激光的单色性
激光的单色性

激光单色性好的原因激光产生原理:一个原子从高能阶降到低能阶时,会放出一个光子,叫做自发放光。
原子在高能阶时受到一个光子的撞击,就会受激而放出另外一个相同的光子,变成两个光子,叫做受激放光。
如果受激放光的过程持续产生,则所发出来的光子便会越来越多。
只要我们把高能阶的原子数量控制在高于低能阶的原子数量,那么受激放光的过程就会持续产生,这种控制原子受激放光的装置我们称它为“光放大器”。
我们也知道,光线发射出去时是以光速朝各个方向前进的,为了让产生的光线能够被收集起来并持续放大加以利用,则必须利用叫做「共振腔」的设备,把由光放大器所产生的光线用反射镜局限在一个特定的范围内,让光线可以来回反射,且由于光放大器所产生的光子是相同的,所以行进的方向也会相当一致。
透过共振腔的作用,能让光线行进的方向完全相同,也就是说拥有跟共振腔相同方向的光线才会被放大,其余不同方向的光线都不会放大,这是产生激光的首要条件。
共振腔还有另外一个作用,那就是限制激光的频率。
光线要在共振腔产生共振必须符合L = nλ/2 的关系(L 是共振腔长度,λ 是波长,n 是固定倍数),所以并非所有频率的光线都可以在共振腔中产生共振,而是只有符合这规则的才会产生共振。
而光是一种电磁波。
光的颜色取决于它的波长。
而普通光源发出的光通常包含着各种波长,是由各种颜色的光的混合。
太阳光包含红、橙、黄、绿、蓝、靛、紫七种颜色的可见光、红外线、紫外线等不可见光。
而某种激光的波长,由于共振腔的筛选作用,被选出的光线只集中在十分窄的光谱波段或频率范围内。
所以发出的光的颜色比较接近。
在我们肉眼看来,颜色比较纯。
这就是激光单色性好的原因。
应用:A医学:激光的单色性在临床选择性治疗上获得重要应用。
已成为基础医学研究与临床诊断的重要手段。
例如:治疗近视,美容祛斑等。
B测量:激光的单色特性在光谱技术及光学测量中也得到广泛应用。
例如:激光测距,C武器:1.烧蚀。
因为激光单色性好,能量相当高,一旦射向目标,所中部位马上消化,从而导致目标发生热爆炸。
激光的单色性和时间相干性_图文

当2l逐渐增大时,可以看到屏 上的明暗条纹逐渐模糊起来
当2l增大到一定程度时,屏上 的明暗条纹将模糊到完全分不清 了。即观察不到干涉现象。
当狭缝宽度2l较大时,应分别 考虑从下分中央s0到至边缘各点 各自发出的光线。
每一点发出的光都会在屏幕上因干涉形成一套明暗条纹 如果各套明暗条纹相互错开,将由于相互重叠以至于变成模 糊一片,即观察不到干涉现象。
相干长度和相干时间
进一步讨论最大光程差max的物理意义
在迈克尔逊干涉仪中,当光程差一旦超过max,这两光
束就不再相干了
因此,max也称为相干长度,记为max=Lc 光通过相干长度所需要的时间称为相干时间,记c
因为
则
表明,光谱线的频率宽度越窄,相干时间就越长
在迈克尔孙干涉仪中,两束光线的光程差为,这相当于两 光束是由同一光源在不同时刻t1和t2先后发出的
将
改写为
并记
则有
(本教材直接给出的条件)
如果记
由于2很小,有
代入
得
此式表明,入射光一定时
若张角2=d/R固定,则狭缝宽度2l必小于/2,才能在屏处
观察到干涉条纹
若缝宽2l固定,则张角2必小于/2l,才能在屏处观察到干
涉条纹
光的这种相干性,称为空间相干性
相干面积
当满足 在屏上才能产生干涉条纹 将该装置绕z轴旋转90,实验结果不变
激光的单色性和时间相干性_图文.ppt
光谱线的频率宽度
越窄,光的单色性就越好 普通光源中,氪同位素86(Kr86)灯发出波长=605.7nm的 光谱线的单色性最好 单模稳频氦氖激光器发出=632.8nm的光谱线 二、激光的时间相干性 若同一光源在不同时刻发出的光在空间会合后能发生干涉,
激光的单色性和时间相干性

2l
2
2 R 2
As
As 光源面积
在周炳坤激光原理教材中
s1
x
Lx
z
xL x R
Ac L2 x
x As 2 只有从光源面积小于 发出的光,才能保证在 内的光 线具有相干性 2 c3 c 2 光源的相干体积Vcs Vcs As Lc 2
c 则 cc
Lc c
cc
c
c 1
表明,光谱线的频率宽度越窄,相干时间就越长 在迈克尔孙干涉仪中,两束光线的光程差为,这相当于两 光束是由同一光源在不同时刻t1和t2先后发出的 若 Lc,则 t2 - t1 c ,这两束光就是相干的。 所以,由同一个光源在相干时间c内不同时刻发出的光,经 过不同的路程相遇,将能产生干涉。 光的这种相干性,称为时间相干性
由于01比0多了一个恒定的光程差,所以从这两点发出的 光在屏上的条纹相互错开
屏
P
01 0
s01 2l s 0 s02
s1
d
ld R
可以看出,当满足
ld R 2
s2
R D
这两套条纹才不至于明暗重叠 换句话说,当狭缝的宽度2l曾大到 R 时,屏上将变成一片模糊
2l d
2
R
s2
x
R
Lx
Lx
2
R
x
2 R 2
2
2 R 2
As
光子观点 Px Py P h
h xyz Px Py Pz
激光基本概述范文

激光基本概述范文激光是一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是一种能产生激光的装置,通常由激发源、增益介质和光腔三部分组成。
激光由于其特殊的性质,在科研、医疗、通信、材料加工等多个领域有着广泛的应用。
激光的单色性是指激光具有极窄的频率谱线,一般能够达到很高的频率稳定性。
这是由于激光的产生依赖于特定的能级跃迁,因此能够产生具有固定频率的光波。
与其他光源相比,激光的单色性使得其具有更强的穿透力和辨识能力。
激光的相干性是指激光光束中的光波具有非常好的相位关系。
这种相位关系使得激光光束能够形成明亮、锐利、高对比度的干涉条纹。
相干性使得激光在干涉、衍射和散射等方面有着独特的应用,例如激光干涉测量和激光全息术等。
激光的方向性是指激光光束能够在相当长的距离上保持较小的光束发散角度。
这是由于激光的光波具有在空间上高度一致的波前形状,能够通过适当设计的光学系统将光束聚焦成较小的点。
激光的方向性使得其在光通信、激光雷达等领域有着广泛的应用。
激光器是产生激光的装置,根据辐射介质的不同,可分为气体激光器、固体激光器和半导体激光器等。
气体激光器利用气体放电产生激发能级,再通过受激辐射过程产生激光。
常见的气体激光器包括氦氖激光器、二氧化碳激光器等。
固体激光器利用固体增益介质,通过光泵浦方式产生激发能级,再进行受激辐射过程得到激光。
常见的固体激光器有Nd:YAG激光器、激光二极管等。
半导体激光器是利用半导体材料的特殊性质产生激光,这类激光器尺寸小、功耗低,广泛应用于光通信和激光打印等领域。
激光的应用十分广泛,其中激光切割是一种主要的激光材料加工方法,广泛应用于金属、塑料、木材等材料的切割和雕刻领域。
激光打印技术利用激光的单色性和方向性,可以高速、高质量地实现文件和图像的打印。
此外,激光还在医疗领域有着广泛的应用,例如激光治疗和激光手术等。
总之,激光作为一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是产生激光的装置,根据辐射介质的不同有气体激光器、固体激光器和半导体激光器等。
激光的特点(特性)

激光的特点1、相干性好2、方向性强3、单色性好1、相干性好一个几十瓦的电灯泡,只能用作普通照明。
如果把它的能量集中到1m直径的小球内,就可以得到很高的光功率密度,用这个能量能把钢板打穿。
然而,普通光源的光是向四面八方发射的,光能无法高度集中。
普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。
激光与普通光相比则大不相同。
因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,这就叫相干性高。
一台巨脉冲红宝石激光器的亮度可达1015w/cm2•sr,比太阳表面的亮度还高若干倍。
具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。
2、方向性强激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。
如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。
3、单色性好:受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不同颜色,实际就是不同频率)。
激光的单色性是实现激光加工的重要因素。
我们可以通过简单的物理实验来说明这个问题。
我们使用三棱镜,可以将一束太阳光分解成七色光谱带,其原理是日光其实是多种波长的光混合在一起的复色光,不同波长的光透过同一介质时,由于在介质中折射率的不同,使各色光的传播方向发生不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱带。
典型灯泵浦YAG激光器原理在一个截面为椭圆形的腔体内,两个焦点上分别放置激光棒和氪灯,在一个焦点上(氪灯)发出一定波长的光,经过反射腔体内壁的反射,会聚在腔体的另一个焦点上(激光棒),使工作物质里的粒子受到激发,粒子受激吸收后,处于低能态的原子由于吸收了外界辐射而发生能级跃迁,继而释放出激光,产生的激光在全反射镜片和部分反射镜片之间进行来回振荡,当能量达到一定值时,就可以从部分反射镜片透过,这就实现了激光的输出。
激光特性

激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。
而激光发射的各个光子频率相同,因此激光是最好的单色光源。
由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。
此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
2 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。
激光为我们提供了最好的相干光源。
正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。
3 方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。
而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。
激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。
另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。
4 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。
激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。
利用激光的高能量还可使激光应用于激光加工工业及国防事业等。
切换到宽屏19362超声波探伤编辑超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
激光基本特征

激光基本特征激光是指一束高度聚焦、具有单色性、相干性和高亮度等特征的光束。
激光是由处于激发态的原子或分子释放出来的光子所组成的。
激光的基本特征是指激光独特的性质和行为,下面将从以下几个方面详细介绍激光的基本特征。
1. 单色性激光的单色性指激光所产生的光是单一频率的。
激光的单色性由于激发态原子或分子之间的能级结构和产生激光的物质的特性所决定。
激光所具有的单色性使其在科学研究、医学、通信等领域具有广泛的应用。
2. 相干性激光的相干性是指激光光波中光子的相位关系保持一致的特性。
激光光束的相干性使其具有干涉、衍射等特性。
激光的相干性能够保持光束的集中性,使得激光在远距离传输时损失较小,有助于激光的聚焦和精确测量。
3. 高亮度激光的高亮度是指激光的亮度远远高于其他光源。
激光的高亮度是由于激光所具有的高度聚焦特性和聚光能力优秀的光学系统所决定的。
高亮度的激光在医学、材料加工和军事等领域有着广泛的应用。
4. 窄束性激光的窄束性是指激光光束的直径非常小。
与其他光源相比,激光光束的直径可以达到亚微米甚至更小的级别。
激光的窄束性使得激光光束能够在远距离传输时保持高度集中,从而实现高精度的光学操作。
5. 高能量激光所具有的高能量使得其在科学研究、医学治疗和军事应用等领域展现出巨大的潜力。
激光的高能量是由于激发态原子或分子释放出的光子具有高能量特性所决定的。
高能量的激光在材料切割、焊接、打孔等领域具有重要的应用价值。
总之,激光的基本特征是单色性、相干性、高亮度、窄束性和高能量。
这些特征使得激光在科学研究、医学、工业生产等领域发挥着重要的作用。
随着激光技术的不断发展壮大,激光领域的应用将会更加广泛。
激光的原理与特点

激光的原理与特点
激光,是指具有高度一致的光波振荡特性的一种光束。
激光的原理是通过三级系统(包括基态、激发态和亚稳态)之间的电磁辐射相互作用而产生的。
具体来说,激光的原理包括光放大、光共振、正反馈等。
激光的特点主要有以下几个方面:
1. 高度的单色性:激光的频率非常纯净,只有极少的频率成分,因此它具有非常高的单色性。
这是由于激光光波是由一个频率极为准确的谐振振荡系统所产生的。
2. 高度的方向性:激光光束具有非常高的方向性,激光光束在传播过程中很少发生散射,能够以非常窄的角度进行定向传播。
这是由于激光的振荡介质是一个长而细的谐振腔。
3. 高度的相干性:激光光束具有非常高的相干性,所有的光波的振幅和相位都高度一致。
这是由于激光光波是由许多同样频率和相位的原子或分子发射的。
4. 高度的能量密度:激光光束具有非常高的能量密度,能够集中大量的能量在一个很小的空间范围内。
由于激光的强度非常大,因此它可以用来进行高精度的切割、焊接等工业加工。
总之,激光作为一种特殊的光线,具有高度的单色性、方向性、相干性和能量密度,这些特点使得激光被广泛应用于科学、医学、工业等多个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser) 工作物质(如气体放电管)有一定的频率范围。 把工作物质放在光学谐振腔内,只有 (1)既是工作物质的谱线宽度内的 (2)又是满足谐振腔共振条件 这时的频率,才能形成激光输出。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line)
●
原子发光时间 t 和频率宽度 ν成反比,
t =1/ ν
理想的单色光:频率宽度 ν → 0 ,这就要求 发光时间 t →∞ 任何光源,t和 ν 都有一定大小。即有一定 大小的谱线宽度 λ 叫自然宽度。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser) 从谐振腔发射出来的光波频率数为 ν / ν '= 10 如果要求谐振腔只发射一个频率,则取氖 放电管长为10 cm 即可。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser)
ν 激光单色性定义为: ν /ν0或 λ / λ0, 0和 λ0为中心
频率和中心波长。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection ) 纵向单模或单纵模:激光器的输出光束中 只存在一个频率 注意! ( 单模不是频率坐标轴上的一条几何 线,它仍有一定的很狭窄的频率分布。目前激 光的频率宽度可由1到105Hz )
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection )
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection )
● ●Biblioteka 第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line)
●
多普勒宽度:在气体放电中,发光原子做无
规则热运动。运动速度和方向都在变化,在发 光中心频率 ν0 附近引起一定范围内的增宽。这 个宽度叫多普勒宽度。
●
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line) 多光束干涉: 单一频率平面波沿谐振腔轴线 来回反射,产生多光束干涉。 干涉条件:2L = jλ (j 为整数)或 ν = jc / 2L 不满足干涉条件的光 频率都干涉相消。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line) 共振频率: 满足共振条件的光波频率。 光学谐振腔内的光波的特点: (1)具有共振频率 (2)同时存在的共振频率不止一个,而有 许多个。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection ) (2)用Fabry-Perot etalon (法布里-珀罗标准 具)。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection ) 标准具:两面平行,镀高反射膜,厚度为d, 材料的折射率为n 由于多光束反射,对满足 νk = kc/(2ndcosi2 ) 频率条件的光有极高(接近100%)的反射率。 式中c 为真空中光速,i2为平板中的折射角,k 是正整数。如取d>>L,调整i1角,可有下图所 示的结果。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 3. 激光的单色性 (Monochromaticity of laser) 例如,氖放电管发射的光波为图中所示,中心 例如 频率为4.7×1014 Hz,频率宽度为ν=1.5×109 Hz,氖放电管如长100 cm ,相邻二共振频率 之差 ν '= c/ 2L =1.5×108 Hz
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection ) 纵向多模或多纵模:同时存在几个共振频 率 输出单模的方法:选模
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 4. 选模 ( Mode selection ) (1)缩短腔长。如氦氖激光器,腔长为10 cm 时,输出一个频率的激光。但激光输出功率降 低,并使输出频率不稳定。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line) 一定长度的谐振腔内有多少个共振频率: 相邻二个共振频率之差为
ν ' =ν2 ν1 = ( j +1)c / 2L jc / 2L = c / 2L
λ' = (υ' /ν )λ = λ2 / 2L
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 2. 谐振腔的共振频率 谐振腔越长,ν ' 或 λ' 越小,腔内满足共振 条件的频率数越多,从谐振腔发射出去的光波 中所包含的频率数也越多。谐振腔有选择频率 的作用。
第八章 现代光学 ( Modern Optics) 8.5 激光的单色性 (Monochromaticity of laser) 1. 谱线宽度 (breadth of spectral line) 氖红线线宽由下图所示。波长为632.8 nm 的 红线,实际的中心频率是4.7×1014Hz,宽度 ν 为1.5×109 Hz, 谱线宽度 ν 定义为光谱线最大强度 的一半所对应的二个频率 之差 ν2 ν1 .