数值计算方法试题及答案

合集下载

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题四、计算题:1、用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。

答案:迭代格式⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x2、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。

答案:2,,1)(x x x f =是精确成立,即⎪⎩⎪⎨⎧=+=+32212222B A B A 得98,91==B A求积公式为)]21()21([98)]1()1([91)(11f f f f dx x f +-++-=⎰-当3)(x x f =时,公式显然精确成立;当4)(x x f =时,左=52,右=31。

所以代数精度为3。

69286.014097]321132/11[98]311311[91311113221≈=+++-++++-≈+=⎰⎰--=dt t dx x x t3、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。

答案:)53)(43)(13()5)(4)(1(6)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L)45)(35)(15()4)(3)(1(4)54)(34)(14()5)(3)(1(5------+------+x x x x x x差商表为)4)(3)(1(41)3)(1()1(22)()(33---+----+==x x x x x x x N x P5.5)2()2(3=≈P f4、取步长2.0=h ,用预估-校正法解常微分方程初值问题⎩⎨⎧=+='1)0(32y yx y )10(≤≤x答案:解:⎪⎩⎪⎨⎧+++⨯+=+⨯+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y即 04.078.152.01++=+n n n y x y5、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。

答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。

16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。

22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。

数值计算方法试题及答案解析

数值计算方法试题及答案解析

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则 ∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii满足( )条件时,这种分解是唯一的。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算试题及答案

数值计算试题及答案

数值计算试题及答案一、单项选择题(每题3分,共30分)1. 在数值计算中,下列哪种方法用于求解线性方程组?A. 牛顿法B. 牛顿-拉弗森方法C. 高斯消元法D. 蒙特卡洛方法答案:C2. 以下哪个不是数值分析中常用的插值方法?A. 拉格朗日插值B. 牛顿插值C. 多项式插值D. 傅里叶变换答案:D3. 在数值积分中,梯形规则的误差项与下列哪个因素有关?A. 积分区间的长度B. 被积函数的二阶导数C. 被积函数的一阶导数D. 被积函数的三阶导数答案:B4. 下列哪种方法不是数值微分的方法?A. 前向差分法B. 中心差分法C. 牛顿迭代法D. 后向差分法答案:C5. 以下哪个算法不是用于求解非线性方程的?A. 牛顿法B. 弦截法C. 牛顿-拉弗森方法D. 欧拉法答案:D6. 在数值分析中,下列哪个概念与误差分析无关?A. 截断误差B. 舍入误差C. 条件数D. 插值多项式的阶答案:D7. 以下哪种方法不是数值解常微分方程的方法?A. 欧拉法B. 龙格-库塔法C. 牛顿法D. 亚当斯法答案:C8. 在数值分析中,下列哪个概念与病态问题无关?A. 条件数B. 误差放大C. 稳定性D. 收敛性答案:D9. 以下哪种情况不会导致数值解的不稳定?A. 步长过大B. 初始条件不精确C. 算法本身稳定D. 计算精度过高答案:C10. 在数值计算中,下列哪种方法用于求解特征值问题?A. 高斯消元法B. 幂法C. 牛顿法D. 蒙特卡洛方法答案:B二、填空题(每题3分,共30分)1. 在数值计算中,使用______方法可以提高插值的精度。

答案:牛顿插值2. 梯形规则的误差与被积函数的______阶导数有关。

答案:二阶3. 在数值微分中,使用______差分法可以提高微分的精度。

答案:中心4. 非线性方程的求解可以通过______法来实现。

答案:牛顿5. 常微分方程的数值解法中,______法是最基本的方法之一。

答案:欧拉6. 对于线性方程组的求解,______法是最基本的方法之一。

数值计算方法总结计划试卷试题集及答案

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

二、 二、选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+)()1(收敛的充要条件是( )。

(1)1)(<A ρ, (2) 1)(<B ρ, (3) 1)(>A ρ, (4) 1)(>B ρ2、在牛顿-柯特斯求积公式:⎰∑=-≈bani i n i x f C a b dx x f 0)()()()(中,当系数)(n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。

(1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , 3、有下列数表(1)二次; (2)三次; (3)四次; (4)五次4、若用二阶中点公式)),(4,2(1n n n n n n y x f hy h x hf y y +++=+求解初值问题1)0(,2=-='y y y ,试问为保证该公式绝对稳定,步长h 的取值范围为( )。

(1)20≤<h , (2)20≤≤h , (3)20<<h , (4)20<≤h 三、1、(8分)用最小二乘法求形如2bx a y +=的经验公式拟合以下数据:2、(15分)用8=n 的复化梯形公式(或复化 Simpson 公式)计算dxex ⎰-1时, (1)(1) 试用余项估计其误差。

(2)用8=n 的复化梯形公式(或复化 Simpson 公式)计算出该积分的近似值。

四、1、(15分)方程013=--x x 在5.1=x 附近有根,把方程写成三种不同的等价形式(1)31+=x x 对应迭代格式311+=+n n x x ;(2)xx 11+=对应迭代格式n n x x 111+=+;(3)13-=x x 对应迭代格式131-=+n n x x 。

判断迭代格式在5.10=x 的收敛性,选一种收敛格式计算5.1=x 附近的根,精确到小数点后第三位。

选一种迭代格式建立Steffensen 迭代法,并进行计算与前一种结果比较,说明是否有加速效果。

2、(8分)已知方程组f AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=4114334A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243024f(1) (1) 列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。

(2) (2) 求出Jacobi 迭代矩阵的谱半径,写出SOR迭代法。

五、1、(15分)取步长1.0=h ,求解初值问题⎪⎩⎪⎨⎧=+-=1)0(1y y dxdy用改进的欧拉法求)1.0(y 的值;用经典的四阶龙格—库塔法求)1.0(y 的值。

2、(8分)求一次数不高于4次的多项式)(x p 使它满足)()(00x f x p =,)()(11x f x p =,)()(00x f x p '=',)()(11x f x p '=',)()(22x f x p =六、(下列2题任选一题,4分) 1、1、 数值积分公式形如⎰'+'++=≈1)1()0()1()0()()(f D f C Bf Af x S dx x xf(1) (1) 试确定参数D C B A ,,,使公式代数精度尽量高;(2)设]1,0[)(4C x f ∈,推导余项公式⎰-=1)()()(x S dx x xf x R ,并估计误差。

2、 2、 用二步法)],()1(),([111101---+-+++=n n n n n n n y x f y x f h y y y θθαα求解常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y 时,如何选择参数θαα,,10使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。

数值计算方法试题二一、判断题:(共16分,每小题2分)1、若A 是n n ⨯阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使LU A =唯一成立。

( )2、当8≥n 时,Newton -cotes 型求积公式会产生数值不稳定性。

( )3、形如)()(1i ni i ba x f A dx x f ∑⎰=≈的高斯(Gauss )型求积公式具有最高代数精确度的次数为12+n 。

( )4、矩阵⎪⎪⎪⎭⎫⎝⎛=210111012A 的2-范数2A =9。

( )5、设⎪⎪⎪⎭⎫ ⎝⎛=a a a a A 000002,则对任意实数0≠a ,方程组b Ax =都是病态的。

(用∞⋅) ( )6、设n n R A ⨯∈,n n R Q ⨯∈,且有I Q Q T =(单位阵),则有22QA A =。

( )7、区间[]b a ,上关于权函数)(x W 的直交多项式是存在的,且唯一。

( )8、对矩阵A 作如下的Doolittle 分解:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=6001032211012001542774322b a A ,则b a ,的值分别为=a 2,=b 2。

( )二、填空题:(共20分,每小题2分)1、设102139)(248+++=x x x x f ,则均差 =]2,,2,2[810 f __________,=]3,,3,3[910 f __________。

2、设函数)(x f 于区间[]b a ,上有足够阶连续导数,[]b a p ,∈为)(x f 的一个m 重零点,Newton 迭代公式)()('1k k k k x f x f mx x -=+的收敛阶至少是 __________阶。

3、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到__________阶的连续导数。

4、向量T X )2,1(-=,矩阵⎪⎪⎭⎫⎝⎛--=1327A ,则 =1AX __________,=∞)(A cond __________。

5、为使两点的数值求积公式:⎰-+≈1110)()()(x f x f dx x f 具有最高的代数精确度,则其求积基点应为=1x __________,=2x __________。

6、设n n R A ⨯∈,A A T =,则)(A ρ(谱半径)__________2A 。

(此处填小于、大于、等于)7、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2141021A ,则=∞→k k A lim __________。

三、简答题:(9分)1、 1、 方程x x 24-=在区间[]2,1内有唯一根*x ,若用迭代公式:2ln /)4ln(1k k x x -=+ ),2,1,0( =k ,则其产生的序列{}k x 是否收敛于*x 说明理由。

2、 2、 使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术3、 3、 设001.0=x ,试选择较好的算法计算函数值2cos 1)(x x x f -=。

四、(10分)已知数值积分公式为: )]()0([)]()0([2)(''20h f f h h f f hdx x f h-++≈⎰λ,试确定积分公式中的参数λ,使其代数精确度尽量高,并指出其代数精确度的次数。

五、(8分)已知求)0(>a a 的迭代公式为:2,1,00)(2101=>+=+k x x ax x kk k证明:对一切a x k k ≥=,,2,1 ,且序列{}k x 是单调递减的, 从而迭代过程收敛。

六、(9分)数值求积公式⎰+≈3)]2()1([23)(f f dx x f 是否为插值型求积公式为什么其代数精度是多少七、(9分)设线性代数方程组b AX =中系数矩阵A 非奇异,X 为精确解,0≠b ,若向量~X 是b AX =的一个近似解,残向量~X A b r -=,证明估计式:b rA cond XXX )(~≤-(假定所用矩阵范数与向量范数相容)。

八、(10分)设函数)(x f 在区间[]3,0上具有四阶连续导数,试求满足下列插值条件的一个次数不超过3的插值多项式)(x H ,并导出其余项。

九、(9分)设)(x n ϕ是区间],[b a 上关于权函数)(x w 的直交多项式序列,)1,,,2,1(+=n n i x i 为{})(1x n +ϕ的零点,)1,,,2,1)((+=n n i x l i 是以{}i x 为基点的拉格朗日(Lagrange)插值基函数,∑⎰+=≈11)()()(n k k k b ax f A dx x w x f 为高斯型求积公式,证明:(1) (1)当j k n j k ≠≤≤,,0时,)()(11=∑+=i j i kn i i x x A ϕϕ(2)⎰≠=ba j kj k dx x w x l x l )(0)()()((3)∑⎰⎰+==112)()()(n k b abakdxx w dx x w x l十、(选做题8分)若)())(()()(101n n x x x x x x x x f ---==+ ω,),,1,0(n i x i =互异,求],,,[10p x x x f 的值,其中1+≤n p 。

相关文档
最新文档