度特异性的催化反应的酶拆分法
色谱技术是目前手性药物分离的主要方法
手性药物分离常用的色谱技术
高效液相色谱(HPLC) 气相色谱(GC) 高效毛细管电泳(HPCE) 超临界流体色谱(SFC)
异丙嗪:抗组胺;普罗帕酮:抗心律失常。
一种对映体具有药理活性,另一种活性弱或无活 性
这类药物只有一种对映体与受体有较强的亲和力,呈活性;另一种 作用弱或无活性,为劣映体,这种劣映体相当于杂质。
主要包括:非甾体抗炎药物的α-芳基丙酸类化合物,如萘普生、 布洛芬等。
两种对映体药理活性相似,但反应强度不同
手性药物现代分析方法与技术
盛彧欣
什么是手性药物(chiral drugs)
药物的分子结构中存在手性因素,而且由 具有药理活性的手性化合物组成的药物,其中 只含有效对映体或者以有效的对映体为主。药 物的药理作用是通过与体内的大分子之间严格 的手性识别和匹配而实现的。
手性药物的药效学
两种对映体具有相同或相近的药理活性
手性液相色谱法(HPLC)
间接法: 手性衍生化试剂法(CDR)
首先将对映体经手性试剂衍生,生成非对映异构体后,利用常规HPLC方法 分离测定。
适于下列情况的拆分:
不宜直接拆分的化合物。添加某些基团,增加色谱系统选择性。如:手性脂 肪胺类
❖ 提高紫外或荧光检测的效果。如:采用NBD-(L)-APY荧光试剂柱前衍生化测
如:异丙肾上腺素( β1-受体激动剂) R-(-)-:受体激动作用 S-(+)-:受体拮抗作用
一种对映体具有药理活性,另一种具有毒性作用
氯胺酮为中枢性麻醉药物,只有(S)-(+)-对映体才具有麻醉作用 ,而(R)-(-)-对映体则产生中枢兴奋作用。
镇静药沙度利胺(反应停), (R)-对映体有镇静作用, (S)-对 映体及其代谢产物有严重的胚胎毒性和致畸作用。
代表药物:抗癌药环磷酰胺, S-对映体活性是R-对映体的2倍。
两种对映体具有不同的药理活性
这类药物通过作用于不同的靶器官、组织而呈现不同的作用模式。 代表药物:索他洛尔, S-对映体——β阻断作用
R-对映体——抗心律失常作用
两种对映体的作用相反
这类药物的对映体与受体均有一定的亲和力,但通常只有一种对 映体具有活性,另一对映体反而起拮抗剂的作用。
2.手性流动相法(CMP)
向流动相中加入一手性试剂,它与溶质常以氢键、离子键或金属离 子的配位键生成非对映体缔合物,从而以常规HPLC固定相分离。
3.手性检测器法(CD)
手性固定相法
优点
★能广泛适用于各类化合物,适于常规及生物样品的分析测定; ★除非必须衍生化,否则无需高光学纯度试剂; ★样品处理步骤简单。 ★制备分离方便,定量分析的可靠性较高;
常用手性衍生化试剂
手性羧酸类
包括:酰氯、磺酰氯、酸酐和氯甲酸酯类。主要用于衍生手性醇、胺和 氨基酸。可与化合物直接缩合,或与样品反应后,合成更有利于拆分与检 测的衍生物。
手性胺类
主要用于羧酸、N-保护氨基酸、醇类等药物的手性拆分。常用试剂有: 苯(萘、蒽)乙胺、二甲氨基萘乙胺、对硝基苯乙胺等。
异(硫)氰酸酯类
定布洛芬对映体,提高了检测灵敏度
优点:
*可采用通用的非手性柱分离; *通过衍生化可提高检测灵敏度; *分离条件简单; *分离效果好。
缺点:
*要有可被衍生化的基团; *要有高光学纯度的手性试剂; *两个对映体衍生化速率和平衡常数应一致;
*衍生化和色谱过程中不能发生消旋化。
对衍生化反应的要求
➢手性衍生化试剂具有高的化学和光学纯度,且在贮存中不发生改变 ➢手性衍生化试剂和反应产物具有高的稳定性 ➢ 衍生化反应过程中产物不发生消旋化现象 ➢ 待测手性药物具有易于衍生的集团,如氨基、羟基、羧基等 ➢ 反应条件温和、快速、简便 ➢ 衍生化反应生成的非对映体在色谱分离时应能显示高柱效
易于与大多数醇类及胺类化合物反应而被分离。
光学活性氨基酸类
广泛用于胺、羧酸及醇类药物,尤其是氨基酸类,其衍生化法基于肽合 成原理。
手性液相色谱法(HPLC)
直接法
在分子间引入手性环境,即采用手性固定相或手性流动相不经柱前 衍生化直接分离药物对映体
1.手性固定相法(CSP)
连接在固定相上的手性识别剂,与药物对映体反应形成非对映体复 合物,然后作分离测定。分离的程度和洗脱顺序取决于复合物的相对强 度。
手性药物的药代动力学
吸收
被动吸收:手性因素无影响。 主动转运和易化扩散:可能发生对映体间的竞争性相互作用和吸收 的变化
分布ቤተ መጻሕፍቲ ባይዱ
手性药物对映体竞争性的与血浆蛋白、酶或受体结合,都可引起对 映体间相互作用及其在分布上的改变。
代谢
相互抑制作用:对映体竞争同一代谢酶,会发生对映体间的相互抑 制。
单向抑制作用:如果一个对映体是另一个对映体的代谢抑制剂,则 会发生单向抑制作用。