初三数学专题复习概率问题

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

初三概率的习题及答案

初三概率的习题及答案

初三概率的习题及答案初三概率的习题及答案概率是数学中的一个重要概念,也是我们日常生活中经常会遇到的问题。

在初中数学中,概率作为一个重要的章节,需要我们掌握一定的理论知识和解题技巧。

本文将从不同角度出发,给出一些初三概率的习题及答案,帮助同学们更好地理解和应用概率知识。

一、基础概念题1. 小明有一组数字卡片,其中有4张红色卡片和6张蓝色卡片。

小明从中随机抽取一张卡片,请问他抽到红色卡片的概率是多少?答案:红色卡片的数量为4张,总卡片数为10张,所以小明抽到红色卡片的概率为4/10,即2/5。

2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。

请问他们抽到的数字相加为偶数的概率是多少?答案:一共有5张卡片,其中有3张偶数卡片(2、4)、2张奇数卡片(1、3、5)。

根据排列组合的知识,甲、乙、丙三个人抽到的数字相加为偶数的情况有两种:奇奇奇和偶偶偶。

所以概率为2/5。

二、条件概率题1. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。

已知甲抽到的数字是偶数,乙抽到的数字是奇数,那么丙抽到的数字为奇数的概率是多少?答案:已知甲抽到的数字是偶数,那么甲抽到的数字为2或4。

已知乙抽到的数字是奇数,那么乙抽到的数字为1、3或5。

所以丙抽到的数字为奇数的情况有两种:甲抽到2、乙抽到1或3,或者甲抽到4、乙抽到1或3。

共有4种情况。

而总共有5张卡片,所以丙抽到的数字为奇数的概率为4/5。

三、独立事件题1. 小明有一组数字卡片,其中有2张红色卡片和3张蓝色卡片。

小明从中随机抽取一张卡片,记下颜色后放回,再抽取一张卡片。

请问他两次抽到的卡片颜色都是红色的概率是多少?答案:第一次抽到红色卡片的概率为2/5,第二次抽到红色卡片的概率也为2/5。

由于两次抽取是相互独立的事件,所以两次抽到的卡片颜色都是红色的概率为(2/5)*(2/5)=4/25。

2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。

概率试题及答案初三

概率试题及答案初三

概率试题及答案初三一、选择题(每题3分,共30分)1. 一个袋子里有5个红球,3个白球,从中随机摸出一个球,摸到红球的概率是()。

A. 0.6B. 0.5C. 0.4D. 0.3答案:A2. 抛一枚均匀的硬币,正面朝上的概率是()。

A. 0B. 0.5C. 1D. 23. 一个转盘被分成了4个相等的部分,其中2个部分是红色的,1个部分是蓝色的,1个部分是黄色的。

转动转盘,指针落在红色区域的概率是()。

A. 0.5B. 0.25C. 0.75D. 0.33答案:A4. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到红桃的概率是()。

A. 0.25B. 0.5C. 0.75D. 15. 一个袋子里有10个球,其中3个是黑球,7个是白球。

随机抽取一个球,抽到黑球的概率是()。

A. 0.3B. 0.7C. 0.25D. 0.5答案:C6. 一个袋子里有5个红球和5个蓝球,从中随机摸出一个球,摸到红球的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A7. 一个袋子里有6个球,其中2个是红球,4个是白球。

随机抽取一个球,抽到白球的概率是()。

A. 0.6B. 0.5C. 0.4D. 0.3答案:A8. 一个袋子里有8个球,其中4个是红球,4个是蓝球。

随机抽取一个球,抽到红球的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A9. 一个袋子里有3个红球,2个白球,从中随机摸出一个球,摸到白球的概率是()。

A. 0.4B. 0.5C. 0.33D. 0.25答案:C10. 一个袋子里有7个球,其中2个是黑球,5个是白球。

随机抽取一个球,抽到白球的概率是()。

A. 0.7B. 0.5C. 0.6D. 0.4答案:A二、填空题(每题4分,共20分)11. 一个袋子里有10个球,其中5个是红球,5个是蓝球。

随机抽取一个球,摸到红球的概率是______。

答案:0.512. 一个袋子里有8个球,其中3个是黄球,5个是绿球。

九年级上册数学概率题

九年级上册数学概率题

九年级上册数学概率题题目一:一个袋子里装有 3 个红球和 2 个白球,从袋子中随机摸出一个球,求摸到红球的概率。

解析:袋子里一共有 3 个红球和2 个白球,总球数为 3 + 2 = 5 个。

摸到红球的概率= 红球的个数÷总球数= 3÷5 = 3/5。

题目二:同时掷两个质地均匀的骰子,求两个骰子点数之和为7 的概率。

解析:同时掷两个骰子,所有可能的结果有6×6 = 36 种。

点数之和为7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。

所以概率为6÷36 = 1/6。

题目三:在一个不透明的盒子里有 4 个黑球和若干个白球,它们除颜色外完全相同。

摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40 次,其中10 次摸到黑球,求盒子里白球的个数。

解析:设盒子里白球有x 个,则总球数为 4 + x 个。

因为共摸球40 次,10 次摸到黑球,所以摸到黑球的概率为10÷40 = 1/4。

而摸到黑球的概率又等于黑球个数÷总球数,即4÷(4 + x) = 1/4,解得x = 12。

题目四:从1、2、3 这三个数字中随机抽取两个数字,求这两个数字都是奇数的概率。

解析:从三个数字中随机抽取两个数字,所有可能的情况有(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2),共 6 种。

其中两个数字都是奇数的情况有(1,3)、(3,1),共 2 种。

所以概率为2÷6 = 1/3。

题目五:有五张卡片,上面分别写着数字1、2、3、4、5,将它们背面朝上放在桌上,随机抽取一张,求抽到的数字是质数的概率。

解析:1、2、3、4、5 中质数有2、3、5 三个。

所以抽到质数的概率为3÷5 = 3/5。

题目六:在一个口袋中有 4 个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求两次摸出的小球标号之和为5 的概率。

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。

解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。

然后计算红球的数量,即12只红球。

最后,将红球的数量除以总球数,即12/20=0.6。

答案:取出红球的概率为0.6。

2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。

解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。

因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。

答案:取出红球后再取出黄球的概率为1/6。

3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。

解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。

然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。

接着计算出选出3本数学书的情况数,即C(6, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。

解析:计算取出红球的情况数,即C(10, 3)。

然后计算取出蓝球的情况数,即C(10, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。

答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。

5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。

(完整版)初三数学概率试题大全(含答案)

(完整版)初三数学概率试题大全(含答案)

试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键 3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.24 9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数). (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个; (2) ∵ ∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122=++m 1=m 161122)(==两次都摸到红球P x y )6(y x --20)6(35=--++y x y x 72=+y x x y 27-=x y y x --61=x 06,5=--=y x y 2=x 16,3=--=y x y 3=x 26,1=--=y x y 150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .52 8.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有 粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张.910.在中考体育达标跳绳项目测试中,1min 跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。

初三数学概率试题

初三数学概率试题

初三数学概率试题一、选择题1、下列哪个事件发生的可能性最小? ( )A.通过长期努力学习,小明的成绩有所提高B.明天会有暴风雨C.在太阳上看到一个黑点D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最小的是:B.明天会有暴风雨。

解释:选项A、C、D都是有可能发生的事件,而选项B中的“明天会有暴风雨”不是必然会发生的事件,它只是一种可能发生的情况,因此可能性最小。

2、以下哪个事件发生的可能性最大? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最大的是:C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球。

解释:选项C中,袋子里有10个红球,因此随机抽取一个球,恰好是红球的可能性最大。

而选项A中,找到两片完全相同的叶子是不可能的;选项B中,太阳上看到一个黑点也是不可能的;选项D中,袋子里蓝球的个数少,抽到蓝球的可能性也较小。

因此,选项C发生的可能性最大。

3、下列哪个事件发生的可能性最小? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球发生可能性最小的是:D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球。

解释:选项A中虽然找到两片完全相同的叶子是不可能的,但是这并不是一个随机事件;选项B中太阳上看到一个黑点也是不可能的;选项C中随机抽取一个球恰好是红球的可能性较大;而选项D中随机抽取两个球都是蓝球的可能性非常小。

因此选项D发生的可能性最小。

随着全球的教育改革,数学教育在中考中占据了越来越重要的地位。

初三上册数学概率常考题型

初三上册数学概率常考题型

初三上册数学概率常考题型
初三上册数学概率常考题型主要有以下几种:
1. 抽球概率问题:求从一个有限个球中抽出某种颜色球的概率。

例如:从一个盒子中有7个红球、3个蓝球和5个绿球,现从
中抽取一球,求抽到红球的概率。

2. 事件概率问题:求某个事件发生的概率。

例如:一次数学考试有30道选择题,每道题有4个选项,学
生抄袭答案的概率是0.05,求至少有一个同学会被发现作弊的概率。

3. 事件间关系问题:求两个或多个事件的概率关系。

例如:甲、乙两个队比赛,甲队赢的概率是0.6,乙队赢的概
率是0.4,两队之间不会打平,求比赛结果为甲队赢的概率。

4. 样本空间与事件问题:根据问题描述中给出的条件,求样本空间以及相关事件的概率。

例如:甲、乙、丙三人比赛掷骰子,每个人分别投掷一次,求三人的掷骰子结果相同的概率。

5. 条件概率问题:求在已知某个条件下,另一个事件发生的概率。

例如:已知某批货物中有10%次品,现从货物中随机抽取一件,在抽取到次品的条件下,抽到的是A型号货物的概率是0.3,求抽到的货物是次品且为A型号的概率。

这些是初三上册数学概率常考题型的一些例子,希望对你有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013初三数学专题复习--概率问题
1.【2011广州】(12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求a 的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少..有1人的上网时间在8~10小时。

2.【2010广东广州】(10分)广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表: 等级 非常了解 比较了解 基本了解 不太了解 频数
40 120 36 4 频率 0.2 m 0.18 0.02
(1)本次问卷调查取样的样本容量为_______,表中的m 值为_______.
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全
扇形统计图.
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?
3.(11·珠海)(本题满分7分)某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说: “这里有A 、B 两个盒子,里面都装有一些乒乓球,你只能选择在其中一只盒子中摸球.”获将规则如下:在A 盒中 基本了解
不太了解2%
18%
有白色乒乓球4个,红色乒乓球2个,一人只能摸一次且一次摸出一个球,若为红球则可获得玩具熊一个,否则不得奖;在B盒中有白色乒乓球2个,红色乒乓球2个,一人只能摸一次且一次摸出两个球,若两球均为红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具熊的机会更大?说明你的理由.
4.(2010·珠海)中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛.
(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);
(2)求首场比赛出场的两个队都是部队文工团的概率P.
5.(2012•汕头)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).
(1)用树状图或列表法表示(x ,y )所有可能出现的结果;
(2)求使分式+有意义的(x ,y )出现的概率;
(3)化简分式
+,并求使分式的值为整数的(x ,y )出现的概率.
6.【2010深圳】有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面
印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 A .13 B .12 C .23 D .34
初三数学复习--概率专题【参考答案】
1、【2011广州】(12分)
解:(1) 506253214a =----=
(2)将上网时间在6~8小时的3人记为A 、B 、C ,上网时间在8~10小时的2人记为D 、E ,从中选取2人的所有
情况为(A 、B )、(A 、C )、(A 、D )、(A 、E )、(B 、C )、(B 、D )、(B 、E )、(C 、D )、(C 、E )、(D 、E )共10种等可 能的结果,其中至少有一人上网时间在在8~10小时的有(A 、D )、(A 、E )、(B 、D )、(B 、E )、(C 、D )、(C 、E )、
(D 、E )这7种,所以至少有一人上网时间在在8~10小时的概率为0.7。

2.【2010广东广州】(10分)
【答案】(1)200;0.6;
(2)72°;补全图如下:
(3)1800×0.6=900
3.(11·珠海)(本题满分7分)
【答案】解:小军在A 盒中摸球获得玩具熊的机会更大 ……………………1分
把小军从A 盒中抽出红球的概率记为P A ,
那么:P A =24+2
=13 ……………………3分 把B 盒中的两个白球记为白1,白2,两个红球记为红1,红2,小军从B 盒中摸出两球的所有可能
出现的结果为:白1白2;白1红1;白1红2;白2红1;白2红2;红1红2;且六种结果出现的可能
性相等,把小军从B 盒中抽出两个红球的概率记为P B ,
那么P B =16; ……………………6分
因为P A >P B ,所以小军在A 盒内摸球获得玩具熊的机会更大 ………………7分
4. (2010·珠海)
解:(1)由题意画树状图如下:
A B C
D E F D E F D E F
所有可能情况是:(A,D )、(A,E) 、(A,F) 、(B,D) 、(B,E) 、(B,F) 、(C,D) 、(C,E) 、(C,F)
60%
比较了解
不太了解
2%
18%
(2)所有可能出场的等可能性结果有9个,其中首场比赛出场两个队都是部队文工团的结果有3个,
所以P(两个队都是部队文工团)=
3
193 5.(2012•汕头) 分析: (1)根据题意列出图表,即可表示(x ,y )所有可能出现的结果;
(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可; (3)先化简,再找出使分式的值为整数的(x ,y )的情况,再除以所有情况数即可.
解答: 解:(1)用列表法表示(x ,y )所有可能出现的结果如下:
﹣2 ﹣1
1
﹣2 (﹣2,﹣2) (﹣1,﹣2)
(1,﹣2)
﹣1 (﹣2,﹣1) (﹣1,﹣1)
(1,﹣1)
1
(﹣2,1) (﹣1,1) (1,1) ∴使分式
+有意义的(x ,y )出现的概率是,
(3)∵+= 使分式的值为整数的(x ,y )有(1,﹣2)、(﹣2,1)2种情况,
∴使分式的值为整数的(x ,y )出现的概率是.
6.A。

相关文档
最新文档