上海市高考数学模拟试卷(4)(含解析)

合集下载

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(四)(含答案解析)

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(四)(含答案解析)

2023年普通高等学校招生全国统一考试�新高考仿真模拟卷数学(四)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知复数1z =,则2z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集{62}U xx =-<<∣,集合{}2230A x x x =+-<∣,则U ðA=()A .()6,2-B .()3,2-C .()()6,31,2--⋃D .][()6,31,2--⋃3.陀螺是中国民间最早的娱乐工具之一,也称陀罗.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中,B C 分别是上、下底面圆的圆心,且36AC AB ==,底面圆的半径为2,则该陀螺的体积是()A .803πB .703p C .20πD .563π4.已知一组数据:123,,x x x 的平均数是4,方差是2,则由12331,31,31x x x ---和11这四个数据组成的新数据组的方差是()A .27B .272C .12D .115.若非零向量,a b 满足()22,2a b a b a ==-⊥ ,则向量a 与b 夹角的余弦值为()A .34B .12C .13D .146.已知圆221:(2)(3)4O x y -+-=,圆222:2270O x y x y +++-=,则同时与圆1O 和圆2O 相切的直线有()7.已知函数()()sin (0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则函数()f x 在区间[]0,10π上的零点个数为()A .6B .5C .4D .38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆C 上,若离心率12PF e PF =,则椭圆C 的离心率的取值范围为()A.()1-B.⎛ ⎝⎭C.2⎫⎪⎪⎣⎭D.)1,1-二、多选题9.若π1tan tan 231tan ααα-⎛⎫-= ⎪+⎝⎭,则α的值可能为()A .π36B .7π36C .19π36D .5π36-10.某校10月份举行校运动会,甲、乙、丙三位同学计划从长跑,跳绳,跳远中任选一项参加,每人选择各项目的概率均为13,且每人选择相互独立,则()A .三人都选择长跑的概率为127B .三人都不选择长跑的概率为23C .至少有两人选择跳绳的概率为427D .在至少有两人选择跳远的前提下,丙同学选择跳远的概率为5711.设函数()()()1ln 1(0)f x x x x =++>,若()()11f x k x >--恒成立,则满足条件的正整数k 可以是()A .1B .2C .3D .412.已知三棱锥-P ABC 中,PA ⊥平面2,4,,3ABC PA BAC AB AC M π∠====是边BC 上一动点,则()A .点C 到平面PAB 的距离为2B .直线AB 与PCC .若M 是BC 中点,则平面PAM ⊥平面PBCD .直线PM 与平面ABC三、填空题13.函数()()313xxk f x x k -=∈+⋅R 为奇函数,则实数k 的取值为__________.14.已知抛物线28y x =的焦点为F ,抛物线上一点P ,若5PF =,则POF ∆的面积为______________.15.由数字0,1,2,3,4,5,6,7组成没有重复数字的三位数,则能被5整除的三位数共有__________个.16.已知0a >,函数()22ag x x x+=+-在[)3,+∞上的最小值为2,则实数=a __________.四、解答题17.第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第x 天的滑雪人数y (单位:百人)的数据.天数代码x12345滑雪人数y (百人)911142620经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立y 关于x 的回归方程,并预测该滑雪场开业的第几天开始盈利.参考公式:线性回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为()()()121ˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑ .18.如图,四边形ABCD 中,150,60,B D AB AD ABC ∠∠====的面积为(1)求AC ;(2)求ACD ∠.19.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎩⎭的前m 项和127258m T =,求m 的值.20.如图,正方体1111ABCD A B C D -的棱长为4,点E 、P 分别是1DD 、11A C 的中点.(1)求证:BP ⊥平面11A EC ;(2)求直线1B C 与平面11A EC 所成角的正弦值.21.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,一个焦点到该渐近线的距离为1.(1)求双曲线C 的方程;(2)若双曲线C 的右顶点为A ,直线:l y kx m =+与双曲线C 相交于,M N 两点(,M N 不是左右顶点),且0AM AN ⋅=.求证:直线l 过定点,并求出该定点的坐标.22.已知函数()()e 4ln 2xf x x x =++-.(1)求函数()f x 的图象在()()0,0f 处的切线方程;(2)判断函数()f x 的零点个数,并说明理由.参考答案:1.C【分析】根据复数代数形式的乘法运算化简复数2z ,再根据复数的几何意义判断即可.【详解】解:因为1z =-,所以())2221122z ==-+=--,所以2z 在复平面内对应的点的坐标为(2,--位于第三象限.故选:C 2.D【分析】计算出集合B ,由补集的定义即可得出答案.【详解】因为{}}{223031A xx x x x =+-<=-<<∣,U ðA=][()6,31,2--⋃.故选:D.3.D【分析】根据圆锥与圆柱的体积公式,可得答案.【详解】已知底面圆的半径2r =,由36AC AB ==,则2,4AB BC ==,故该陀螺的体积2215633V BC r AB r πππ=⋅+⋅⋅=.故选:D.4.B【分析】根据方差和平均数的计算及可求解.【详解】因为一组数据1x ,2x ,3x 的平均数是4,方差是2,所以22212312311()4,[(4)(4)(4)]233x x x x x x ++=-+-+-=,所以22212312312,(4)(4)(4)6x x x x x x ++=-+-+-=,所以12331,31,31x x x ---,11的平均数为12312311(31)(31)(31)][113()3]1144x x x x x x +-+-+-=+++-=,所以12331,31,31x x x ---,11的方差为2222123111)(312)(312)(312)]4x x x -+-+-+-22212311279[(4)(4)(4)]96424x x x =⨯-+-+-=⨯⨯=故选:B 5.D【分析】求出1,2a b ==,根据()2a b a -⊥ 可得()20a b a -⋅=,代入化简求解夹角余弦值即可.【详解】设a 与b的夹角为θ,因为()22,2a b a b a ==-⊥ ,所以1,2a b==,()2a b a ∴-⋅22cos 0a a b θ=-= .21cos 42a a b θ∴== .故选:D.6.B【分析】根据圆的方程,明确圆心与半径,进而确定两圆的位置关系,可得答案.【详解】由圆()()221:234O x y -+-=,则圆心()12,3O ,半径12r =;由圆222:2270O x y x y +++-=,整理可得()()22119x y +++=,则圆心()21,1O --,半径23r =;由12125O O r r ===+,则两圆外切,同时与两圆相切的直线有3条.故选:B.7.B【分析】求出周期,方法1:画图分析零点个数;方法2:求()0f x =的根解不等式即可.【详解】由题意知,37π2π(3π433T =--=,解得:4πT =,22Tπ=,方法1:∴作出函数图象如图所示,∴()f x 在区间[0,10π]上的零点个数为5.方法2:∴()0f x =,解得:2π2π,Z 3x k k =-+∈,∴2π02π10π3k ≤-+≤,Z k ∈,解得:11633k ≤≤,Z k ∈,∴1,2,3,4,5k =,∴()f x 在区间[0,10π]上的零点个数共有5个.故选:B.8.D【分析】由题意可知12PF e PF =,结合椭圆的定义解得221aPF e =+,再由2a c PF a c -≤≤+求解.【详解】因为12PF e PF =,所以12PF e PF =,由椭圆的定义得:122PF PF a +=,解得221aPF e =+,因为2a c PF a c -≤≤+,所以21aa c a c e -≤≤++,两边同除以a 得2111e e e -≤≤++,解得1e ≥,因为01e <<11e ≤<,所以该离心率e的取值范围是1,1)故选:D.9.BCD【分析】根据题意可得:π1tan πtan(2tan()31tan 4αααα--==-+,然后利用正切函数的性质即可求解.【详解】因为πtantan 1tan π4tan()π1tan 41tan tan 4ααααα--==-++⋅,则ππtan(2)tan()34αα-=-,所以ππ2π,34k k αα-=+-∈Z ,解得:π7π,336k k α=+∈Z ,当0k =时,7π36α=;当1k =时,19π36α=;当1k =-时,5π36α-=;故选:BCD .10.AD【分析】根据相互独立事件概率计算公式计算即可.【详解】由已知三人选择长跑的概率为111133327⨯⨯=,故A 正确.三人都不选择长跑的概率为222833327⨯⨯=,故B 错误.至少有两人选择跳绳的概率为231111127C 33333327⨯⨯+⨯⨯=,故C 错误.记至少有两人选择跳远为事件A ,所以()231111127C 33333327P A =⨯⨯+⨯⨯=.记丙同学选择跳远为事件B ,所以()12111215C 3333327P AB ⎛⎫=⨯+⨯⨯= ⎪⎝⎭.所以在至少有两人选择跳远的前提下,丙同学选择跳远的概率为()()()57P AB P B A P B ==,故D 正确.故选:AD 11.ABC【分析】根据题意可得()()()()1ln 1110g x x x k x =++--+>,利用导数结合分类讨论解决恒成立问题.【详解】若()()11f x k x >--恒成立,则()()()()()111ln 1110f x k x x x k x --+=++--+>恒成立,构建()()()()1ln 111g x x x k x =++--+,则()()ln 12g x x k '=++-,∵0x >,故()ln 10x +>,则有:当20k -≥,即2k ≤时,则()0g x '>当0x >时恒成立,故()g x 在()0,∞+上单调递增,则()()010g x g >=>,即2k ≤符合题意,故满足条件的正整数k 为1或2;当20k -<,即2k >时,令()0g x '>,则2e 1k x ->-,故()g x 在()20,e1k --上单调递减,在()2e 1,k --+∞上单调递增,则()()22e 1e 0k k g x g k --≥-=->,构建()2ek G k k -=-,则()21e0k G k --'=<当2k >时恒成立,故()G x 在()2,+∞上单调递减,则()()210G k G <=>,∵()()233e 0,44e 0G G =->=-<,故满足()()02G k k >>的整数3k =;综上所述:符合条件的整数k 为1或2或3,A 、B 、C 正确,D 错误.故选:ABC.12.BCD【分析】对于A ,利用线面垂直判定定理,明确点到平面的距离,利用三角形的性质,可得答案;对于B ,建立空间直角坐标系,求得直线的方向向量,利用向量夹角公式,可得答案;对于C ,利用等腰三角形的性质,结合面面垂直判定定理,可得答案;对于D ,利用线面垂直性质定理,结合直角三角形的性质以及锐角正切的定义,可得答案.【详解】对于A ,在平面ABC 内,过C 作CD AB ⊥,如下图所示:PA ⊥ 平面ABC ,且CD ⊂平面ABC ,PA CD ∴⊥,CD AB ⊥ ,PA AB A = ,,AB PA ⊂平面PAB ,CD \^平面PAB ,则C 到平面PAB 的距离为CD ,23BAC π∠= ,AB AC ==6ABC π∴∠=,在Rt BCD 中,sin sin 3CD CB CBA CBA =⋅∠=∠=,故A 错误;对于B ,在平面ABC 内,过A 作AE AB ⊥,且E BC ⊂,易知,,AB AE AP 两两垂直,如图建立空间直角坐标系:则()0,0,0A,()B,()C ,()0,0,4P ,得()AB =,()4PC =-,(6AB PC ⋅==-,AB =PC ==则cos ,14AB PC AB PC AB PC⋅==⋅ ,故B 正确;对于C,作图如下:在ABC 中,AB AC =,M 为BC 的中点,则AM BC ⊥,PA ⊥ 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,AM PA A = ,,AM PA ⊂平面AMP ,BC ∴⊥平面AMP ,BC ⊂ 平面PBC ,∴平面PBC ⊥平面AMP ,故C 正确,对于D,作图如下:PA ⊥ 平面ABC ,AM ⊂平面ABC ,PA AM ∴⊥,则在Rt PAM 中,tan PAAMP AM∠=,当AM 取得最小值时,tan AMP ∠取得最大值,当M 为BC 的中点时,由C 可知,AM BC ⊥,AM 取得最小值为sin 6AB π⋅=则tan AMP ∠D 正确.故选:BCD.13.1【分析】由奇函数的定义求解即可.【详解】函数()()313xx k f x x k -=∈+⋅R 为奇函数,必有0k >,则()()3·31331331313x x x x x x x xk k k kf x f x k k k k -------===-=-=+⋅++⋅+⋅,于是得22223·31x x k k -=-恒成立,即21k =,解得:1k =.故答案为:1.14.【分析】先根据抛物线定义得P 点坐标,再根据三角形面积公式求解.【详解】因为5PF =,所以2253,24,||P P P P x x y y +=∴===因此POF ∆的面积为11||||=22P y OF ⨯【点睛】本题考查抛物线定义应用,考查基本分析转化与求解能力,属基础题.15.78【分析】能被5整除的三位数末位数字是5或0,分成末位数字是5和末位数字是0两种情况讨论.【详解】能被5整除的三位数说明末尾数字是5或0当末尾数字是5时,百位数字除了0有6种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有6636⨯=种方法;当末尾数字是0时,百位数字有7种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有7642⨯=种方法;则一共有364278+=种故答案为:7816.13≤3>讨论,得出()g x 在[)3,+∞上的最小值,由最小值为2求解a 的值即可得出答案.【详解】()22ag x x x+=+- ,()()(2222221x x x a a g x x x x-+-+=∴+'=-=,3≤时,即07a <≤时,则()0g x '>在()3,+∞上恒成立,则()g x 在[)3,+∞上单调递增,()g x ∴在[)3,+∞上的最小值为()5323ag +==,解得1a =,3>时,即7a >时,当x ∈⎡⎣时,()0g x '<,()g x 单调递减,当)x ∈+∞时,()0g x '>,()g x 单调递增,()g x ∴在[)3,+∞上的最小值为22,2ga ===,舍去,综上所述:1a =,故答案为:1.17.ˆ 3.7 4.9yx =+;9.【分析】根据表中数据及平均数公式求出ˆˆ,ab ,从而求出回归方程,然后再根据一天中滑雪人数超过3500人时,当天滑雪场可实现盈利即可求解.【详解】由题意可知,1234535x ++++==,911142620165y ++++==,所以()()()()()()()()5113916231116331416iii x x yy =--=-⨯-+-⨯-+-⨯-∑()()()()432616532016+-⨯-+-⨯-()()()()()27150211024=-⨯-+-⨯-+⨯-+⨯+⨯145010837=++++=()()()()()()5222222113233343534101410ii x x =-=-+-+-+-+-=++++=∑,所以()()()51521373.710iii ii x x y y bx x ==--===-∑∑ ,ˆˆ16 3.73 4.9ay bx =-=-⨯=,所以y 关于x 的回归方程为ˆ 3.7 4.9yx =+.因为天中滑雪人数超过3500人时,当天滑雪场可实现盈利,即3.7 4.935x +>,解得30.18.143.7x >≈,所以根据回归方程预测,该该滑雪场开业的第9天开始盈利.18.(1)(2)π4【分析】(1)在ABC 中,利用面积公式、余弦定理运算求解;(2)在ACD 中,利用正弦定理运算求解,注意大边对大角的运用.【详解】(1)在ABC 中,由ABC的面积111sin 222S AB BC B BC =⨯⨯∠=⨯⨯=可得4BC =,由余弦定理2222cos 121624522AC AB BC AB BC B ⎛⎫=+-⨯⨯∠=+-⨯⨯-= ⎪ ⎪⎝⎭,即AC =(2)在ACD 中,由正弦定理sin sin AC ADD ACD=∠∠,可得sin sin AD D ACD AC ∠∠==∵AD AC <,则60ACD D ∠<∠=︒,故π4ACD ∠=.19.(1)2n n a =(2)7【分析】(1)当2n ≥时,构造11228n n S a n --=+-,与条件中的式子,两式相减,得122n n a a -=-,转化为构造等比数列求通项公式;(2)由(1)可知()()1111222222n n n n n n n b a a ++++==++,利用分组求和法求解.【详解】(1)因为226n n S a n =+-,所以当1n =时,1124S a =-,解得14a =.当2n ≥时,11228n n S a n --=+-,则11222n n n n S S a a ---=-+,整理得122n n a a -=-,即()1222n n a a --=-.所以数列{}2n a -是首项为2,公比为2的等比数列,所以12222n n n a --=⨯=.所以22n n a =+.(2)令()()111112211222222222n n n n n n n n n b a a +++++⎛⎫===- ⎪++++⎝⎭,数列{}n b 的前m 项和1111111112+4661010142222m m m T +⎛⎫=-+-+-+- ⎪++⎝⎭ ,111112=2422222m m ++⎛⎫-=- ++⎝⎭,则112127222258m +-=+,则12222258m +=+,则122567m m +=⇒=.m 的值为7.20.(1)证明见解析【分析】(1)建立空间直角坐标系,利用空间向量法证明10EC BP ⋅= ,10EA BP ⋅=,即可得证;(2)利用空间向量法计算可得.【详解】(1)证明:如图建立空间直角坐标系,则()0,0,2E ,()4,4,0B ,()14,4,4B ,()2,2,4P ,()10,4,4C ,()14,0,4A ,()0,4,0C ,所以()10,4,2EC = ,()14,0,2EA =,()2,2,4BP =-- ,所以10EC BP ⋅= ,10EA BP ⋅=,所以1EC BP ⊥,1EA BP ⊥,又11EC EA E = ,11,EC EA ⊂平面11A EC ,所以BP ⊥平面11A EC.(2)解:由(1)可知()2,2,4BP =-- 可以为平面11A EC 的法向量,又()14,0,4B C =--,设直线1B C 与平面11A EC 所成角为θ,则11sin 6B C BP B C BPθ⋅==⋅=,故直线1B C 与平面11A EC 21.(1)2214x y -=(2)证明过程见解析,定点坐标为10,03⎛⎫⎪⎝⎭【分析】(1)由渐近线方程求出12b a =,根据焦点到渐近线距离列出方程,求出c =,从而求出2,1a b ==,得到双曲线方程;(2):l y kx m =+与2214x y -=联立,求出两根之和,两根之积,由0AM AN ⋅= 列出方程,求出103m k =-或2m k =-,舍去不合要求的情况,求出直线过定点,定点坐标为10,03⎛⎫⎪⎝⎭.【详解】(1)因为渐近线方程为20x y -=,所以12b a =,焦点坐标(),0c 到渐近线20x y -=1=,解得:c ,因为2225a b c +==,解得:2,1a b ==,所以双曲线C 的方程为2214x y -=;(2)由题意得:()2,0A ,:l y kx m =+与2214x y -=联立得:()222148440k x kmx m ----=,设()()1122,,,M x y N x y ,则2121222844,1414km m x x x x k k --+==--,()()()2212121212y y kx m kx m k x x km x x m =++=+++,()()()11221212122,2,24AM AN x y x y x x x x y y ⋅=-⋅-=-+++()()()()()122222222124048142421441kx x km x km m k x mkm m k k++-++--++=+⋅+-⋅+-=-,化简得:22201630k km m ++=,解得:103m k =-或2m k =-,当103m k =-时,10:3l y k x ⎛⎫=- ⎪⎝⎭恒过点10,03⎛⎫ ⎪⎝⎭,当2m k =-时,():2l y k x =-恒过点()2,0A ,此时,M N 中有一点与()2,0A 重合,不合题意,舍去,综上:直线l 过定点,定点为10,03⎛⎫⎪⎝⎭,【点睛】处理定点问题的思路:(1)确定题目中的核心变量(此处设为k ),(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式,(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立,此时要将关于k 与,x y 的等式进行变形,直至找到()00,x y ,①若等式的形式为整式,则考虑将含k 的式子归为一组,变形为“()k ⋅”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去k 变为常数.22.(1)14ln 2=+y (2)有两个零点,理由见解析【分析】(1)根据导数的几何意义,结合导数的运算进行求解即可;(2)令()0f x =转化为()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,利用导数得到()g x 单调性,结合两个函数的图象判断可得答案.【详解】(1)()()4e 122xf x x x =+-<-',所以切线斜率为()00e 10204'=+-=-f ,()()00e 04ln 2014ln 2=++-=+f ,所以切点坐标为()0,14ln 2+,函数()f x 的图象在()()0,0f 处的切线方程为14ln 2=+y ;(2)有两个零点,理由如下,令()()e 4ln 20=++-=xf x x x ,可得()e 4ln 2=---x x x ,判断函数()f x 的零点个数即判断()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,因为()=e xt x 为单调递增函数,()0t x >,当x 无限接近于-∞时()t x 无限接近于0,且()22=e t ,由()421=022+'=-+=--x g x x x,得2x =-,当22x -<<时,()0g x '>,()g x 单调递增,当<2x -时,()0g x '<,()g x 单调递减,所以()224ln40-=-<g ,()3333e 2e 24lne e 100--=+-=->g ,()110g =-<,43314ln ln 0222⎛⎫=--= ⎪⎝⎭g ,且当x 无限接近于2时()g x 无限接近于+∞,所以()=e xt x 与()()4ln 2=---g x x x 的图象在0x <时有一个交点,在02x <<时有一个交点,综上函数()f x 有2个零点.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解。

2025届上海市普通中学高考数学四模试卷含解析

2025届上海市普通中学高考数学四模试卷含解析

2025届上海市普通中学高考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知m 为一条直线,,αβ为两个不同的平面,则下列说法正确的是( ) A .若,m ααβ∥∥,则m β∥ B .若,m αβα⊥⊥,则m β⊥ C .若,m ααβ⊥∥,则m β⊥ D .若,m ααβ⊥∥,则m β⊥2.已知复数11iz i+=-,则z 的虚部是( ) A .iB .i -C .1-D .13.已知复数22z a i a i =--是正实数,则实数a 的值为( ) A .0B .1C .1-D .1±4.若,,x a b 均为任意实数,且()()22231a b ++-=,则()()22ln x a x b -+- 的最小值为( ) A .32B .18C .321-D .1962-5.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .6.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且7.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).金牌 (块) 银牌(块) 铜牌(块) 奖牌总数 24 5 11 12 28 25 16 22 12 54 26 16 22 12 50 27 28 16 15 59 28 32 17 14 63 29 51 21 28 100 3038272388A .中国代表团的奥运奖牌总数一直保持上升趋势B .折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C .第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D .统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5 8.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -9.已知双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为34yx ,且其右焦点为(5,0),则双曲线C 的方程为( ) A .221916x y -=B .221169x y -= C .22134x y -= D .22143x y -= 10.若函数32()3f x ax x b =++在1x =处取得极值2,则a b -=( )A .-3B .3C .-2D .211.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A .211-B .525-C .25D .251-12.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)二、填空题:本题共4小题,每小题5分,共20分。

最新上海市高三高考数学系列模拟卷(4)及答案解析

最新上海市高三高考数学系列模拟卷(4)及答案解析

上海市高考数学模拟试卷
4
考生注意:1.每位考生应同时领到试卷与答题纸两份材料,所有解答必须写在答题纸上规定位置,写在试
卷上或答题纸上非规定位置一律无效;
2.答卷前,考生务必将学校、姓名、学号等相关信息在答题纸上填写清楚;
3.本试卷共23道试题,满分150分,考试时间120分钟。

一、填空题(本大题满分56分,共14小题,每小题满分4分)1.函数2 ([0,))y x bx c x 是单调函数的充要条件是
2.若抛物线22y px 的焦点坐标为(1,0),则p =____
3.若2、a 、b 、c 、9成等差数列,则c
a ___________4.函数2||21
x y 的值域是
5.已知正四棱锥的所有棱长均相等,则侧面与底面所成二面角的余弦值为
_________ 6. 设,)32(5522105x a x a x a a x 则5
210a a a a 7.下图是某市5月1日至14日的空气质量指数趋势图
(空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染)由图判断从5月
日开始连续三天的空气质量指数方差最大8.若非零向量,a b 满足
32a b a b ,则,a b 夹角的余弦值为_______9.设0
,不等式28(8s i n )c o s 20x x 对x R 恒成立,则的取值范围为____________.
10.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这
6位乘客进入各节车厢的人数恰好为
0,1,2,3的概率为11.已知F 为双曲线22
:1916x y C 的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点得分评卷人。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

上海市(新版)2024高考数学部编版模拟(综合卷)完整试卷

上海市(新版)2024高考数学部编版模拟(综合卷)完整试卷

上海市(新版)2024高考数学部编版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题点为双曲线(,)的一个焦点,过作双曲线的一条渐近线的平行线交双曲线于点.为原点,,则双曲线的离心率为()A.B.C.D.第(2)题已知,函数,,,则的最小值为()A.B.C.D.第(3)题把一副洗好的牌(共52张)背面朝上地摞成一摞,然后依次翻开每一张牌,直到翻出第一张A.记事件A为“翻开第3张牌时出现了第一张A”,事件B为“翻开第4张牌时出现了第一张A”,事件C为“翻开的下一张牌是黑桃A”,事件D为“下一张翻开的牌是红桃3”,则下列说法正确的是()A.B.C.D.第(4)题已知圆,点是上的动点,过作圆的切线,切点分别为,直线与交于点,则的最大值为()A.2B.C.D.第(5)题袋中共有5个除颜色外完全相同的球,其中2个红球、1个白球、2个黑球,从袋中任取两球,两球颜色为一白一黑的概率为()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题方程的一个根是()A.B.-1C.2D.第(8)题已知是曲线在处的切线,若点到的距离为1,则实数()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题过抛物线的焦点F的直线与C交于,两点,点为C的准线上一点,则()A.B.若,则C.的最小值为4D.第(2)题若,,则下列结论中正确的有()A.B.C.D.第(3)题在数列中,若,(为常数),则称为“等方差数列”,p称为“公方差”,下列对“等方差数列”的判断正确的是()A.是等方差数列B.若数列既是等方差数列,又是等差数列,该数列必为常数列C.正项等方差数列的首项,且是等比数列,则D.若等方差数列的首项为2,公方差为2,若将,…这种顺序排列的10个数作为某种密码,则可以表示512种不同密码三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知圆周上等距离的排列着八个点,现从中任取三个不同的点作为一个三角形的三个顶点,则恰好能构成一个直角三角形的概率为___________.第(2)题某企业瓷砖生产线上生产的瓷砖某项指标,且,现从该生产线上随机抽取10片瓷砖,记表示的瓷砖片数,则______.第(3)题函数的最小正周期为____四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在直三棱柱中,,,,点为的中点.(1)求证平面;(2)求二面角的余弦值.第(2)题设等差数列的前项和为,若,.(1)求数列的通项公式;(2)设,求数列的前项和.第(3)题如图,是边长为4的等边三角形,,分别是,的中点,把沿折起,使到达位置,已知.(1)证明:平面平面;(2)求点到平面的距离.第(4)题已知双曲线:的虚轴长为2,过的右焦点且不与轴垂直的直线与的右支交于,两点,且当直线的倾斜角为时,.(1)求的标准方程;(2)过点,分别作直线的垂线,垂足分别为,,若直线,的交点恒在轴上,求的值.第(5)题已知有五个大小相同的小球,其中3个红色,2个黑色.现在对五个小球随机编为1,2,3,4,5号,红色小球的编号之和为A,黑色小球的编号之和为B,记随机变量.(1)求时的概率;(2)求随机变量X的概率分布列及数学期望.。

2022年上海市普通中学高三第四次模拟考试数学试卷含解析

2022年上海市普通中学高三第四次模拟考试数学试卷含解析

2021-2022高考数学模拟试卷含解析请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数()(1)2z i i =++(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.在ABC 中,12BD DC =,则AD =( ) A .1344+AB AC B .21+33AB ACC .12+33AB AC D .1233AB AC -3.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .不充分不必要4.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)XN σ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1B .2C .3D .45.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞) 7.若i 为虚数单位,则复数22sincos 33z i ππ=-+,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )A .234a π⎛⎫-⎪⎝⎭B .262a π⎛⎫-⎪⎝⎭C .264a π⎛⎫-⎪⎝⎭D .2364a π⎛⎫-⎪⎝⎭9.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .2nn a =C .21nn S =-D .121n n S -=-10.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b -=,1C 和2C 的离心率之积为32,则2C 的渐近线方程为( ) A .20x y ±=B .20x y ±=C .20x y ±=D .20x y ±=11.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-512.函数()sin x y x-=([),0x π∈-或(]0,x π∈)的图象大致是( ) A . B . C . D .二、填空题:本题共4小题,每小题5分,共20分。

上海市静安区、青浦区2025届高三第二次模拟考试数学试卷含解析

上海市静安区、青浦区2025届高三第二次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题: ①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为213; ③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上. 其中所有正确命题的个数为( ) A .1B .2C .3D .42.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.记M 的最大值和最小值分别为max M 和min M .若平面向量a 、b 、c ,满足()22a b a b c a b c ==⋅=⋅+-=,则( ) A .max372a c+-=B .max372a c-+=C .min372a c+-= D .min372a c-+=4.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( )A .()1,11,12e e -⎛⎫-⎪⎝⎭B .(]1,11,12e e -⎛⎫-⎪⎝⎭C .()1,11,13e e -⎛⎫-⎪⎝⎭D .(]1,11,13e e -⎛⎫-⎪⎝⎭5.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .6.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1B .()31±-C .()31±+D .5±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M点,MF 的中点恰好在双曲线C 上,则C 的离心率为( ) A .51-B .2C .3D .58.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,(5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>9.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .4010.设n S 为等差数列{}n a 的前n 项和,若3578122()3()66a a a a a ++++=,则14S = A .56 B .66 C .77D .7811.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -12.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 二、填空题:本题共4小题,每小题5分,共20分。

上海市高考数学模拟试卷(4)(含解析)

2017年上海中学高考数学模拟试卷(4)一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.112.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+fx,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是.12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= .16.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为;B处应填入的数字为.三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.18.在五棱锥P﹣ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G 为PE的中点.(1)求AG与平面PDE所成角的大小(2)求点C到平面PDE的距离.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.2017年上海中学高考数学模拟试卷(4)参考答案与试题解析一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.11【考点】45:有理数指数幂的运算性质.【分析】考查题设条件,首先可得出a+=3,又f(2)=a2+a﹣2=﹣2,及f(0)=1+1=2,故f(0)+f(1)+f(2)的值易得【解答】解:由题意,函数f(x)=a x+a﹣x,且f(1)=3,可得a+=3,又f(2)=a2+a﹣2=﹣2=7,f(0)=1+1=2所以f(0)+f(1)+f(2)=2+3+7=12故选C2.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断;3F:函数单调性的性质;3I:奇函数.【分析】由f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a+b≥0成立a+b>=0是f(a)+f(b)>=0的充要条件.【解答】解:f(x)=x3+log2(x+),f(x)的定义域为R∵f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x).∴f(x)是奇函数∵f(x)在(0,+∞)上是增函数∴f(x)在R上是增函数a+b≥0可得a≥﹣b∴f(a)≥f(﹣b)=﹣f(b)∴f(a)+f(b)≥0成立若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a≥﹣b∴a+b≥0成立∴a+b≥0是f(a)+f(b)≥0的充要条件.3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元【考点】KD:双曲线的应用.【分析】依题意知曲线PQ是以A、B为焦点、实轴长为2的双曲线的一支,此双曲线的离心率为2,以直线AB为x轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为,点C的坐标为(3,).求出修建这条公路的总费用W,根据双曲线的定义有,根据a+b当且仅当a=b时取等号的方法求出W的最小值即可.【解答】解:依题意知PMQ曲线是以A、B为焦点、实轴长为2的双曲线的一支(以B为焦点),此双曲线的离心率为2,以直线AB为轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为 x2﹣=1,点C的坐标为(3,).则修建这条公路的总费用ω=a[|MB|+2|MC|]=2a[|MB|+|MC|],设点M、C在右准线上射影分别为点M1、C1,根据双曲线的定义有|MM1|=|MB|,所以=2a[|MM1|+|MC|]≥2a|C C1|=2a×(3﹣)=5a.当且仅当点M在线段C C1上时取等号,故ω的最小值是5a.故选B.4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定【考点】8K:数列与不等式的综合.【分析】考虑特殊数列1,﹣1,1,﹣1,1,﹣1…,分情况讨论,等比数列{a n}的前n项和为S n,x=S2n+S22n,y=S n(S2n+S3n),要比较x,y的大小,可先将x,y的表达式进行整理,根据等比数列的性质将两个数用相同的量表示出来,再比较它们的大小【解答】解:对于等比数列1,﹣1,1,﹣1,1,﹣1…,S2k=0,S4k﹣S2k=0,S6k﹣S4k=0…,令n=2k,此时有x=y=0,对于S n,S2n﹣S n,S3n ﹣S2n ,…各项不为零时则由于等比数列{a n}的前n项和为S n,∴S n,S2n﹣S n,S3n ﹣S2n ,是一个公比为q n的等比数列,∴S2n﹣S n=S n×q n,S3n ﹣S2n=S n×q2n∴S2n =S n ×(1+q n),S3n =S n ×(1+q n+q2n)∴x=S2n+S22n=S2n ×[1+(1+q n)2]=S2n ×(2+2q n+q2n)y=S n(S2n+S3n)=S n[S n ×(1+q n)+S n ×(1+q n+q2n)]=S2n ×(2+2q n+q2n)由上知,x=y故选B二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.【考点】4K:对数函数的定义域;4L:对数函数的值域与最值.【分析】由y=|log2x|,知x=2y或x=2﹣y.由0≤y≤2,知1≤x≤4,或.由此能求出区间[a,b]的长度b﹣a的最小值.【解答】解:∵y=|log2x|,∴x=2y或x=2﹣y.∵0≤y≤2,∴1≤x≤4,或.即{a=1,b=4}或{a=,b=1}.于是[b﹣a]min=.故答案为:.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是(﹣,0).【考点】3L:函数奇偶性的性质.【分析】把方程f(x)=kx+k+1的根转化为函数f(x)的图象和y=kx+k+1的图象的交点在同一坐标系内画出图象由图可得结论.【解答】解:因为关于x的方程f(x)=kx+k+1(k∈R且k≠﹣1)有4个不同的根,就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,所以可以得到函数f(x)的图象,又因为y=kx+k+1=k(x+1)+1过定点(﹣1,1),在同一坐标系内画出它们的图象如图,由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,而K AB=﹣,所以k的取值范围是:﹣<k<0故答案为:.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f的部分图象确定其解析式;GI:三角函数的化简求值.【分析】先将原函数用降幂公式转化为:f(x)=cos(2ωx+2ϕ)++1,求出函数的A,T,ω,通过f(x)的图象在y轴上的截距为2,求出φ,得到函数的表达式,然后求出所求的值.【解答】解:将原函数f(x)=Acos2(ωx+ϕ)+1转化为:f(x)=cos(2ωx+2ϕ)++1相邻两对称轴间的距离为2可知周期为:4,则2ω==,ω=由最大值为3,可知A=2又∵图象经过点(0,2),∴cos2ϕ=0∴2φ=kπ+∴f(x)=cos(x+)+2=2﹣sin(x)∵f(1)=2+1,f(2)=0+2,f(3)=﹣1+2,f(4)=0+2…f(1)+f(2)+f(3)+…+f如图,在杨辉三角中,斜线l上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n项和为S n,则S19等于283 .【考点】8E:数列的求和.【分析】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S19的值.【解答】解:根据图中锯齿形数列的排列,发现a1=1,a3=3=1+2,a5=6=1+2+3,...,a19=1+2+3+ (10)而a2=3,a4=4,a6=5,…,a18=11,∴前19项的和S19=[1+(1+2)+(1+2+3)+…+(1+2+…+10)]+(3+4+5+…+11)=283.故选C故答案为:283.9.在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,若a、b、c成等差数列,sinB=且△ABC的面积为,求b.【考点】84:等差数列的通项公式;HR:余弦定理.【分析】由三角形面积公式和a、b、c成等差数列,联解得出a2+c2=4b2﹣.由角B为锐角可得cosB==,由余弦定理b2=a2+c2﹣2a c•cosB的式子,代入数据算出b2=4,从而得到b=2.【解答】解:∵由a、b、c成等差数列,得a+c=2b∴平方得a2+c2=4b2﹣2ac﹣﹣﹣﹣﹣﹣①…又∵S△ABC=且sinB=,∴S△ABC=ac•sinB=ac×=ac=故ac=﹣﹣﹣﹣﹣﹣﹣②…由①②联解,可得a2+c2=4b2﹣﹣﹣﹣﹣﹣﹣﹣③…又∵sinB=,且a、b、c成等差数列∴cosB===.…由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣2××=a2+c2﹣﹣﹣﹣﹣﹣﹣﹣④…由③④联解,可得b2=4,所以b=2.…10.若对终边不在坐标轴上的任意角x,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,则实数m的取值范围是.【考点】HW:三角函数的最值.【分析】根据sinx+cosx=≤以及tan2x+cot2x≥2,不等式sinx+cosx≤m ≤tan2x+cot2x恒成立,从而求出实数m的取值范围.【解答】解:由于sinx+cosx=≤,tan2x+cot2x≥2 tanx•cotx=2,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,故≤m≤2,故答案为:.11.对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是﹣n(n+1).【考点】8E:数列的求和;KH:直线与圆锥曲线的综合问题.【分析】设A n(x n1,y n1),B(x n2,y n2),直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,求出的表达式,然后利用韦达定理代入得=﹣4n2﹣4n,故可得,据此可得数列的前n项和.【解答】解:设直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,设A n(x n1,y n1),B(x n2,y n2),则,用韦达定理代入得,故,故数列的前n项和﹣n(n+1),故答案为﹣n(n+1).12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.【考点】MI:直线与平面所成的角.【分析】要求BC1与平面AC1M所成角,首先求利用等体积点B到平面AMC1的距离,进而利用正弦函数可求BC1与平面AC1M所成角【解答】解:由题意,设棱长为2a,则∵,∴=∵S△AMB=a2设点B到平面AMC1的距离为h,根据得∴设BC1与平面AC1M所成角为α,则∴故答案为13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是x1x2=(x1+x2)x3.【考点】KG:直线与圆锥曲线的关系.【分析】将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系,求出两根积与两根和的表达式;然后将欲证等式的左边通分,转化为两根积与两根和的形式,将以上两表达式代入得到等式左边的值;再根据直线解析式求出与x的交点横坐标,结论得证.【解答】解:由题意,联立抛物线y=ax2(a>0)与直线y=kx+b得ax2﹣kx﹣b=0,∴,,∴,∴x1x2=x1x3+x2x3,即x1x2=(x1+x2)x3故答案为:x1x2=(x1+x2)x3.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是以(0,﹣2)为圆心以 4 为半径的圆.【考点】A4:复数的代数表示法及其几何意义.【分析】根据关系式和点Z的轨迹是线段判断出,z0和﹣2i对应的点是对应线段上端点,再由(0,﹣2)是定点,线段是定长得出所求的轨迹是圆.【解答】解:∵|z﹣z0|+|z+2i|=4,且点Z的轨迹是线段,∴z0和﹣2i对应的点必然是Z的轨迹:线段上面2个端点,且线段的长为4,∴Z点轨迹:线段,它是通过一个端点(0,﹣2)的任意线段,并且长度为4,∴z0点轨迹其实是圆心为(0,﹣2),半径为4的圆,故答案为:以(0,﹣2)为圆心以 4 为半径的圆.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= 1:3 .【考点】98:向量的加法及其几何意义.【分析】延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',根据可知P是△AB'C'的重心,然后设S△PAB'=S△PAC'=S△PB'C'=k,然后将三个三角形的面积用k表示,即可求出所求.【解答】解:如图:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC'则,P是△AB'C'的重心,则S△PAB'=S△PAC'=S△PB'C'=kS1=S△PAB'=k,S3=S△PAC'=kS2=PB×PC×sin∠BPC=S△PB'C'=k故S1:S2:S3=:: =3:1:2∴S△PAC:S△ABC=1:3故答案为:1:316.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为 1 ;B处应填入的数字为1或3 .【考点】F1:归纳推理;8B:数列的应用.【分析】本题是一个简单的合情推理问题,根据“数独”的游戏规则,①在9×9的九宫格子中,分成9个3×3的小九宫格,用1,2,3…,9这9个数字填满整个格子,且每个格子只能填一个数;②每一行与每一列以及每个小九宫格里分别都有1,2,3,…9的所有数字.由A所处的行、列及小九宫格中已填数据,不难得到答案.【解答】解:与A同行的数据有:9、3、5、7与A同列的数据有:4、2、6、8与A处在同一九宫格中的数据有:2、4、9所以A处应填入的数字为1,与B同行的数据有:2、8、9、5与B同列的数据有:5、7、4、6与B处在同一九宫格中的数据有:4、5、6、7B处应填入的数字为 1或3故答案为:1 1或3三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】(1)由题意求得m、n、a间的关系,再根据当x∈时,f(x)取得最大值2﹣1,求得a的值,可得函数的解析式.(2)利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得最小的.【解答】解:(1)∵函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),∴a+0+n=1,且a+m+0=1,求得m=n=1﹣a,故有f(x)=a+(1﹣a)sin2x+(1﹣a)cos2x=a+(1﹣a)sin(2x+).①若1﹣a>0,∵当x∈时,2x+∈[,],故当2x+=时,f(x)取得最大值为a+(1﹣a).又f(x)的最大值2﹣1,可得a+(1﹣a)=2﹣1,求得a=﹣1,∴f(x)=﹣1+2sin(2x+).②若1﹣a<0,∵当x∈时,2x+∈[,],故当2x+=或时,f(x)取得最大值为a+(1﹣a)•.又f(x)的最大值2﹣1,可得a+(1﹣a)•=2﹣1,求得a无解.③若1﹣a=0,f(x)=1,不满足条件.综上可得,a=﹣1,f(x)=﹣1+2sin(2x+).(2)把f(x)的图象向右平移个单位,可得y=﹣1+2sin(2x﹣+)=﹣1+2sin2x的图象;再把所的图象向上平移1个单位,可得奇函数y=2sin2x的图象,此时,平移的距离最小.故若将f(x)的图象按向量平移后可以得到一个奇函数的图象,则存在=(,1),且满足||最小.18.在五棱锥P﹣ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G 为PE的中点.(1)求AG与平面PDE所成角的大小(2)求点C到平面PDE的距离.【考点】MK:点、线、面间的距离计算;MI:直线与平面所成的角.【分析】(1)通过证明PA垂直平面ABCDE上的两条相交直线即可,在三角形PAB中运用勾股定理,可证明PA垂直于AB,在三角形PAE中,同样用勾股定理,可证明PA垂直AE,这样就可证明PA⊥平面ABCDE.通过证明AG垂直于平面PDE中的两条相交直线,在三角形中PA=AE=2a,可知AG垂直PE,再通过ED⊥平面PAE,利用线面垂直的性质,可得AG垂直于DE,则AG⊥平面PDE可证.(2)欲求点C到平面PDE的距离,只需过C点向平面PDE作垂线,但是垂足位置不容易找到,所以可以转化为其它点到平面的距离.证明CF∥DE,则点C到平面PDE的距离等于F 到平面PDE的距离,就可求F到平面PDE的距离.再由(3)中结论知FG⊥平面PDE,所以FG的长即F点到平面PDE的距离,放入△PAE中求出即可.【解答】解:(1)解:(1)证明∵PA=AB=2a,PB=2a,∴PA2+AB2=PB2,∴∠PAB=90°,即PA⊥AB.同理PA⊥AE.∵AB∩AE=A,∴PA⊥平面ABCDE.又∵∠AED=90°,∴AE⊥ED.∵PA⊥平面ABCDE,∴PA⊥ED.∴ED⊥平面PAE,所以DE⊥AG.∵PA=AE,G为PE中点,所以AG⊥PE,∴AG⊥平面PDE;∴AG与平面PDE所成角的大小为90°;(2)解:∵∠EAB=∠ABC=∠DEA=90°,BC=DE=a,AB=AE=2a,取AE中点F,连CF,∵AF∥=BC,∴四边形ABCF为平行四边形.∴CF∥AB,而AB∥DE,∴CF∥DE,而DE⊂平面PDE,CF⊄平面PDE,∴CF∥平面PDE.∴点C到平面PDE的距离等于F到平面PDE的距离.∵PA⊥平面ABCDE,∴PA⊥DE.又∵DE⊥AE,∴DE⊥平面PAE.∴平面PAE⊥平面PDE.∴过F作FG⊥PE于G,则 FG⊥平面PDE.∴FG的长即F点到平面PDE的距离.在△PAE中,PA=AE=2a,F为AE中点,FG⊥PE,∴FG=a.∴点C到平面PDE的距离为a.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.【考点】96:平行向量与共线向量.【分析】(1)由三角形法则及向量共线的数乘表示,分别用向量、表示出,相加即得用向量、表示的表达式,进而判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,归纳得出猜想,再数学归纳法证明结论.【解答】解:(1)如图:点P、Q是线段AB的三等分点=,则,同理,所以即:,(2)设A1,A2.,…,A n﹣1是AB的n等分点,则;证:A1,A2,,A n﹣1是线段n≥2的等分点,先证明:(1≤k≤n﹣1,n、k∈N*).由,,因为和是相反向量,则,所以.记,相加得∴.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.【考点】8M:等差数列与等比数列的综合;84:等差数列的通项公式;88:等比数列的通项公式.【分析】(1)先求出等差数列的公差,再利用a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3,表示出a n=a1+(a2﹣a1)+(a3﹣a1)+…+(a n﹣a n﹣1)即可求出数列{a n}的通项公式;同样先求出等比数列的公比,再利用即可求{b n}的通项公式;(2)先求出f(k)=a k﹣b k的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论.【解答】解:(1)由已知a2﹣a1=﹣2,a3﹣a2=﹣1得公差d=﹣1﹣(﹣2)=1所以a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3故a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=6+(﹣2)+(﹣1)+0+…+(n﹣4)==由已知b1﹣2=4,b2﹣2=2所以公比所以.故(2)设f(k)=a k﹣b k==所以当k≥4时,f(k)是增函数.又,所以当k≥4时,而f(1)=f(2)=f(3)=0,所以不存在k,使.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.【考点】K4:椭圆的简单性质.【分析】(1)设点T的坐标为(x,y),点M的坐标为(x',y'),可知点M1的坐标,由可得点N的坐标和N1的坐标,进而表示出和,代入,求得x和x'的关系,y和y'的关系,再代入||中求得x和y的关系,即可得到曲线C的方程;(2)当直线l的斜率不存在时,直线l与椭圆C无交点;当直线的斜率存在时,设直线l 的方程为y=k(x﹣5),联立直线方程与椭圆方程,消去y化为关于x的一元二次方程,根据判别式大于0求得k的范围,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),利用根与系数的关系得x1+x2,求得R的坐标,根据|BP|=|BQ|可得BR⊥l,再由k•k BR=﹣1,整理得20k2=20k2﹣4,此结论不成立,可判断不存在直线l,使得|BP|=|BQ|.【解答】解:(1)设点T的坐标为(x,y),点M的坐标为(x',y'),则M1的坐标为(0,y'),由=(x′,y′),得点N的坐标为(x′,y′),N1的坐标为(x′,0),∴=(x′,0),=(0,y′).由,得(x,y)=(x′,0)+(0,y′),∴,得x′=x,y′=.由||=,得(x′)2+(y′)2=5,∴,即.故所求曲线C的方程为;(2)点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C无交点;当直线l斜率存在时,设斜率为k,直线l的方程为y=k(x﹣5).联立,得(5k2+4)x2﹣50k2x+125k2﹣20=0.依题意△=20(16﹣80k2)>0,得﹣<k<.当﹣<k<时,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),则,.∴y0=k(x0﹣5)=k()=.由|BP|=|BQ|,得BR⊥l,则k•k BR=﹣1,∴,即20k2=20k2﹣4,此式显然不成立,∴不存在直线l,使得|BP|=|BQ|.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.【考点】3R:函数恒成立问题.【分析】(1)由于函数f(x)的图象与直线y=±x均无公共点,所以ax2+2bx+4c=±x无解,从而△<0,故可证;(2)把b与c的值代入f(x)中,配方得到顶点式,由a小于0,得到函数有最大值,表示出这个最大值,当最大值大于5时,求出此时a的范围,又最大值小于﹣,M(a)是方程ax2+8x+3=5的较小根,利用求根公式求出M(a)即可判断出M(a)小于;当最大值小于等于5时,求出此时a的范围,最大值大于﹣,M(a)是方程ax2+8x+3=﹣5的较大根,根据求根公式求出M(a)即可判断M(a)小于等于,又大于,即可得到M (a)的最大值;(3)求出f(x)的导函数,由a大于0,求出函数有最大值让其等于2,得到a与b的关系式,由﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,得c的值,又因为|f(x)|≤2,所以f(x)≥﹣2=f(0),即可得到x=0时,函数取得最小值,表示出对称轴让其等于0,即可求得b的值,进而求出a的值,把a,b和c的值代入即可确定出f(x)的解析式【解答】解:(1)证明:∵函数f(x)的图象与直线y=±x均无公共点,∴ax2+2bx+4c=±x无解∴△<0∴4b2﹣16ac<﹣1;(2)把b=4,c=代入得:f(x)=ax2+8x+3=a +3﹣,∵a<0,所以f(x)max=3﹣①当3﹣>5,即﹣8<a<0时,M(a)满足:﹣8<a<0且0<M(a)<﹣,所以M(a)是方程ax2+8x+3=5的较小根,则M(a)==<=;②当3﹣≤5即a≤﹣8时,此时M(a)≥﹣,所以M(a)是ax2+8x+3=﹣5的较大根,则M(a)==≤=,当且仅当a=﹣8时取等号,由于>,因此当且仅当a=﹣8时,M(a)取最大值;(3)求得f′(x)=2ax+2b,∵a>0,∴f(x)max=2a+2b=2,即a+b=1,则﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,∴4c=﹣2,解得c=﹣,又∵|f(x)|≤2,所以f(x)≥﹣2=f(0)∴f(x)在x=0处取得最小值,且0∈(﹣2,2),∴﹣=0,解得b=0,从而a=1,∴f(x)=x2﹣2.。

上海市(新版)2024高考数学统编版模拟(提分卷)完整试卷

上海市(新版)2024高考数学统编版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则()A.-3B.C.3D.第(2)题已知集合,,则()A.B.C.D.第(3)题已知正四棱锥的所有棱长均为为棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.第(4)题已知抛物线的焦点为,直线与该抛物线交于两点,是线段的中点,过作轴的垂线,垂足为,若,则的值为( ) .A.B.C.D.第(5)题已知,,,则()A.B.C.D.第(6)题在半径为R的球内作内接于球的圆柱,则圆柱体积取得最大值时,圆柱的高为()A.R B.C.D.第(7)题()A.B.C.1D.第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题某学校为了调查学生某次研学活动中的消费支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在50元到60元之间的学生有60人,则()A.样本中消费支出在50元到60元之间的频率为0.3B.样本中消费支出不少于40元的人数为132C.n的值为200D.若该校有2000名学生参加研学,则约有20人消费支出在20元到30元之间第(2)题已知为抛物线的焦点,过的直线与抛物线交于两点(点在第一象限),过线段的中点作轴的垂线,交抛物线于点,交抛物线的准线于点,为坐标原点,则下列说法正确的是()A.当时,直线的斜率为B.C.的面积不小于的面积D.第(3)题已知,,,则下列结论正确的是()A.B.C.ab的最大值为D.的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.第(2)题已知双曲线,则点到的渐近线的距离为_______.第(3)题三棱锥中,是边长为的等边三角形,,平面平面,则该三棱锥的外接球的体积为______四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题抛物线:在第一象限上一点,过作抛物线的切线交轴于点,过作的垂线交抛物线于,(在第四象限)两点,交于点.(1)求证:过定点;(2)若,求的最小值.第(2)题如图,椭圆的左焦点为,离心率为,点在椭圆上.过点的直线交椭圆于,,过与轴平行的直线和过与垂直的直线交于点,直线与轴交于点.(1)求椭圆的方程;(2)求点的横坐标的取值范围.第(3)题已知椭圆C:的右焦点为F,过F作不平行于坐标轴的直线l与椭圆C相交于A,B两点,AM垂直x轴于点M,BN垂直x轴于点N,直线AN与BM相交于点P.(1)当直线l的斜率为1时,求;(2)求证:动点P的横坐标为定值.第(4)题已知数列满足,.(1)已知,①若,求;②若关于m的不等式的解集为M,集合M中的最小元素为8,求的取值范围;(2)若,是否存在正整数,使得,若存在,求出k的最小值,若不存在,请说明理由.第(5)题在直角坐标平面内,将函数及在第一象限内的图象分别记作,,点在上.过作平行于轴的直线,与交于点,再过点作平行于轴的直线,与交于点.(1)若,请直接写出的值;(2)若,求证:是等比数列;(3)若,求证:.。

上海市六校2025届高考仿真模拟数学试卷含解析

上海市六校2025届高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( )A .2?B .103C .10?D .222.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .16163π+B .8163π+C .32833π+ D .321633π+ 3.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2-B .1-C .1D .24.如图在一个60︒的二面角的棱有两个点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且都垂直于棱AB ,且2,4AB AC BD ===,则CD 的长为( )A .4B .25C .2D .235.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( )A .73B .14C .203D .76.集合{2,0,1,9}的真子集的个数是( ) A .13B .14C .15D .167.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( ) A .[1,2]-B .[3,2]-C .2,12⎡⎤-⎢⎥⎣⎦D .[2,2]-8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了9.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差. 以上说法正确的是( ) A .③④B .①②C .②④D .①③④11.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B .[2]-, C .(2]-,D .2,2⎡-⎣12.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过13二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学模拟试卷(4)一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.112.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+fx,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是.12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= .16.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为;B处应填入的数字为.三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.18.在五棱锥P﹣ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G 为PE的中点.(1)求AG与平面PDE所成角的大小(2)求点C到平面PDE的距离.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.参考答案与试题解析一.选择题1.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是()A.14 B.13 C.12 D.11【考点】45:有理数指数幂的运算性质.【分析】考查题设条件,首先可得出a+=3,又f(2)=a2+a﹣2=﹣2,及f(0)=1+1=2,故f(0)+f(1)+f(2)的值易得【解答】解:由题意,函数f(x)=a x+a﹣x,且f(1)=3,可得a+=3,又f(2)=a2+a﹣2=﹣2=7,f(0)=1+1=2所以f(0)+f(1)+f(2)=2+3+7=12故选C2.设f(x)=x3+log2(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断;3F:函数单调性的性质;3I:奇函数.【分析】由f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a+b≥0成立a+b>=0是f(a)+f(b)>=0的充要条件.【解答】解:f(x)=x3+log2(x+),f(x)的定义域为R∵f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x).∴f(x)是奇函数∵f(x)在(0,+∞)上是增函数∴f(x)在R上是增函数a+b≥0可得a≥﹣b∴f(a)≥f(﹣b)=﹣f(b)∴f(a)+f(b)≥0成立若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a≥﹣b∴a+b≥0成立∴a+b≥0是f(a)+f(b)≥0的充要条件.3.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2﹣2)a万元B.5a万元C.(2+1)a万元D.(2+3)a万元【考点】KD:双曲线的应用.【分析】依题意知曲线PQ是以A、B为焦点、实轴长为2的双曲线的一支,此双曲线的离心率为2,以直线AB为x轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为,点C的坐标为(3,).求出修建这条公路的总费用W,根据双曲线的定义有,根据a+b当且仅当a=b时取等号的方法求出W的最小值即可.【解答】解:依题意知PMQ曲线是以A、B为焦点、实轴长为2的双曲线的一支(以B为焦点),此双曲线的离心率为2,以直线AB为轴、AB的中点为原点建立平面直角坐标系,则该双曲线的方程为 x2﹣=1,点C的坐标为(3,).则修建这条公路的总费用ω=a[|MB|+2|MC|]=2a[|MB|+|MC|],设点M、C在右准线上射影分别为点M1、C1,根据双曲线的定义有|MM1|=|MB|,所以=2a[|MM1|+|MC|]≥2a|C C1|=2a×(3﹣)=5a.当且仅当点M在线段C C1上时取等号,故ω的最小值是5a.故选B.4.设等比数列{a n}的前n项和为S n,则x=S2n+S22n,y=S n(S2n+S3n)的大小关系是()A.x≥y B.x=y C.x≤y D.不确定【考点】8K:数列与不等式的综合.【分析】考虑特殊数列1,﹣1,1,﹣1,1,﹣1…,分情况讨论,等比数列{a n}的前n项和为S n,x=S2n+S22n,y=S n(S2n+S3n),要比较x,y的大小,可先将x,y的表达式进行整理,根据等比数列的性质将两个数用相同的量表示出来,再比较它们的大小【解答】解:对于等比数列1,﹣1,1,﹣1,1,﹣1…,S2k=0,S4k﹣S2k=0,S6k﹣S4k=0…,令n=2k,此时有x=y=0,对于S n,S2n﹣S n,S3n ﹣S2n ,…各项不为零时则由于等比数列{a n}的前n项和为S n,∴S n,S2n﹣S n,S3n ﹣S2n ,是一个公比为q n的等比数列,∴S2n﹣S n=S n×q n,S3n ﹣S2n=S n×q2n∴S2n =S n ×(1+q n),S3n =S n ×(1+q n+q2n)∴x=S2n+S22n=S2n ×[1+(1+q n)2]=S2n ×(2+2q n+q2n)y=S n(S2n+S3n)=S n[S n ×(1+q n)+S n ×(1+q n+q2n)]=S2n ×(2+2q n+q2n)由上知,x=y故选B二.填空题5.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为.【考点】4K:对数函数的定义域;4L:对数函数的值域与最值.【分析】由y=|log2x|,知x=2y或x=2﹣y.由0≤y≤2,知1≤x≤4,或.由此能求出区间[a,b]的长度b﹣a的最小值.【解答】解:∵y=|log2x|,∴x=2y或x=2﹣y.∵0≤y≤2,∴1≤x≤4,或.即{a=1,b=4}或{a=,b=1}.于是[b﹣a]min=.故答案为:.6.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[﹣1,3]内,关于x 的方程f(x)=kx+k+1(k≠﹣1)有四个根,则k取值范围是(﹣,0).【考点】3L:函数奇偶性的性质.【分析】把方程f(x)=kx+k+1的根转化为函数f(x)的图象和y=kx+k+1的图象的交点在同一坐标系内画出图象由图可得结论.【解答】解:因为关于x的方程f(x)=kx+k+1(k∈R且k≠﹣1)有4个不同的根,就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,所以可以得到函数f(x)的图象,又因为y=kx+k+1=k(x+1)+1过定点(﹣1,1),在同一坐标系内画出它们的图象如图,由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,而K AB=﹣,所以k的取值范围是:﹣<k<0故答案为:.7.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f的部分图象确定其解析式;GI:三角函数的化简求值.【分析】先将原函数用降幂公式转化为:f(x)=cos(2ωx+2ϕ)++1,求出函数的A,T,ω,通过f(x)的图象在y轴上的截距为2,求出φ,得到函数的表达式,然后求出所求的值.【解答】解:将原函数f(x)=Acos2(ωx+ϕ)+1转化为:f(x)=cos(2ωx+2ϕ)++1相邻两对称轴间的距离为2可知周期为:4,则2ω==,ω=由最大值为3,可知A=2又∵图象经过点(0,2),∴cos2ϕ=0∴2φ=kπ+∴f(x)=cos(x+)+2=2﹣sin(x)∵f(1)=2+1,f(2)=0+2,f(3)=﹣1+2,f(4)=0+2…f(1)+f(2)+f(3)+…+f如图,在杨辉三角中,斜线l上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n项和为S n,则S19等于283 .【考点】8E:数列的求和.【分析】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S19的值.【解答】解:根据图中锯齿形数列的排列,发现a1=1,a3=3=1+2,a5=6=1+2+3,...,a19=1+2+3+ (10)而a2=3,a4=4,a6=5,…,a18=11,∴前19项的和S19=[1+(1+2)+(1+2+3)+…+(1+2+…+10)]+(3+4+5+…+11)=283.故选C故答案为:283.9.在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,若a、b、c成等差数列,sinB=且△ABC的面积为,求b.【考点】84:等差数列的通项公式;HR:余弦定理.【分析】由三角形面积公式和a、b、c成等差数列,联解得出a2+c2=4b2﹣.由角B为锐角可得cosB==,由余弦定理b2=a2+c2﹣2ac•cosB的式子,代入数据算出b2=4,从而得到b=2.【解答】解:∵由a、b、c成等差数列,得a+c=2b∴平方得a2+c2=4b2﹣2ac﹣﹣﹣﹣﹣﹣①…又∵S△ABC=且sinB=,∴S△ABC=ac•sinB=ac×=ac=故ac=﹣﹣﹣﹣﹣﹣﹣②…由①②联解,可得a2+c2=4b2﹣﹣﹣﹣﹣﹣﹣﹣③…又∵sinB=,且a、b、c成等差数列∴cosB===.…由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣2××=a2+c2﹣﹣﹣﹣﹣﹣﹣﹣④…由③④联解,可得b2=4,所以b=2.…10.若对终边不在坐标轴上的任意角x,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,则实数m的取值范围是.【考点】HW:三角函数的最值.【分析】根据sinx+cosx=≤以及tan2x+cot2x≥2,不等式sinx+cosx≤m ≤tan2x+cot2x恒成立,从而求出实数m的取值范围.【解答】解:由于sinx+cosx=≤,tan2x+cot2x≥2 tanx•cotx=2,不等式sinx+cosx≤m≤tan2x+cot2x恒成立,故≤m≤2,故答案为:.11.对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于A n,B n两点,则数列的前n项和公式是﹣n(n+1).【考点】8E:数列的求和;KH:直线与圆锥曲线的综合问题.【分析】设A n(x n1,y n1),B(x n2,y n2),直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,求出的表达式,然后利用韦达定理代入得=﹣4n2﹣4n,故可得,据此可得数列的前n项和.【解答】解:设直线方程为x=ty+2n,代入抛物线方程得y2﹣2(2n+1)ty﹣4n(2n+1)=0,设A n(x n1,y n1),B(x n2,y n2),则,用韦达定理代入得,故,故数列的前n项和﹣n(n+1),故答案为﹣n(n+1).12.在正三棱柱ABC﹣A1B1C1中,各棱长都相等,M是BB1的中点,则BC1与平面AC1M所成角的大小是.【考点】MI:直线与平面所成的角.【分析】要求BC1与平面AC1M所成角,首先求利用等体积点B到平面AMC1的距离,进而利用正弦函数可求BC1与平面AC1M所成角【解答】解:由题意,设棱长为2a,则∵,∴=∵S△AMB=a2设点B到平面AMC1的距离为h,根据得∴设BC1与平面AC1M所成角为α,则∴故答案为13.设抛物线y=ax2(a>0)与直线y=kx+b有两个公共点,其横坐标是x1,x2,而x3是直线与x轴交点的横坐标,则x1,x2,x3的关系是x1x2=(x1+x2)x3.【考点】KG:直线与圆锥曲线的关系.【分析】将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系,求出两根积与两根和的表达式;然后将欲证等式的左边通分,转化为两根积与两根和的形式,将以上两表达式代入得到等式左边的值;再根据直线解析式求出与x的交点横坐标,结论得证.【解答】解:由题意,联立抛物线y=ax2(a>0)与直线y=kx+b得ax2﹣kx﹣b=0,∴,,∴,∴x1x2=x1x3+x2x3,即x1x2=(x1+x2)x3故答案为:x1x2=(x1+x2)x3.14.满足|z﹣z0|+|z+2i|=4的复数z在复平面上对应的点Z的轨迹是线段,则复数z0在复平面上对应的点的轨迹是以(0,﹣2)为圆心以 4 为半径的圆.【考点】A4:复数的代数表示法及其几何意义.【分析】根据关系式和点Z的轨迹是线段判断出,z0和﹣2i对应的点是对应线段上端点,再由(0,﹣2)是定点,线段是定长得出所求的轨迹是圆.【解答】解:∵|z﹣z0|+|z+2i|=4,且点Z的轨迹是线段,∴z0和﹣2i对应的点必然是Z的轨迹:线段上面2个端点,且线段的长为4,∴Z点轨迹:线段,它是通过一个端点(0,﹣2)的任意线段,并且长度为4,∴z0点轨迹其实是圆心为(0,﹣2),半径为4的圆,故答案为:以(0,﹣2)为圆心以 4 为半径的圆.15.在△ABC中,三个顶点的坐标分别是A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC内部运动,若点P满足,则S△PAC:S△ABC= 1:3 .【考点】98:向量的加法及其几何意义.【分析】延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',根据可知P是△AB'C'的重心,然后设S△PAB'=S△PAC'=S△PB'C'=k,然后将三个三角形的面积用k表示,即可求出所求.【解答】解:如图:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC'则,P是△AB'C'的重心,则S△PAB'=S△PAC'=S△PB'C'=kS1=S△PAB'=k,S3=S△PAC'=kS2=PB×PC×sin∠BPC=S△PB'C'=k故S1:S2:S3=:: =3:1:2∴S△PAC:S△ABC=1:3故答案为:1:316.有一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个每个小九宫格里只能出现一次,既不能重复也不能少.那么A处应填入的数字为 1 ;B处应填入的数字为1或3 .【考点】F1:归纳推理;8B:数列的应用.【分析】本题是一个简单的合情推理问题,根据“数独”的游戏规则,①在9×9的九宫格子中,分成9个3×3的小九宫格,用1,2,3…,9这9个数字填满整个格子,且每个格子只能填一个数;②每一行与每一列以及每个小九宫格里分别都有1,2,3,…9的所有数字.由A所处的行、列及小九宫格中已填数据,不难得到答案.【解答】解:与A同行的数据有:9、3、5、7与A同列的数据有:4、2、6、8与A处在同一九宫格中的数据有:2、4、9所以A处应填入的数字为1,与B同行的数据有:2、8、9、5与B同列的数据有:5、7、4、6与B处在同一九宫格中的数据有:4、5、6、7B处应填入的数字为 1或3故答案为:1 1或3三.解答题17.已知函数f(x)=a+msin2x+ncos2x的图象经过点A(0,1),B(,1),且当x∈时,f(x)取得最大值2﹣1.(1)求f(x)的解析式;(2)是否存在向量,使得将f(x)的图象按向量平移后可以得到一个奇函数的图象?若存在,求出最小的;若不存在,说明理由.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】(1)由题意求得m、n、a间的关系,再根据当x∈时,f(x)取得最大值2﹣1,求得a的值,可得函数的解析式.(2)利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得最小的.【解答】解:(1)∵函数f (x )=a+msin2x+ncos2x 的图象经过点A (0,1),B (,1),∴a+0+n=1,且a+m+0=1,求得m=n=1﹣a ,故有f (x )=a+(1﹣a )sin2x+(1﹣a )cos2x=a+(1﹣a )sin (2x+).①若1﹣a >0,∵当x ∈时,2x+∈[,],故当2x+=时,f (x )取得最大值为a+(1﹣a ).又f (x )的最大值2﹣1,可得a+(1﹣a )=2﹣1,求得a=﹣1,∴f (x )=﹣1+2sin (2x+).②若1﹣a <0,∵当x ∈时,2x+∈[,],故当2x+=或时,f (x )取得最大值为a+(1﹣a )•.又f (x )的最大值2﹣1,可得a+(1﹣a )•=2﹣1,求得a 无解.③若1﹣a=0,f (x )=1,不满足条件.综上可得,a=﹣1,f (x )=﹣1+2sin (2x+).(2)把f (x )的图象向右平移个单位,可得y=﹣1+2sin (2x ﹣+)=﹣1+2sin2x 的图象;再把所的图象向上平移1个单位,可得奇函数y=2sin2x 的图象,此时,平移的距离最小.故若将f (x )的图象按向量平移后可以得到一个奇函数的图象,则存在=(,1),且满足||最小.18.在五棱锥P ﹣ABCDE 中,PA=AB=AE=2a ,PB=PE=a ,BC=DE=a ,∠EAB=∠ABC=∠DEA=90°.G为PE 的中点.(1)求AG 与平面PDE 所成角的大小 (2)求点C 到平面PDE 的距离.【考点】MK:点、线、面间的距离计算;MI:直线与平面所成的角.【分析】(1)通过证明PA垂直平面ABCDE上的两条相交直线即可,在三角形PAB中运用勾股定理,可证明PA垂直于AB,在三角形PAE中,同样用勾股定理,可证明PA垂直AE,这样就可证明PA⊥平面ABCDE.通过证明AG垂直于平面PDE中的两条相交直线,在三角形中PA=AE=2a,可知AG垂直PE,再通过ED⊥平面PAE,利用线面垂直的性质,可得AG垂直于DE,则AG⊥平面PDE可证.(2)欲求点C到平面PDE的距离,只需过C点向平面PDE作垂线,但是垂足位置不容易找到,所以可以转化为其它点到平面的距离.证明CF∥DE,则点C到平面PDE的距离等于F 到平面PDE的距离,就可求F到平面PDE的距离.再由(3)中结论知FG⊥平面PDE,所以FG的长即F点到平面PDE的距离,放入△PAE中求出即可.【解答】解:(1)解:(1)证明∵PA=AB=2a,PB=2a,∴PA2+AB2=PB2,∴∠PAB=90°,即PA⊥AB.同理PA⊥AE.∵AB∩AE=A,∴PA⊥平面ABCDE.又∵∠AED=90°,∴AE⊥ED.∵PA⊥平面ABCDE,∴PA⊥ED.∴ED⊥平面PAE,所以DE⊥AG.∵PA=AE,G为PE中点,所以AG⊥PE,∴AG⊥平面PDE;∴AG与平面PDE所成角的大小为90°;(2)解:∵∠EAB=∠ABC=∠DEA=90°,BC=DE=a,AB=AE=2a,取AE中点F,连CF,∵AF∥=BC,∴四边形ABCF为平行四边形.∴CF∥AB,而AB∥DE,∴CF∥DE,而DE⊂平面PDE,CF⊄平面PDE,∴CF∥平面PDE.∴点C到平面PDE的距离等于F到平面PDE的距离.∵PA⊥平面ABCDE,∴PA⊥DE.又∵DE⊥AE,∴DE⊥平面PAE.∴平面PAE⊥平面PDE.∴过F作FG⊥PE于G,则 FG⊥平面PDE.∴FG的长即F点到平面PDE的距离.在△PAE中,PA=AE=2a,F为AE中点,FG⊥PE,∴FG=a.∴点C到平面PDE的距离为a.19.(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.【考点】96:平行向量与共线向量.【分析】(1)由三角形法则及向量共线的数乘表示,分别用向量、表示出,相加即得用向量、表示的表达式,进而判断与的关系;(2)受(1)的启示,如果点A1,A2,A3,…,A n﹣1是AB的n(n≥3)等分点,归纳得出猜想,再数学归纳法证明结论.【解答】解:(1)如图:点P、Q是线段AB的三等分点=,则,同理,所以即:,(2)设A1,A2.,…,A n﹣1是AB的n等分点,则;证:A1,A2,,A n﹣1是线段n≥2的等分点,先证明:(1≤k≤n﹣1,n、k∈N*).由,,因为和是相反向量,则,所以.记,相加得∴.20.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.【考点】8M:等差数列与等比数列的综合;84:等差数列的通项公式;88:等比数列的通项公式.【分析】(1)先求出等差数列的公差,再利用a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3,表示出a n=a1+(a2﹣a1)+(a3﹣a1)+…+(a n﹣a n﹣1)即可求出数列{a n}的通项公式;同样先求出等比数列的公比,再利用即可求{b n}的通项公式;(2)先求出f(k)=a k﹣b k的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论.【解答】解:(1)由已知a2﹣a1=﹣2,a3﹣a2=﹣1得公差d=﹣1﹣(﹣2)=1所以a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3故a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=6+(﹣2)+(﹣1)+0+…+(n﹣4)==由已知b1﹣2=4,b2﹣2=2所以公比所以.故(2)设f(k)=a k﹣b k==所以当k≥4时,f(k)是增函数.又,所以当k≥4时,而f(1)=f(2)=f(3)=0,所以不存在k,使.21.在直角坐标平面上,O为原点,M为动点,.过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线l交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)问是否存在直线l,使得|BP|=|BQ|;若存在,求出直线l方程,若不存在,说明理由.【考点】K4:椭圆的简单性质.【分析】(1)设点T的坐标为(x,y),点M的坐标为(x',y'),可知点M1的坐标,由可得点N的坐标和N1的坐标,进而表示出和,代入,求得x和x'的关系,y和y'的关系,再代入||中求得x和y的关系,即可得到曲线C的方程;(2)当直线l的斜率不存在时,直线l与椭圆C无交点;当直线的斜率存在时,设直线l 的方程为y=k(x﹣5),联立直线方程与椭圆方程,消去y化为关于x的一元二次方程,根据判别式大于0求得k的范围,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),利用根与系数的关系得x1+x2,求得R的坐标,根据|BP|=|BQ|可得BR⊥l,再由k•k BR=﹣1,整理得20k2=20k2﹣4,此结论不成立,可判断不存在直线l,使得|BP|=|BQ|.【解答】解:(1)设点T的坐标为(x,y),点M的坐标为(x',y'),则M1的坐标为(0,y'),由=(x′,y′),得点N的坐标为(x′,y′),N1的坐标为(x′,0),∴=(x′,0),=(0,y′).由,得(x,y)=(x′,0)+(0,y′),∴,得x′=x,y′=.由||=,得(x′)2+(y′)2=5,∴,即.故所求曲线C的方程为;(2)点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C无交点;当直线l斜率存在时,设斜率为k,直线l的方程为y=k(x﹣5).联立,得(5k2+4)x2﹣50k2x+125k2﹣20=0.依题意△=20(16﹣80k2)>0,得﹣<k<.当﹣<k<时,设交点P(x1,y1),Q(x2,y2),PQ的中点为R(x0,y0),则,.∴y0=k(x0﹣5)=k()=.由|BP|=|BQ|,得BR⊥l,则k•k BR=﹣1,∴,即20k2=20k2﹣4,此式显然不成立,∴不存在直线l,使得|BP|=|BQ|.22.已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2﹣16ac<﹣1;(2)若时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.【考点】3R:函数恒成立问题.【分析】(1)由于函数f(x)的图象与直线y=±x均无公共点,所以ax2+2bx+4c=±x无解,从而△<0,故可证;(2)把b与c的值代入f(x)中,配方得到顶点式,由a小于0,得到函数有最大值,表示出这个最大值,当最大值大于5时,求出此时a的范围,又最大值小于﹣,M(a)是方程ax2+8x+3=5的较小根,利用求根公式求出M(a)即可判断出M(a)小于;当最大值小于等于5时,求出此时a的范围,最大值大于﹣,M(a)是方程ax2+8x+3=﹣5的较大根,根据求根公式求出M(a)即可判断M(a)小于等于,又大于,即可得到M (a)的最大值;(3)求出f(x)的导函数,由a大于0,求出函数有最大值让其等于2,得到a与b的关系式,由﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,得c的值,又因为|f(x)|≤2,所以f(x)≥﹣2=f(0),即可得到x=0时,函数取得最小值,表示出对称轴让其等于0,即可求得b的值,进而求出a的值,把a,b和c的值代入即可确定出f(x)的解析式【解答】解:(1)证明:∵函数f(x)的图象与直线y=±x均无公共点,∴ax2+2bx+4c=±x无解∴△<0∴4b2﹣16ac<﹣1;(2)把b=4,c=代入得:f(x)=ax2+8x+3=a +3﹣,∵a<0,所以f(x)max=3﹣①当3﹣>5,即﹣8<a<0时,M(a)满足:﹣8<a<0且0<M(a)<﹣,所以M(a)是方程ax2+8x+3=5的较小根,则M(a)==<=;②当3﹣≤5即a≤﹣8时,此时M(a)≥﹣,所以M(a)是ax2+8x+3=﹣5的较大根,则M(a)==≤=,当且仅当a=﹣8时取等号,由于>,因此当且仅当a=﹣8时,M(a)取最大值;(3)求得f′(x)=2ax+2b,∵a>0,∴f(x)max=2a+2b=2,即a+b=1,则﹣2≤f(0)=4a=4a+4b+4c﹣4(a+b)=f(2)﹣4≤2﹣4=﹣2,∴4c=﹣2,解得c=﹣,又∵|f(x)|≤2,所以f(x)≥﹣2=f(0)∴f(x)在x=0处取得最小值,且0∈(﹣2,2),∴﹣=0,解得b=0,从而a=1,∴f(x)=x2﹣2.。

相关文档
最新文档