高考数学终极版知识清单
高考数学70个知识点

高考数学70个知识点作为高考的一门重要科目,数学对于考生来说始终是一个难题。
为了能够更好地备考数学,下面将为大家总结并介绍高考数学的70个知识点。
希望这些知识点的梳理和总结对同学们的高考备考有所帮助。
1. 数的性质:自然数、整数、有理数和无理数的基本概念与关系。
2. 数的运算:四则运算、整式的加减乘除、分式的加减乘除等。
3. 指数与对数:指数与幂、对数与指数的关系。
4. 代数式与方程:代数式的基本概念、方程的基本概念与解法。
5. 几何初步:点、线、面、角等的定义与关系。
6. 几何证明:等腰三角形、相似三角形、平行线等的证明方法与技巧。
7. 函数与方程:函数的概念、特性及其图象;一元一次方程、一元二次方程的解法。
8. 直线与圆:直线与平面的交点、三角形、四边形及圆的性质与判定。
9. 三角比与三角函数:正弦函数、余弦函数、正切函数等的概念与计算。
10. 数列与数学归纳法:等差数列、等比数列和数学归纳法的基本思想与方法。
11. 统计与概率:统计中的抽样、频数、频率、概率的基本概念与计算。
12. 三角函数的应用:三角函数在实际问题中的应用。
13. 平面向量:向量的运算法则、向量共线、平面向量垂直等基本性质。
14. 空间几何初步:平行面、垂直面、直线与面的关系。
15. 空间向量:空间向量的运算法则、空间向量垂直与共面。
这只是高考数学中的部分知识点,总结了其中的前15个知识点。
在备考过程中,同学们要注意掌握这些知识点的基本概念和关系,并且要善于应用这些知识点解决实际问题。
16. 几何三角形:三角形的基本性质、三角形的中线、角平分线等。
17. 四边形:平行四边形、矩形、正方形、菱形等四边形的基本性质。
18. 相似与全等三角形:相似三角形的判定与性质、全等三角形的判定与性质。
19. 圆:圆的基本性质、圆的切线、切圆等。
20. 平面向量的应用:向量共线、线段中点、平行线等向量在几何中的应用。
21. 立体几何初步:正方体、长方体、棱柱等基本立体几何的性质与计算。
高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
高考数学主干知识点归纳

高考数学主干知识点归纳在高中数学的学习中,数学作为一门主干学科,是高考中的必考科目之一。
为了帮助广大学生更好地备考高考数学,以下将对高考数学的主干知识点进行归纳总结,希望能为大家提供有益的参考。
一、函数与方程1. 函数及其性质:定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数:方程求解、图像性质及其应用。
3. 等差数列与等比数列:通项公式、前n项和公式、求解相关问题。
4. 三角函数:正弦函数、余弦函数、正切函数的定义、性质及其应用。
二、几何与空间1. 平面几何:平行线与垂直线的判定、平行线间距离及其性质等。
2. 三角形:全等三角形与相似三角形的判定及其性质、重要定理如中线定理、角平分线定理等。
3. 圆:圆的相关概念、弧长、扇形面积、切线及其性质等。
4. 空间几何:空间中的平面与直线的判定、空间图形的投影及其应用。
三、概率与统计1. 概率论:事件与概率、条件概率、独立事件、数理统计等。
2. 二项分布与正态分布:概念、性质及其应用。
3. 参数统计与假设检验:样本均值与总体均值的关系、显著性水平及其检验等。
四、解析几何与向量1. 解析几何:平面上直线的方程、圆的方程、直线与圆的位置关系等。
2. 向量的运算与坐标表示:向量的模、夹角、平面向量的线性运算等。
五、数列与数学归纳法1. 数列的概念与性质:等差数列、等比数列及其应用。
2. 数学归纳法的应用:数学归纳法的基本思想、证明方法与应用。
六、导数与微分1. 导数的概念及其应用:函数的极值、驻点及其判定、函数的图像等。
2. 微分学:微分中值定理、导数的定义、基本公式及其应用。
七、积分与面积1. 定积分的概念与性质:定积分的计算、定积分的应用。
2. 曲线长度与曲线面积:弧长、曲线面积。
以上是高考数学的主干知识点的归纳总结,希望对广大高中生备考高考数学有所帮助。
在备考过程中,除了掌握这些主干知识点,还应多进行真题练习,提高解题的能力和答题的熟练度。
祝愿大家都能取得优异的成绩!。
高中数学知识清单(理科)最终

高 考 数 学 常 用 公 式 及 结 论整理人:余河洛特别说明:(49—52和57—62为理科内容,文科生不作要求) 1.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆I U2.若{}n a a a a A ,,,,321⋅⋅⋅=,则A的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个..3.函数的的单调性: (1)设[]2121,,x x b a x x ≠∈,那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数; 如果0)(<'x f ,则)(x f 为减函数.4.函数()y f x =的图象的对称性:①()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=;②()y f x =的图象关于直线2a bx +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=;③()y f x =的图象关于点(,0)a 对称()()()()02=-++⇔--=⇔x a f x a f x a f x f ,()y f x =的图象关于点(,)a b 对称⇔()()()()b x a f x a f x a f b x f 222=-++⇔--=.5.两个函数的图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称; ②函数()y f x a =-与函数()y f a x =-的图象关于直线x a =对称; ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-; ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--;⑤函数)(x f y =和函数)(1x fy -=的图象关于直线x y =对称.6.几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+ 7.(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=++a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠, T=2a ; (3))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(4))()()-(a x f x f a x f +-=,则)(x f 的周期T=6a. 8.①b N N a a b=⇔=log ; ②()N M MN a a a log log log +=;③N M N M a a alog log log -=; ④log log m n a a nb b m=.(a>0,a ≠1) 9.对数的换底公式:log log log m a m N N a=. (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =.10.①等差数列{}n a 的通项公式:()d n a a n 11-+=,或d m n a a m n )(-+=mn a a d mn --=⇔.②前n 项和公式: 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 11.对于等差数列{}n a ,若q p m n +=+(m 、n 、p 、q 为正整数),则q p m n a a a a +=+.12.若数列{}n a 是等差数列,n S 是其前n 项和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列,其公差d k D 2=,如下图所示:44444444444844444444444764434421Λ4434421Λ444344421Λk kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++. 13.数列{}n a 是等差数列⇔n a kn b =+;数列{}n a 是等差数列⇔n S =2An Bn +.14.若等差数列{}n a 和{}n b 的前12-n 项的和分别为12-n S 和 12-n T ,则1212--=n n n n T S b a . 15.①等比数列{}n a 的通项公式:nn n q qa qa a ⋅==-111;或m n m n m n m n a a q q a a =⇔=--.②前n 项和公式:11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.16.(1)对于等比数列{}n a ,若v u m n +=+(n 、m 、u 、v 为正整数),则v u m n a a a a ⋅=⋅.(2)数列{}n a 是等比数列,n S 是其前n 项的和且q ≠-1,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列,其公比为kq Q =.. 17.裂项法:①()11111+-=+n n n n ; ②()()⎪⎭⎫ ⎝⎛+--⋅=+-1211212112121n n n n ;③()11b a ba b a --=+ ;④()()! 11! 1! 1+-=+n n n n .18.(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤|sin ||cos |1x x +≥.19.①22sin cos 1θθ+=,②tan θ=θθcos sin (Z k k ∈+≠,2ππθ);②22sin()sin()sin sin αβαβαβ+-=-;22cos()cos()cos sin αβαβαβ+-=-.③sin cos a b αα+)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,tan baϕ= ).20.①αααcos sin 22sin =.②2222cos 2cos sin 2cos 112sin ααααα=-=-=-(升幂公式).(3)221cos 21cos 2cos ,sin 22αααα+-==(降幂公式). 21.万能公式:22tan sin 21tan ααα=+;221tan cos 21tan ααα-=+;22tan tan 21tan ααα=-(正切倍角公式).22.半角公式:sin 1cos tan 21cos sin ααααα-==+.23.①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期ωπ2=T (A 、ω、ϕ为常数,且A ≠0).②函数()φω+=x A y tan 的周期ωπ=T (A 、ω、ϕ为常数,且A ≠0).24.tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为⎪⎭⎫⎝⎛0,2πk ()Z k ∈.. 25.三角形面积公式:①111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高);②111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=(4)2,2a b c S r r a b c ∆∆∆+==++斜边内切圆直角内切圆- 26.在△ABC 中,有①()222C A BA B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+;②B A b a sin sin >⇔>(注意是在ABC ∆中).27.向量的平行与垂直: 设=11(,)x y ,=22(,)x y ,且≠,则①∥⇔=λ12210x y x y ⇔-=;② ⊥ (≠)⇔·=012120x x y y ⇔+=.28.若OA xOB yOB =+u u u r u u u r u u u r,则A 、B 、C 共线的充要条件是1=+y x .29.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则其重心的坐标是123123(,)33x x x y y y G ++++. 30. 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==u u u r u u u r u u u r .(2)O 为ABC ∆的重心0OA OB OC ⇔++=u u u r u u u r u u u r r .(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r .(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=u u u r u u u r u u u r r.31.常用不等式:(1),a b R ∈⇒222a b ab +≥222b a ab +≤⇔(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥22⎪⎭⎫ ⎝⎛+≤⇔b a ab (当且仅当a =b 时取“=”号).(3) abc c b a 3333≥++⇔33abc c b a ≥++(当且仅当c b a ==时取“=”号).(4)b a b a b a +≤±≤-,(注意等号成立的条件).(5)22ab a b a b +≤≤≤+当且仅当a =b 时取“=”号)。
高考数学的知识点大全

高考数学的知识点大全高考数学是每一个高中生都必须面对的一场考试,是决定他们大学录取的重要因素之一。
掌握高考数学知识点对于考生来说至关重要,下面将为大家全面介绍高考数学的知识点。
(一)代数代数是高考数学中的重要部分,主要涉及方程与不等式、函数、数列等内容。
方程与不等式,包括一元一次方程、二次方程、绝对值方程、分式方程、一次不等式、二次不等式等。
学生需要掌握解方程和解不等式的常用方法,例如代入法、因式分解法、配方法、判别法等。
函数是数学中的重要概念,包括一元函数和多元函数。
一元函数主要包括线性函数、二次函数、指数函数、对数函数等,学生需要掌握函数的性质、图像以及函数的运算法则。
多元函数包括二元函数和三元函数,学生需要掌握多元函数的性质和图像。
数列是数学中的一种特殊函数,包括等差数列和等比数列。
学生需要掌握数列的通项公式、前n项和、数列的性质以及数列的运算法则。
(二)几何几何是高考数学中的另一个重要部分,主要涉及平面几何和空间几何。
平面几何主要包括直线、线段、角以及图形的性质。
学生需要掌握直线与线段的性质、角的概念、角的性质以及各类图形的性质。
例如,直线与线段的垂直、平行关系,同位角、对顶角、内错角等角的性质,三角形、四边形、圆的性质等。
空间几何主要包括空间直线、空间角以及空间图形的性质。
学生需要掌握空间直线的性质、空间角的概念以及各类空间图形的性质。
例如,平行线、垂直线、倾斜线的判定,平面与空间直线的位置关系,平面与平面的位置关系,正交立体、斜直立体的判定等。
(三)概率与统计概率与统计是高考数学中的另一部分内容,主要涉及概率、统计、数据的收集和整理等。
概率是研究随机事件发生可能性的数学学科。
学生需要掌握事件、样本空间、随机事件发生的概率计算方法,包括频率与概率的关系、条件概率、独立事件等。
统计是研究数据收集、整理、分析和推断的学科。
学生需要学会数据的收集和整理方法,包括表格、统计图表的制作以及数据的分析和推断。
高考数学108个知识点

高考数学108个知识点数学作为高考科目之一,对于广大考生来说是一道相当重要的门槛。
高考数学试卷中涵盖了大量的知识点,考生需要深入了解和掌握这些知识点,才能在考试中取得好成绩。
在这篇文章中,我们将细致地梳理高考数学的108个知识点,并给出相应的解析和例题。
一. 代数与函数1. 复数与复数基本运算:复数的概念与表示方法,复数的四则运算。
2. 幂的运算:定义、性质及应用,实指数幂与零指数幂。
3. 根式与分式的性质:根式的概念与性质,分式的概念与性质。
4. 分式的四则运算:分式的加减乘除,简化分式。
5. 线性方程组与解的性质:线性方程组的定义、解的存在唯一性以及解的性质。
6. 二次函数与一元二次方程:二次函数的概念、性质以及图像,一元二次方程的定义解的判别式。
二. 三角函数7. 角的概念与运算:弧度制与角度制的转换,三角函数的概念、性质以及应用。
8. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、性质以及周期性。
9. 三角函数的基本关系式:正弦函数、余弦函数、正切函数之间的基本关系。
10. 三角函数的合并与拆分:任意两个三角函数的合并与拆分。
11. 三角函数的方程与恒等式:三角方程的定义、基础解法以及特解法。
三. 解析几何12. 平面直角坐标系与平面向量:平面直角坐标系的概念、性质以及应用,平面向量的概念、基本运算以及性质。
13. 直线与圆的方程:直线的方程、性质以及相关定理,圆的方程、性质以及相关定理。
14. 二次曲线的方程:椭圆、双曲线、抛物线的方程、性质以及相关定理。
15. 空间几何与立体几何:空间直角坐标系的概念、性质以及应用,空间向量的概念、基本运算以及性质。
四. 数量关系16. 空间图形的投影与旋转:平行投影、垂直投影、投影的比例与相似性,图形绕一定轴线的旋转。
17. 总和与平均数:总和与平均数的概念、计算方法以及应用。
18. 线性规划:线性规划的定义、基本模型以及解法。
19. 组合与排列:组合与排列的定义、性质以及计算方法。
高中数学知识点总结(新高考地区)精选全文完整版

一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
高考数学439个知识点 167个考点

高考数学是我国学生面临的一项重要考试,涉及的知识点和考点众多。
据统计,高考数学共涉及439个知识点和167个考点,这些知识点和考点涵盖了数学的各个方面,需要考生在备考过程中进行全面系统的学习和掌握。
下面将从知识点和考点两个方面进行详细介绍。
知识点:1.初等数论2.集合与图形3.函数及其应用4.三角函数与解三角形5.数列6.排列组合与概率7.数学归纳法8.不等式9.复数及其运算10.数域与方程11.三角恒等变换12.解析几何13.立体几何14.导数与微分15.不定积分16.定积分17.微分方程18.向量及其应用19.数理统计20.概率论21.数学建模22.其他考点:1.正数完全平方的因数2.正整数的奇偶性3.区间及其运算4.绝对值与不等式5.二次函数的图像与性质6.函数的奇偶性、周期性、对称性7.反函数8.对数函数9.微分中值定理10.微分中的一元微分方程11.积分中值定理12.不定积分的运算法则13.定积分的性质14.向量的数量积15.平面向量的坐标表示16.数量关系17.频率分布的度量18.期望与方差19.常见概率分布以上仅列举了部分知识点和考点,这些知识点和考点是高考数学考试的基础,考生需要进行系统全面的掌握并在实践中灵活运用。
在备考过程中,考生可以通过以下几点提高自己在各个知识点和考点上的掌握程度:1. 制定合理的学习计划,对各个知识点和考点进行分解和分类,分阶段有条不紊地进行系统学习。
2. 将数学知识点和考点串联起来,通过归纳和整理的方式加深记忆和理解。
3. 多做习题,尤其是高考真题和模拟题,通过做题检验自己的学习成果,发现自己在哪些知识点和考点上存在不足,及时调整学习计划,并加强巩固。
4. 寻求老师和同学的帮助,进行讨论和交流,通过交流能够不断纠正自己在学习上存在的问题和错误,加深对知识点和考点的理解。
5. 多进行练习和应用,尤其是一些现实生活中的应用题,通过应用可以更深入地理解知识点和考点。