全国通用版2021版高考数学大一轮温习第九章概率第52讲几何概型优选学案20210508372

合集下载

全国通用近年高考数学大一轮复习第九章概率第52讲几何概型优选学案(2021年整理)

全国通用近年高考数学大一轮复习第九章概率第52讲几何概型优选学案(2021年整理)

(全国通用版)2019版高考数学大一轮复习第九章概率第52讲几何概型优选学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第九章概率第52讲几何概型优选学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第九章概率第52讲几何概型优选学案的全部内容。

第52讲几何概型考纲要求考情分析命题趋势1。

了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.2017·全国卷Ⅰ,42017·江苏卷,72016·全国卷Ⅱ,8几何概型主要考查事件发生的概率与构成事件区域的长度、角度、面积、体积有关的实际问题,注重考查数形结合思想和逻辑思维能力.分值:5分1.几何概型如果事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,而与A的形状和位置无关,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个特点一是__无限性__,即在一次试验中,基本事件的个数是无限的;二是__等可能性__,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”,即随机事件A的概率可以用“事件A包含的基本事件所占的__图形面积(体积、长度)__”与“试验的基本事件所占的__总面积(总体积、总长度)__”之比来表示.3.在几何概型中,事件A的概率的计算公式P(A)=__ 错误!__。

4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=错误!作为所求概率的近似值.1.思维辨析(在括号内打“√”或“").(1)随机模拟方法是以事件发生的频率估计概率.( √)(2)相同环境下两次随机模拟得到的概率的估计值是相等的.( ×)(3)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)解析(1)正确.由随机模拟方法及几何概型可知,该说法正确.(2)错误.虽然环境相同,但是因为随机模拟得到的是某一次的频率,所以结果不一定相等.(3)正确.由几何概型的定义知,该说法正确.(4)正确.由几何概型的定义知,该说法正确.2.在区间(15,25]内的所有实数中随机抽取一个实数a,则这个实数满足17<a<20的概率是(C)A.错误!B.错误!C.错误!D.错误!解析∵a∈(15,25],∴P(17<a<20)=错误!=错误!.3.有一杯2 L的水,其中含有1个细菌,用一个小杯从水中取0.1 L水,则小杯水中含有这个细菌的概率为(C)A.0.01 B.0。

【步步高】2021届高考数学第一轮温习(典型题+详解)中档题目强化练概率专项基础训练(1)

【步步高】2021届高考数学第一轮温习(典型题+详解)中档题目强化练概率专项基础训练(1)

中档题目强化练——概率A 组 专项基础训练一、选择题1.现有语文、数学、英语、物理和化学共5本书,从中任取1本,掏出的是理科书的概率为( )A.15B.25C.35D.45答案 C解析 记取到语文、数学、英语、物理、化学书别离为事件A 、B 、C 、D 、E ,那么A 、B 、C 、D 、E 是彼此互斥的,取到理科书的概率为事件B 、D 、E 的概率的和,即P (B ∪D ∪E )=P (B )+P (D )+P (E )=15+15+15=35.应选C.2.在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( )A.34B.310C.25D .以上都不对答案 B解析 在40根纤维中,有12根的长度越过30 mm ,即大体事件总数为40,所求事件包括12个大体事件,且它们是等可能发生的,因此所求事件的概率为P =1240=310,应选B.3.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,b 、c ∈{2,3,4,5,6,7,8,9},那么b =c 的概率为( ) A.18B.14C.12D.34答案 C解析 因为P ⊆Q ,因此当b =2时,c 能够取3,4,5,6,7,8,9中任意一个数,共7种情形,当b =c 时,c 能够取3,4,5,6,7,8,9中任意一个数,共7种情形.因此所求概率为77+7=12.4. 如下图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,那么该阴影部份的面积约为( ) A.35B.125C.65D.185答案 B解析 豆子落在阴影区域内的概率是120200=35,设阴影部份的面积为S ,那么S S 正方形=35,解得S =125,应选B.5.设a 是甲抛掷一枚骰子取得的点数,那么方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512答案 A 二、填空题6.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为________.答案 13解析 ∵-π2≤x ≤π2,而0≤cos x ≤12,故-π2≤x ≤-π3或π3≤x ≤π2,∴依照几何概型的概率公式得所求概率为13.7.在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧-1≤x ≤20≤y ≤2表示的平面区域为W ,从W 中随机取点M (x ,y ).假设x ∈Z ,y ∈Z ,那么点M 位于第二象限的概率为________.答案 16解析 画出平面区域,列出平面区域内的整数点如下:(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个,其中位于第二象限的有 (-1,1),(-1,2),共2个,因此所求概率P =16.8.咱们把日均收看体育节目的时刻超过50分钟的观众称为“超级体育迷”.已知5名“超级体育迷”中有2名女性,假设从中任选2名,那么至少有1名女性的概率为________. 答案710 解析 用a i 表示男性,其中i =1,2,3,b j 表示女性,其中j =1,2.记“选出的2名全都是男性”为事件A ,“选出的2名有1名男性1名女性”为事件B ,“选出的2名全都是女性”为事件C ,那么事件A 包括(a 1,a 2),(a 1,a 3),(a 2,a 3),共3个大体事件,事件B 包括(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个大体事件,事件C 包括(b 1,b 2),共1个大体事件.事件A ,B ,C 彼此互斥,事件至少有1名女性包括事件B 和C ,因此所求事件的概率为6+13+6+1=710.三、解答题9.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机掏出1球,求: (1)掏出1球是红球或黑球的概率; (2)掏出1球是红球或黑球或白球的概率. 解 方式一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112,依照题意知,事件A 1、A 2、A 3、A 4彼此互斥, 由互斥事件的概率公式,得 (1)掏出1球为红球或黑球的概率为 P (A 1∪A 2)=P (A 1)+P (A 2)=512+412=34.(2)掏出1球为红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+412+212=1112. 方式二 (利用对立事件求概率)(1)由方式一知,掏出1球为红球或黑球的对立事件为掏出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,因此掏出1球为红球或黑球的概率为 P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1-212-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4, 因此掏出1球为红球或黑球或白球的概率为 P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.10.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)假设从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (2)假设从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 解 (1)甲校两男教师别离用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师别离用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种.从当选出的两名教师性别相同的结果有(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种. 应选出的两名教师性别相同的概率为P 1=49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种.从当选出的两名教师来自同一学校的结果有(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种. 应选出的两名教师来自同一学校的概率为P 2=615=25.B 组 专项能力提升1.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.110答案 C解析 从盒中的10个铁钉中任取一个铁钉包括的大体事件总数为10,其中抽到合格铁钉(记为事件A )包括8个大体事件,因此所求的概率为P (A )=810=45.应选C.2.四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B .1-π4C.π8D .1-π8答案 B解析 对应长方形的面积为2×1=2,而取到的点到O 的距离小于或等于1时,其区域是以O 为圆心,半径为1的半圆,对应的面积为12×π×12=12π,那么所求的概率为1-12π2=1-π4,应选B.3.已知x ∈[-1,1],y ∈[0,2],那么点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0x +y -2≤0内的概率为________.答案 38解析 不等式组表示的区域如下图,阴影部份的面积为12×3×2-12×3×1=32,那么所求概率为38. 4.在面积为S 的△ABC 的边AB 上任取一点P ,那么△PBC 的面积大于S4的概率为________.答案 34解析 如图,当BM =14BA 时,△MBC 的面积为S 4,而当P 在M 、A 之间运动时,△PBC 的面积大于S 4,而MA =34AB ,那么△PBC 的面积大于S4的概率P =34ABAB =34.5.某日用品按行业质量标准分成五个品级,品级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其品级系数进行统计分析,取得频率散布表如下:(1)假设所抽取的205的恰有2件,求a 、b 、c 的值; (2)在(1)的条件下,将品级系数为4的3件日用品记为x 1,x 2,x 3,品级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被掏出的可能性相同),写出所有可能的结果,并求这两件日用品的品级系数恰好相等的概率. 解 (1)由频率散布表得a +0.2+0.45+b +c =1, 即a +b +c =0.35.因为抽取的20件日用品中,品级系数为4的恰有3件, 因此b =320=0.15.品级系数为5的恰有2件,因此c =220=0.1.从而a =0.35-b -c =0.1. 因此a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其品级系数相等”,那么A 包括的大体事件为{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.又大体事件的总数为10,故所求的概率P (A )=410=0.4.。

高考数学 课时52 随机数与几何概型练习(含解析)-人教版高三全册数学试题

高考数学 课时52 随机数与几何概型练习(含解析)-人教版高三全册数学试题

课时52 随机数与几何概型1.一数学兴趣小组利用几何概型的相关知识做实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形的内切圆区域有豆4009颗,则他们所测得的圆周率为(保留三位有效数字)()A.3.13B.3.14C.3.15D.3.162.在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36cm2与81cm2之间的概率为()A.B.C.D.3.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A.B.C.D.4.若在区间[-5,5]内任取一个实数a,则使直线x+y+a=0与圆(x-1)2+(y+2)2=2有公共点的概率为()A.B.C.D.5.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.B.C.1-D.6.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.B.C.D.7.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.8.在区域M=内随机撒一把黄豆,落在区域N=内的概率是.9.点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧的长度小于1的概率为.10.在区间上随机取一个数x,求cos x的值介于0到之间的概率.11.已知函数f(x)=ax+b,x∈[-1,1],a,b∈R,且是常数.(1)若a是从-2,-1,0,1,2五个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求函数y=f(x)为奇函数的概率;(2)若a是从区间[-2,2]中任取的一个数,b是从区间[0,2]中任取的一个数,求函数y=f(x)有零点的概率.12.一只蚂蚁在边长分别为5,6,的三角形区域内随机爬行,试求其恰在离三个顶点距离都大于1的地方的概率.1.答案:A解析:根据几何概型的定义有,得π≈3.13.2.答案:A解析:面积为36cm2时,边长AM=6cm;面积为81cm2时,边长AM=9cm.∴P=.3.答案:C解析:如图,在AB边上取点P',使,则P只能在AP'上(不包括P'点)运动,则所求概率为.4.答案:B解析:若直线与圆有公共点,则圆心到直线的距离d=,解得-1≤a≤3.又a∈[-5,5],故所求概率为.5.答案:C解析:设OA=OB=2R,连接AB,如图所示,由对称性可得,阴影的面积就等于直角扇形拱形的面积,S阴影=π(2R)2-×(2R)2=(π-2)R2,S扇=πR2,故所求的概率是=1-.6.答案:C解析:由已知条件可知,蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P=.7.答案:解析:[-1,2]的区间长度为3,[0,1]的区间长度为1,根据几何概型知所求概率为.8.答案:解析:画出区域M,N,如图,区域M为矩形OABC,区域N为图中阴影部分.S阴影=×4×2=4,故所求概率P=.9.答案:解析:圆周上使弧的长度为1的点M有两个,设为M1,M2,则过A的圆弧的长度为2,B点落在优弧上就能使劣弧的长度小于1,所以劣弧的长度小于1的概率为.10.解:如图,在上任取x,0<cos x<的x的取值X围是x∈.记“cos x的值介于0到之间”为事件A,则P(A)=.11.解:(1)函数f(x)=ax+b,x∈[-1,1]为奇函数,当且仅当∀x∈[-1,1],f(-x)=-f(x),即b=0,基本事件共15个:(-2,0),(-2,1),(-2,2),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中第一个数表示a的取值,第二个数表示b的取值.设事件A为“函数f(x)=ax+b,x∈[-1,1]为奇函数”,包含的基本事件有5个:(-2,0),(-1,0),(0,0),(1,0),(2,0),事件A发生的概率为P(A)=.(2)设事件B为“函数y=f(x)有零点”,试验的全部结果所构成的区域为{(a,b)|-2≤a≤2,0≤b≤2},区域面积为4×2=8.构成事件B的区域为{(a,b)|a=b=0}∪{(a,b)|-2≤a≤2,0≤b≤2,a≠0且(a+b)(b-a)<0}, 即{(a,b)|a=b=0}∪(a,b)|-2≤a≤2,0≤b≤2,a≠0且-1<<1,区域面积为×4×2=4,事件B发生的概率为P(B)=. 12.解:由题意,画出示意图(如图所示).在△ABC中,由余弦定理,得cos B=.于是sin B=.所以S△ABC=×5×6×=9.又图中阴影部分的面积为△ABC的面积减去半径为1的半圆的面积,即为S阴影=9-,所以蚂蚁恰在离三个顶点距离都大于1的地方的概率为P==1-.。

2021高考数学(理)一轮复习优化讲解《几何概型》

2021高考数学(理)一轮复习优化讲解《几何概型》

第5讲几何概型[学生用书P201]一、知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A是确定事件,(1)若A是不可能事件,则P(A)=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P(A)=0不能推出A 是不可能事件.(2)若A是必然事件,则P(A)=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P(A)=1不能推出A 是必然事件.二、习题改编1.(必修3P140练习T1改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.(必修3P137思考)在线段[0,3]上任投一点,则此点坐标小于1的概率为________. 解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.(必修3P146B 组T4改编)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3[学生用书P202]与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14B .13C.12D.23解析:选A.令t=2x,函数有零点就等价于方程t2-2at+1=0有正根,进而可得⎩⎨⎧Δ≥0t1+t2>0t1t2>0⇒a≥1,又a∈[-2,2],所以函数有零点的实数a应满足a∈[1,2],故P=14,选A.2.如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=13AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为________.解析:设OA=3,则AB=33,所以AP=3,由余弦定理可求得OP=3,∠AOP=30°,所以扇形AOC的面积为3π4,扇形AOB的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究)角度一与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A.π24+9πB.4π24+9πC.π18+9πD.4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x=2交抛物线y2=4x于A,B两点.点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为()A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·湖南六校联考)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ­ABC <12V S ­ABC ,故使得V P ­ABC <12V S ­ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V F­AMCD=13×S四边形AMCD×DF=14a3,V ADF­BCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[学生用书P313(单独成册)][基础题组练]1.(2020·湖南益阳模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·四川绵阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·广东东莞模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。

高考数学统考一轮复习 第九章 概率、统计与统计案例 第三节 几何概型(教师文档)教案 文 北师大版

高考数学统考一轮复习 第九章 概率、统计与统计案例 第三节 几何概型(教师文档)教案 文 北师大版

学习资料第三节几何概型授课提示:对应学生用书第174页[基础梳理]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)无限性:试验中所有可能出现的结果(基本事件)有无限多个.(2)等可能性:试验结果在每一个区域内均匀分布.3.几何概型的概率公式P(A)=错误!。

1.一个概念一测度几何概型的概率公式中的“测度(即构成事件的区域)"只与大小有关,而与形状和位置无关.2.两种方法判断几何概型几何度量形式的两种方法(1)当题干是双重变量问题,一般与面积有关系.(2)当题干是单变量问题,要看变量可以等可能到达的区域:若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量是否在等可能变化的区域.[四基自测]1.(基础点:面积型的几何概型)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案:A2.(基础点:区间长度型的几何概型)在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.错误!B.错误!C.错误!D.错误!答案:B3.(基础点:时间型几何概型)某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间少于20分钟的概率为________.答案:错误!4.(基础点:面积型的几何概型)求在半径为r的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率为________.答案:错误!授课提示:对应学生用书第174页考点一与长度型有关的几何概型挖掘1与线段长度有关的几何概型/ 自主练透[例1](2020·长春模拟)已知线段AC=16 cm,先截取AB=4 cm作为长方体的高,再将线段BC任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm3的概率为________.[解析]设长方体的长为x,宽为12-x,由4x(12-x)>128,得x2-12x+32〈0,∴4〈x〈8,即在线段BC内,截取点D,满足BD∈(4,8),其概率为错误!=错误!。

2021年高考数学考点52几何概型必刷题文含解析

2021年高考数学考点52几何概型必刷题文含解析

考点52 几何概型1.在区间上随机取一个数,则直线与圆有两个不同公共点的概率为()A. B. C. D.【答案】D2.在区间上随机取两个数x,y,记P为事件“”的概率,则A. B. C. D.【答案】D【解析】如图所示,表示的平面区域为,平面区域内满足的部分为阴影部分的区域,其中,,结合几何概型计算公式可得满足题意的概率值为.本题选择D选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.3.在上随机取一个数x,使得0<tanx<1成立的概率是( )A. B. C. D.【答案】C【解析】由0<tanx<1,得0<x<,故所求概率为,选C.4.甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( )A. B. C. D.【答案】D5.在平面区域内随机取一点(a,b),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为( )A. B. C. D.【答案】B6.在区间[﹣3,5]上随机地取一个数x,若x满足|x|≤m(m>0)的概率为,则m的值等于A. B. 3 C. 4 D.﹣2【答案】C【解析】区间[﹣3,5]的区间长度为5﹣(﹣3)=8,当0<m≤3时,满足|x|≤m(m>0)的解集的区间长度为2m,又在区间[﹣3,5]上随机地取一个数x,若x满足|x|≤m(m>0)的概率为,7.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为 ( )A. B. C. D.无法计算【答案】C【解析】设阴影区域的面积为,,所以.故选C.8.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为( )A. B. C. D.【答案】A【解析】满足条件的正三角形如图所示9.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A. B. C. D.【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,所以概率.故选B.10.已知实数,执行如图所示的程序框图,则输出的不小于的概率为A. B. C. D.【答案】B11.已知实数,则函数在定义域内单调递减的概率为A. B. C. D.【答案】C【解析】函数在定义域内单调递减,则恒成立,即恒成立,设12.中央电视台第一套节目午间新闻的播出时间是每天中午到,在某星期天中午的午间新闻中将随机安排播出时长打开电视,则他能收看到这条新闻的完整报道的概率是()A. B. C. D.【答案】D【解析】新闻报道中午时间段可能开始的时间为,时长30分钟,小X可能看到新闻报道的开始时间为,共5分钟,所以概率为.故选D.13.已知函数,函数,执行如图所示的程序框图,若输入的,则输出的值为的函数值的概率为()A. B. C. D.【答案】C14.把内的均匀随机数分别转化为和内的均匀随机数,,需实施的变换分别为A. B.C. D.【答案】C【解析】由随机数的变换公式可得,.故选C.15.关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个都小于1的正实数对,再统计其中能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计,那么可以估计的值为A. B. C. D.【答案】B16.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如下图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为()A. B. C. D.【答案】C17.《世界数学史简编》的封面有一图案(如图),该图案的正方形内有一内切圆,圆内有一内接正三角形,在此图案内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.【答案】B18.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.【答案】C【解析】设小正方形的边长为1,可得黑色平行四边形的底为高为;黑色等腰直角三角形的直角边为2,斜边为2,大正方形的边长为2,所以,故选C。

2020高考数学大一轮复习 第九章 概率 第3节 几何概型课件 文 新人教A版

2020高考数学大一轮复习 第九章 概率 第3节 几何概型课件 文 新人教A版
第九章 概率
第三节 几何概型
概型的意义.
1.了解随机数的意义,能运用模拟方法估计概率. 2.了解几何
栏 目 导 航
01 课前回扣·双基落实 02 课堂互动·考点突破
01 课前回扣·双基落实
1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的__长__度__(_面__积__或__体__积__)___成比 例,与区域的形状,位置无关,则称这样的概率模型为几何概率模型,简称几何概 型.
(4)随机模拟方法是以事件发生的频率估计概率. (6)从(5)区与间面[积1,1有0]关内的任几取何一概个型数的,概取率到与1几的何概图率形是的P形=状19. 有关.
(×) (( × ))
VS
题组二 教材改编⇔最新模拟
2.(P137 思考改编)在线段[0,3]上任投一点,则此点坐标小于 1 的概率为
A.12
B.13
C.14
D.1
(B )
解析 坐标小于 1 的区间为[0,1),长度为 1,[0,3]的区间长度为 3,故所求概率 为13.
3.(P140T5改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小 球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是
A ()
解析 ∵P(A)=38,P(B)=28,P(C)=26,P(D)=13,∴P(A)>P(C)=P(D)>P(B).
4.(2019·山东临沂月考)有一杯1 L的水,其中含有1个细菌,用一个小杯从
这杯水中取出0.1 L,则小杯水中含有这个细菌的概率为
(B)
A.0
B.0.1
C.0.01
D.1
解析 小杯水含有这个细菌的概率为 P=01.1=0.1.

(新课标)2020年高考数学一轮总复习第九章计数原理、概率、随机变量及其分布列9_5几何概型课件理新人教A版

(新课标)2020年高考数学一轮总复习第九章计数原理、概率、随机变量及其分布列9_5几何概型课件理新人教A版

名师点拨 求解与体积有关问题的注意点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的 体积(事件空间),对于某些较复杂的也可利用其对立事件去求.
跟踪训练 如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容
器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现
【例3】 (1)(2016·高考全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,xn, y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和 小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )
4n A. m
B.2mn
4m C. n
[三基自测] 1.(必修3·3.3练习改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小 球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘 是( )
答案:A
2.(必修3·3.3例2改编)已知A={(x,y)|-1≤x≤1,0≤y≤2},B=
x,y| 1-x2≤y .若在区域A中随机地扔一粒豆子,则该豆子落在区域B中的概率 为( )
用几何度量求概率.
查,难度为中档.
[基础梳理] 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的 长度(面积或体积) 成比例,则称 这样的概率模型为几何概率模型,简称几何概型.
2.几何概型的特点 (1)无限性:试验中所有可能出现的结果(基本事件)有 无限多 个. (2)等可能性:试验结果在每一个区域内 均匀 分布. 3.几何概型的概率公式 P(A)=试验的构全成部事结件果A所的构区成域的长区度域面长积度或面体积积或 体积.
12,2
,长度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第52讲几何概型考纲要求考情分析命题趋势1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.2017·全国卷Ⅰ,42017·江苏卷,72016·全国卷Ⅱ,8几何概型主要考查事件发生的概率与构成事件区域的长度、角度、面积、体积有关的实际问题,注重考查数形结合思想和逻辑思维能力.分值:5分1.几何概型若是事件发生的概率只与组成该事件区域的__长度(面积或体积)__成比例,而与A的形状和位置无关,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个特点一是__无穷性__,即在一次实验中,大体事件的个数是无穷的;二是__等可能性__,即每一个大体事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”,即随机事件A的概率可以用“事件A包括的大体事件所占的__图形面积(体积、长度)__”与“实验的大体事件所占的__总面积(整体积、总长度)__”之比来表示.3.在几何概型中,事件A的概率的计算公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.4.随机模拟方式(1)利用计算机或其他方式进行的模拟实验,以便通过这个实验求出随机事件的概率的近似值的方式就是模拟方式.(2)用计算机或计算器模拟实验的方式为随机模拟方式.这个方式的大体步骤是:①用计算器或计算机产生某个范围内的随机数,并给予每一个随机数必然的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=M N作为所求概率的近似值.1.思维辨析(在括号内打“√”或“”).(1)随机模拟方式是以事件发生的频率估量概率.( √ )(2)相同环境下两次随机模拟取得的概率的估量值是相等的.( × )(3)几何概型中,每一个大体事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机缘相等.( √ )(4)在几何概型概念中的区域可以是线段、平面图形、立体图形.( √ ) 解析 (1)正确.由随机模拟方式及几何概型可知,该说法正确.(2)错误.虽然环境相同,可是因为随机模拟取得的是某一次的频率,所以结果不必然相等.(3)正确.由几何概型的概念知,该说法正确. (4)正确.由几何概型的概念知,该说法正确.2.在区间(15,25]内的所有实数中随机抽取一个实数a ,则这个实数知足17<a <20的概率是( C )A .13 B .12 C .310D .710解析 ∵a ∈(15,25], ∴P (17<a <20)=20-1725-15=310.3.有一杯2 L 的水,其中含有1个细菌,用一个小杯从水中取0.1 L 水,则小杯水中含有这个细菌的概率为( C )A .0.01B .0.02C .0.05D .0.1 解析 因为取水是随机的,而细菌在2 L 水中的任何位置是等可能的,则小杯水中含有这个细菌的概率为P =0.12=0.05.4.已知x 是[-4,4]上的一个随机数,则使x 知足x 2+x -2<0的概率为( B ) A .12 B .38 C .58D .0解析 x 2+x -2<0⇒-2<x <1,则P =1-(-2)4-(-4)=38.5.某路公共汽车每5 min 发车一次,某乘客到搭车点时刻是随机的,则他候车时间不超过3 min 的概率是( A )A .35 B .45 C .25D .15解析 此题可以看成向区间[0,5]内均匀投点,求点落入[2,5]内的概率.设A ={某乘客候车时间不超过3 min},则P (A )=构成事件A 的区域长度试验的全部结果构成的区域长度=35.一 与长度、角度有关的几何概型(1)设线段l 是线段L 的一部份,向线段L 上任投一点,点落在线段l 的概率为P =l 的长度L 的长度.(2)当涉及射线的转动,如扇形中有关落点区域问题时,应以角的大小作为区域气宇来计算概率,且不可用线段代替,这是两种不同的气宇手腕.【例1】 (1)设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( B )A .34 B .12 C .13D .35(2)(2021·江苏卷)记函数f (x )=6+x -x 2的概念域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__ 59__.(3)甲、乙两个人玩一转盘游戏(转盘如图①,C 为弧AB 的中点),任意转动转盘一次,指针指向圆弧AC 时甲胜,指向圆弧BC 时乙胜.后来转盘损坏如图②,甲提议连接AD ,取AD 中点E ,若任意转动转盘一次,指针指向线段AE 时甲胜,指向线段ED 时乙胜.然后继续游戏,你感觉此时游戏__不公平__(填公平或不公平),因为P 甲__<__P 乙(填“<”“>”或“=”).解析 (1)作等腰直角△AOC 和△AMO ,B 为圆上任一点,则当点B 在MmC ︵上运动时,弦长|AB |>2R , ∴P =MmC ︵圆的周长=12.(2)由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59.(3)连接OE ,在Rt △AOD 中,∠AOE =π6,∠DOE =π3,若任意转动转盘一次,指针指向线段AE 的概率是P 甲=π6÷π2=13,指针指向线段ED 的概率是P 乙=π3÷π2=23,所以P 甲<P乙,所以乙胜的概率大,即这个游戏不公平.二 与面积有关的几何概型与面积有关的平面图形的几何概型,解题的关键是对所求的事件A 组成的平面区域形状的判断及面积的计算,大体方式是数形结合.【例2】 (1)如图,已知圆的半径为10,其内接△ABC 的内角A ,B 别离为60°和45°,现向圆内随机撒一粒豆子,则豆子落在△ABC 内的概率为( B )A .2+316πB .3+34πC .4π3+3D .16π3+3(2)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为__ 932__(用数字作答). 解析 (1)由正弦定理BCsin A=ACsin B=2R (R为圆的半径)⇒⎩⎪⎨⎪⎧BC =20sin 60°,AC =20sin 45°⇒⎩⎨⎧BC =103,AC =10 2.那么S △ABC =12×103×102×sin 75°=12×103×102×6+24=25(3+3).于是,豆子落在三角形ABC 内的概率为S △ABC圆的面积=25(3+3)102π=3+34π.(2)设小张与小王的到校时间别离为7:00后第x 分钟、第y 分钟.按照题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部份所示,阴影部份所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.三 与体积有关的几何概型对于与体积有关的几何概型问题,关键是计算问题的整体积(总空间)和事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【例3】 (1)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为__1-π12__.(2)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是__23__.解析 (1)正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为1-23π8=1-π12.(2)由题意知V S -APC V S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM ,BN 别离为△APC 与△ABC 的高,所以V S -APC V S -ABC =S △APC S △ABC =PM BN >13,又PM BN =APAB ,所以AP AB >13,故所求的概率为23(即为长度之比).1.把半径为2的圆分成相等的四段弧,再将四段弧围成星形放在半径为2的圆内,此刻往该圆内任投一点,此点落在星形内的概率为( A )A .4π-1 B .2π C .4π-12D .12解析 这是一道几何概型概率计算问题.星形弧半径为2,所以点落在星形内的概率为P =π·22-⎝ ⎛⎭⎪⎫π·224-12×2×2×2×4π·22=4π-1.故选A . 2.在区间[-1,1]上随机取一个数x ,使cos πx 2的值介于0到12之间的概率为( A )A .13 B .2π C .12D .23解析 在区间[-1,1]上随机取一个数x ,实验的全数结果组成的区域长度为2. ∵-1≤x ≤1,∴-π2≤π2x ≤π2.由0≤cos π2x ≤12,得π3≤π2x ≤π2或-π2≤π2x ≤-π3,∴23≤x ≤1或-1≤x ≤-23. 设事件A 为“cos π2x 的值介于0到12之间”,则事件A 发生对应的区域长度为23.∴P (A )=232=13.3.在区间[-2,2]上随机取一个数x ,使||x +1-||x -1≤1成立的概率为__58__.解析 在区间[-2,2]上随机取一个数x ,则-2≤x ≤2,而知足不等式|x +1|-|x -1|≤1的x 的取值为x ≤12.又因为-2≤x ≤2,故-2≤x ≤12,所以使不等式成立的概率为P=12-(-2)2-(-2)=58. 4.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部份,据此估量阴影部份的面积为__0.18__.解析 由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.易错点 几何概型概念不清错因分析:对事件中的几何元素熟悉不清楚,致使解题错误.【例1】 (1)在等腰Rt △ABC 中,在斜边AB 上任取一点M ,则AM <AC 的概率为______. (2)在等腰Rt △ABC 中,过直角极点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,则AM <AC 的概率为______.解析 (1)这是一个与长度有关的几何概型问题,在AB 上截取AC ′=AC ,于是P (AM <AC )=P (AM <AC ′)=AC ′AB =AC AB =22.(2)这是一个与角度有关的几何概型问题,在AB 上截取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°,而∠ACB =90°,于是P (AM <AC )=P (AM <AC ′)=67.590=34. 答案 (1)22 (2)34【跟踪训练1】 在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( D )A .p 1<p 2<12B .p 2<12<p 1C .12<p 2<p 1 D .p 1<12<p 2解析 (x ,y )组成的区域是边长为1的正方形及其内部,其中知足x +y ≤12的区域如图(1)中阴影部份所示,所以p 1=12×12×121×1=18,知足xy ≤12的区域如图(2)中阴影部份所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2.故选D.课时达标 第52讲[解密考纲]几何概型在高考中常以选择题或填空题的形式出现. 一、选择题1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( B ) A .45 B .35 C .25D .15解析 区间[-2,3]的长度为3-(-2)=5,[-2,1]的长度为1-(-2)=3,故知足条件的概率P =35.2.设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( C ) A .15 B .25 C .35D .45解析 方程有实根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去).所以所求概率为5-25-0=35. 3.在区间[0,2π]上任取一个数x ,则使得2sin x >1的概率为( C ) A .16 B .14 C .13D .23解析 ∵2sin x >1,x ∈[0,2π],∴x ∈⎝ ⎛⎭⎪⎫π6,5π6,∴P =5π6-π62π=13.故选C .4.(2021·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部份和白色部份关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部份的概率是( B )A .14 B .π8C .12D .π4解析 设正方形的边长为2,则正方形的面积为4,正方形内切圆的面积为π,按照对称性可知,黑色部份的面积是正方形内切圆的面积的一半,所以黑色部份的面积为π2.按照几何概型的概率公式,得所求概率P =π24=π8.故选B.5.设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D 内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( D )A .413 B .513 C .825D .925解析 作出平面区域可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为极点的三角形区域,当点在△AED 区域内时,点到直线y +2=0的距离大于2.P =S △AED S △ABC =12×6×312×10×5=925.故选D.6.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )知足条件⎩⎪⎨⎪⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为( C )A .14 B .38 C .12D .58解析 由题意,得⎩⎪⎨⎪⎧4+2b +c ≤12,4-2b +c ≤4,0≤b ≤4,0≤c ≤4,即⎩⎪⎨⎪⎧2b +c -8≤0,2b -c ≥0,0≤b ≤4,0≤c ≤4表示的区域如图中阴影部份所示,可知阴影部份的面积为8,所以所求概率为12.故选C .二、填空题7.正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取一点M ,则使四棱锥M -ABCD 的体积小于16的概率为__ 12__.解析 当V M -ABCD =16时,即13×1×1×h =16,解得h =12,则点M 到底面ABCD 的距离小于12,所以所求概率P =1×1×121×1×1=12. 8.记集合A ={(x ,y )|x 2+y 2≤4}和集合B ={(x ,y )|x +y -2≤0,x ≥0,y ≥0}表示的平面区域别离为Ω1和Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为__ 12π __.解析 作圆O :x 2+y 2=4,区域Ω1就是圆O 内部(含边界),其面积为4π,区域Ω2就是图中△AOB 内部(含边界),其面积为2,因此所求概率为24π=12π. 9.在区间(0,1)内随机地掏出两个数,则两数之和小于65的概率是__ 1725__. 解析 设随机掏出的两个数别离为x ,y ,则0<x <1,0<y <1,依题意有x +y <65,由几何概型知,所求概率为P =12-12×⎝ ⎛⎭⎪⎫1-15×⎝ ⎛⎭⎪⎫1-1512=1725. 三、解答题10.设事件A 表示“关于x 的一元二次方程x 2+ax +b 2=0有实根”,其中a ,b 为实常数.(1)若a 为区间[0,5]上的整数值随机数,b 为区间[0,2]上的整数值随机数,求事件A 发生的概率;(2)若a 为区间[0,5]上的均匀随机数,b 为区间[0,2]上的均匀随机数,求事件A 发生的概率.解析 (1)当a ∈{0,1,2,3,4,5},b ∈{0,1,2}时,共可以产生6×3=18个一元二次方程.若事件A 发生,则a 2-4b 2≥0,即|a |≥2|b |.又a ≥0,b ≥0,所以a ≥2b .从而数对(a ,b )的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值,所以P (A )=1218=23. (2)据题意,实验的全数结果所组成的区域为D ={(a ,b )|0≤a ≤5,0≤b ≤2},组成事件A 的区域B ={(a ,b )|0≤a ≤5,0≤b ≤2,a ≥2b }.在平面直角坐标系中画出区域B ,D ,如图.其中区域D 为矩形,其面积S (D )=5×2=10,区域B 为直角梯形,其面积S (B )=1+52×2=6. 所以P (A )=S (B )S (D )=610=35. 11.已知袋子中放有大小和形状相同但颜色互异的小球若干,其标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12. (1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次掏出的小球标号为a ,第二次掏出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.解析 (1)由题意共有小球n +2个,标号为2的小球n 个.从袋子中随机抽取1个小球,取到标号为2的小球的概率是nn +2=12,解得n =2. (2)①从袋子中不放回地随机抽取2个球,记第一次掏出的小球标号为a ,第二次掏出的小球标号为b ,则掏出2个小球的可能情况共有12种结果,令知足“2≤a +b ≤3”为事件A ,则事件A 共有8种结果,故P (A )=812=23. ②由①可知(a -b )2≤4,故x 2+y 2>4,(x ,y )可以看成平面中点的坐标,则全数结果组成的区域Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R },由几何概型可得概率为P =4-14π·224=1-π4. 12.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部份(图中四个阴影部份均为扇形,且每一个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),若是摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?解析 若是顾客去甲商场,实验的全数结果组成的区域为圆盘,面积为πR 2(R 为圆盘的半径),阴影区域的面积为4×15πR 2360=πR 26. 所以在甲商场中奖的概率为P 1=πR26πR 2=16. 若是顾客去乙商场,记盒子中3个白球为a 1,a 2,a 3,3个红球为b 1,b 2,b 3,记(x ,y )为一次摸球的结果,则一切可能的结果有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,b 3 ),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 3,b 1),(a 3,b 2),(a 3,b 3 ),(b 1,b 2),(b 1,b 3),(b 2,b 3),共15种,摸到的2个球都是红球有(b 1,b 2),(b 1,b 3),(b 2,b 3)共3个,所以在乙商场中奖的概率为P 2=315=15,又P 1<P 2,所以顾客在乙商场中奖的可能性大.。

相关文档
最新文档