2021年全国高考大纲文科数学

合集下载

2021年普通高等学校招生全国统一考试大纲-数学文 Word版

2021年普通高等学校招生全国统一考试大纲-数学文 Word版

文科数学Ⅰ.考核目标与要求依据一般高等学校对新生文化素养的要求,依据中华人民共和国训练部2003年颁布的《一般高中课程方案(试验)》和《一般高中数学课程标准(试验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.一、学问要求学问是指《一般高中数学课程标准(试验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括依据肯定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分学问的整体要求及其定位参照《课程标准》相应模块的有关说明.对学问的要求依次是了解、理解、把握三个层次.1.了解:要求对所列学问的含义有初步的、感性的生疏,知道这一学问内容是什么,依据肯定的程序和步骤照样仿照,并能(或会)在有关的问题中识别和生疏它.这一层次所涉及的主要行为动词有:了解,知道、识别,仿照,会求、会解等.2.理解:要求对所列学问内容有较深刻的理性生疏,知道学问间的规律关系,能够对所列学问做正确的描述说明并用数学语言表达,能够利用所学的学问内容对有关问题进行比较、判别、争辩,具备利用所学学问解决简洁问题的力量.这一层次所涉及的主要行为动词有:描述,说明,表达,推想、想象,比较、判别,初步应用等.3.把握:要求能够对所列的学问内容进行推导证明,能够利用所学学问对问题进行分析、争辩、争辩,并且加以解决.这一层次所涉及的主要行为动词有:把握、导出、分析,推导、证明,争辩、争辩、运用、解决问题等. 二、力量要求力量是指空间想象力量、抽象概括力量、推理论证力量、运算求解力量、数据处理力量以及应用意识和创新意识.1.空间想象力量:能依据条件作出正确的图形,依据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象力量是对空间形式的观看、分析、抽象的力量,主要表现为识图、画图和对图形的想象力量.识图是指观看争辩所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加帮助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象力量高层次的标志.2.抽象概括力量:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不行能有概括,而概括必需在抽象的基础上得出某种观点或某个结论.抽象概括力量是对具体的、生动的实例,经过分析提炼,发觉争辩对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的推断.3.推理论证力量:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证力量是依据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理力量.4.运算求解力量:会依据法则、公式进行正确运算、变形和数据处理,能依据问题的条件查找与设计合理、简捷的运算途径,能依据要求对数据进行估量和近似计算.运算求解力量是思维力量和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算力量包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维力量,也包括在实施运算过程中遇到障碍而调整运算的力量.5.数据处理力量:会收集、整理、分析数据,能从大量数据中抽取对争辩问题有用的信息,并做出推断.数据处理力量主要是指针对争辩对象的特殊性,选择合理的收集数据的方法,依据问题的具体状况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.6.应用意识:能综合应用所学数学学问、思想和方法解决问题,包括解决相关学科、生产、生活中简洁的数学问题;能理解对问题陈述的材料,并对所供应的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发觉问题、提出问题,综合与机敏地应用所学的数学学问、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探究和争辩,提出解决问题的思路,制造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观看、猜想、抽象、概括、证明”,是发觉问题和解决问题的重要途径,对数学学问的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、共性品质要求共性品质是指考生个体的情感、态度和价值观.要求考生具有肯定的数学视野,生疏数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧急心情,以平和的心态参与考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信念,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性打算了数学学问之间深刻的内在联系,包括各部分学问的纵向联系和横向联系,要擅长从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础学问的考查,既要全面又要突出重点.对于支撑学科学问体系的重点内容,要占有较大的比例,构成数学试卷的主体.留意学科的内在联系和学问的综合性,不刻意追求学问的掩盖面.从学科的整体高度和思维价值的高度考虑问题,在学问网络的交汇点处设计试题,使对数学基础学问的考查达到必要的深度.2.对数学思想方法的考查是对数学学问在更高层次上的抽象和概括的考查,考查时必需要与数学学问相结合,通过对数学学问的考查,反映考生对数学思想方法的把握程度.3.对数学力量的考查,强调“以力量立意”,就是以数学学问为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对学问的理解和应用,尤其是综合和机敏的应用,以此来检测考生将学问迁移到不怜悯境中去的力量,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对力量的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证力量和抽象概括力量的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象力量的考查主要体现在对文字语言、符号语言及图形语言的相互转化上;对运算求解力量的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理力量的考查主要是考查运用概率统计的基本方法和思想解决实际问题的力量.4.对应用意识的考查主要接受解决应用问题的形式.命题时要坚持“贴近生活,背景公正,把握难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践阅历,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有肯定深度和广度的数学问题时,要留意问题的多样化,体现思维的发散性;细心设计考查数学主体内容,体现数学素养的试题;也要有反映数、形运动变化的试题以及争辩型、探究型、开放型等类型的试题.数学科的命题,在考查基础学问的基础上,留意对数学思想方法的考查,留意对数学力量的考查,呈现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题.必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简洁集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简洁函数的定义域和值域;了解映射的概念.(2)在实际情境中,会依据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简洁的分段函数,并能简洁应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和争辩函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,把握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,把握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,把握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数与对数函数互为反函数(,且). xya logayx0a1a4.幂函数(1)了解幂函数的概念.(2)结合函数,,,,的图像,了解它们的变化状况. yx2yx3yx1yx12yx5.函数与方程(1)结合二次函数的图像,了解函数的零点与方程根的联系,推断一元二次方程根的存在性及根的个数. (2)依据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三) 立体几何初步1.空间几何体(1)生疏柱、锥、台、球及其简洁组合体的结构特征,并能运用这些特征描述现实生活中简洁物体的结构. (2)能画出简洁空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简洁空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.• 公理1:假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在此平面内.• 公理2:过不在同一条直线上的三点,有且只有一个平面.• 公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.• 公理4:平行于同一条直线的两条直线相互平行.• 定理:空间中假如一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为动身点,生疏和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定理.• 假如平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.• 假如一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.• 假如一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.• 假如一个平面经过另一个平面的垂线,那么这两个平面相互垂直.理解以下性质定理,并能够证明.• 假如一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.• 假如两个平行平面同时和第三个平面相交,那么它们的交线相互平行.• 垂直于同一个平面的两条直线平行.• 假如两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简洁命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,把握过两点的直线斜率的计算公式.(3)能依据两条直线的斜率判定这两条直线平行或垂直.(4)把握确定直线位置的几何要素,把握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)把握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)把握确定圆的几何要素,把握圆的标准方程与一般方程.(2)能依据给定直线、圆的方程推断直线与圆的位置关系;能依据给定两个圆的方程推断两圆的位置关系. (3)能用直线和圆的方程解决一些简洁的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本规律结构:挨次、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简洁随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估量总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估量总体分布,会用样本的基本数字特征估量总体的基本数字特征,理解用样本估量总体的思想.(5)会用随机抽样的基本方法和样本估量总体的思想解决一些简洁的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图生疏变量间的相关关系.(2)了解最小二乘法的思想,能依据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.大事与概率(1)了解随机大事发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区分.(2)了解两个互斥大事的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机大事所含的基本大事数及大事发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估量概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,,的图像,了解三角函数的周期性. π2πsinyx cosyx tanyx(3)理解正弦函数、余弦函数在区间上的性质(如单调性、最大值和最小值以及与轴的交点等),理解正切函数在区间内的单调性. [0,2π]xππ,22(4)理解同角三角函数的基本关系式:,. 22sincos1xx sintancosxxx(5)了解函数的物理意义;能画出的图像,了解参数,,对函数图像变化的影响. sin()yAx A(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简洁实际问题.(九)平面对量1.平面对量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面对量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)把握向量加法、减法的运算,并理解其几何意义.(2)把握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面对量的基本定理及坐标表示(1)了解平面对量的基本定理及其意义.(2)把握平面对量的正交分解及其坐标表示.(3)会用坐标表示平面对量的加法、减法与数乘运算.(4)理解用坐标表示的平面对量共线的条件.4.平面对量的数量积(1)理解平面对量数量积的含义及其物理意义.(2)了解平面对量的数量积与向量投影的关系.(3)把握数量积的坐标表达式,会进行平面对量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积推断两个平面对量的垂直关系.5.向量的应用(1)会用向量方法解决某些简洁的平面几何问题.(2)会用向量方法解决简洁的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简洁的三角恒等变换能运用上述公式进行简洁的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). (十一)解三角形1.正弦定理和余弦定理把握正弦定理、余弦定理,并能解决一些简洁的三角形度量问题.2.应用能够运用正弦定理、余弦定理等学问和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简洁表示法(1)了解数列的概念和几种简洁的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)把握等差数列、等比数列的通项公式与前项和公式. n(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关学问解决相应的问题. (4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简洁线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简洁的二元线性规划问题,并能加以解决.4.基本不等式: 2abab≥(0,0)ab≥≥(1)了解基本不等式的证明过程.(2)会用基本不等式解决简洁的最大(小)值问题.(十四)常用规律用语1.命题及其关系(1)理解命题的概念.(2)了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. pq (3)理解必要条件、充分条件与充要条件的意义.2.简洁的规律联结词了解规律联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)把握椭圆的定义、几何图形、标准方程及简洁几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简洁几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简洁应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能依据导数定义求函数 (为常数),,,的导数. yC C(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简洁函数的导数.• 常见基本初等函数的导数公式:(为常数); ,; ()0C1()nnxnx n N;; (sin)cosxx(cos)sinxx; (,且); (e)exx()lnxxaaa0a1a; (,且). 1(ln)xx1(log)logeaaxx• 常用的导数运算法则:法则1: . [()()]()()uxvxuxvx法则2: . [()()]()()()()uxvxuxvxuxvx法则3: (). 2()()()()()()()uxuxvxuxvxvxvx()0vx3.导数在争辩函数中的应用(1)了解函数单调性和导数的关系;能利用导数争辩函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、微小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简洁应用.2.回归分析了解回归分析的基本思想、方法及其简洁应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简洁的推理,了解合情推理在数学发觉中的作用. (2)了解演绎推理的重要性,把握演绎推理的基本模式,并能运用它们进行一些简洁推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.。

高考新课标大纲及解读:数学

高考新课标大纲及解读:数学

高考新课标大纲及解读:数学2021年高考考试说明(课程规范实验版)数学(文)I.考试性质普通初等学校招生全国一致考试是合格的高中毕业生和具有同等学力的考生参与的选拔性考试.初等学校依据考生效果.按己确定的招生方案。

德、智、体片面权衡.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ.考试内容依据普通初等学校正重生文明素质的要求,依据中华人民共和国教育部2021年公布的«普通搞好总课程方案(实验)»和«普通高中数学课程规范(实验)»的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。

数学科考试,要发扬数学作为主要基础学科的作用,要调查考生对中学的基础知、基本技艺的掌握水平,要考察考生对数学思想方法和数学实质的了解水平,要调查考生进入初等学校继续学习的潜能。

一、考核目的与要求1.知识要求知识是指«普通高中数学课程规范(实脸)»(以下简称«课程规范»)中所规则的必修课程、选修课程系列1和系列4中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括依照一定顺序与步孩停止运其。

处置数据、绘制图表等基本技艺.各局部知识的全体要求及其定位参照«课程规范»相应模块的有关说明对知识的要求依次是了解、了解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、理性的看法.知道这一知识内容是什么,依照一定的顺序和步骤照样模拟,并能(或会)在有关的效果中识别和看法它.这一层次所触及的主要行为动词有:了解,知道、识别,模拟,会求、会解等.(2)了解:要求对所列知识内容有较深入的理性看法.知道知知识间的逻辑关系,可以对所列知识做正确的描画说明并用数学言语表达,可以应用所学的知识内容对有关效果停止比拟、判别、讨论,具有应用所学知识处置复杂效果的才干。

这一层次所触及的主要行为动词有:描画,说明,表达,推测、想象。

2021年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2021年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45-3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B .36 C .13D .335.函数3ln(1)(1)y x x =+>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为23,则C的焦距等于( )A .2B .22C .4D .212.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答)14.函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是111()(21)nnk k k k a a k +==-=-∑∑于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=13,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA, 所以3tanAcosC=2sinC.因为tanA=13,所以cosC=2sinC.tanC=1 2 .所以tanB=tan[180︒-(A+C)]=-tan(a+c)=tan tan1tan tanA CA C+--=-1,即B=135︒.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D⊂平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC⊂平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A13,因为A1C为∠ACC1的平分线,故A1D=A13作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB-C的平面角,由AD=22111AAA D -=,得D 为AC 的中点,DF=152AC BC AB ⨯⨯=,tan ∠A 1FD=115A DDF=,所以二面角A 1-AB-C 的大小为arctan 15. 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =22(2)2a c -+=,即2240a a c -+=,于是11AC BA ⋅=2240a a c -+=①,所以11AC BA ⊥.(2)设平面BCC 1B 1的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ==-,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,(,0,2)m c a =-,点A到平面BCC 1B 1的距离为22cos ,(2)CA m CA m CA c mc a ⋅⋅<>===+-,又依题设,点A 到平面BCC 1B 1的距3c= 3.代入①得a=3(舍去)或a=1.于是1(13)AA =-,设平面ABA 1的法向量(,,)n p q r =,则1,n AA n AB⊥⊥,即10,0n AA n AB ⋅=⋅=.30p r -=且-2p +q =0,令p =3,则q =23,r=1,(3,23,1)n =,又(0,0,1)p =为平面ABC 的法向量,故cos 1,4n p n p n p⋅<>==,所以二面角A 1-AB-C 的大小为arccos 1420. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·CP(B)=0.6,P(C)=0.4,P(A i )=220.5,0,1,2iC i ⨯=. 所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C )= P(A 1·B ·C)+P(A 2·B)+P(A 2·B ·C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p (B )·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:12x x ==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(23422223,),m MN y y m m ++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。

2021版《大高考》高考数学(文)一轮总复习高考AB卷:第8章 立体几何初步 第五节

2021版《大高考》高考数学(文)一轮总复习高考AB卷:第8章 立体几何初步 第五节

1.(2021·大纲全国,11)已知正四棱柱ABCDA 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33 C.23D.13解析 如图,设AA 1=2AB =2,AC 交BD 于点O ,连接OC 1,过C 作CH ⊥OC 1于点H ,连接DH .∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面ACC 1A 1.∴CH ⊂平面ACC 1A 1,∴CH ⊥BD .∴CH ⊥平面C 1BD .∴∠CDH 为CD 与平面BDC 1所成的角. OC 1=CC 21+OC 2=4+⎝ ⎛⎭⎪⎫222=32. 由等面积法得OC 1·CH =OC ·CC 1, ∴32·CH =22×2.CH =23. ∴sin ∠CDH =CH CD =231=23.故选A. 答案 A2.(2022·新课标全国Ⅰ,18)如图,已知正三棱锥P ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明:G 是AB 的中点;(2)作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四周体PDEF 的体积.(1)证明 由于P 在平面ABC 内的正投影为D ,所以AB ⊥PD .由于D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 所以AB ⊥平面PED ,故AB ⊥PG .又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,由于P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四周体PDEF 的体积V =13×12×2×2×2=43.3.(2022·新课标全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CFCD ,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.4.(2021·新课标全国Ⅰ,18)如图,四边形ABCD 为菱形,G 是AC 与BD的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积. 解 (1)由于四边形ABCD 为菱形,所以AC ⊥BD .由于BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得 AG =GC =32x ,GB =GD =x2.由于AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥EACD 的体积V EACD =13×12AC ·GD ·BE =624x 3=63.故x =2. 从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+2 5.5.(2022·新课标全国Ⅰ,19)如图,三棱柱ABCA 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABCA 1B 1C 1的高.(1)证明 连接BC 1,则O 为B 1C 与B C 1的交点.由于侧面BB 1C 1C 为菱形, 所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,又由于BC 1∩AO =O ,所以B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,AO ∩OD =O ,故BC ⊥平面AOD ,所以OH ⊥BC .又OH ⊥AD ,所以OH ⊥平面ABC .由于∠CBB 1=60°,所以△CBB 1为等边三角形, 又BC =1,可得OD =34.由于AC ⊥AB 1,所以OA =12B 1C =12. 由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114.又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABCA 1B 1C 1的高为217.1.(2022·浙江,6)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A.若m ⊥n ,n ∥α,则m ⊥α B.若m ∥β,β⊥α,则m ⊥α C.若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D.若m ⊥n ,n ⊥β,β⊥α,则m ⊥α解析 选项A 、B 、D 中m 均可能与平面α平行、垂直、斜交或平面α内,故选C. 答案 C2.(2021·浙江,4)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A.若m ∥α,n ∥α,则m ∥n B.若m ∥α,m ∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A选项中直线m,m可能平行,也可能相交或异面,直线m,n的关系是任意的;B选项中,α与β也可能相交,此时直线m平行于α,β的交线;D选项中,m也可能平行于β.故选C.答案 C3.(2022·北京,18)如图,在四棱锥P ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.(1)证明∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面P AC,AC⊂平面P AC,∴CD⊥平面P AC. (2)证明∵AB∥CD,CD⊥平面P AC,∴AB⊥平面P AC,AB⊂平面P AB,∴平面P AB⊥平面P AC.(3)解棱PB上存在点F,使得P A∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又由于E为AB的中点,∴EF为△P AB的中位线,∴EF∥P A.又P A⊄平面CEF,EF⊂平面CEF,∴P A∥平面CEF.4.(2022·浙江,18)如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示,由于平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又由于EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解由于BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=3,DF=32,得cos ∠BDF=217.所以,直线BD与平面ACFD所成角的余弦值为217.5.(2022·四川,17)如图,在四棱锥P ABCD中,P A⊥CD,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD.(1)在平面P AD内找一点M,使得直线CM∥平面P AB,并说明理由.(2)证明:平面P AB⊥平面PBD.(1)解取棱AD的中点M(M∈平面P AD),点M即为所求的一个点,理由如下:由于AD∥BC,BC=12AD.所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面P AB.CM⊄平面P AB.所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,P A⊥AB,P A⊥CD.由于AD∥BC,BC=12AD,所以直线AB与CD相交,所以P A⊥平面ABCD.从而P A⊥BD.由于AD∥BC,BC=12AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形,所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.6.(2021·安徽,19)如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求PMMC的值.(1)解由题设AB=1,AC=2,∠BAC=60°,可得S△ABC =12·AB·AC·sin 60°=32.由P A⊥平面ABC,可知P A是三棱锥P-ABC的高,又P A=1.所以三棱锥P-ABC的体积V=13·S△ABC·P A=36.(2)证明在平面ABC内,过点B作BN⊥AC,垂足为N,在平面P AC内,过点N作MN∥P A 交PC于点M,连接BM.由P A⊥平面ABC知P A⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN,又BM⊂平面MBN,所以AC⊥BM.在Rt△BAN中,AN=AB·cos∠BAC=12,从而NC=AC-AN=32,由MN∥P A,得PMMC=ANNC=13.7.(2021·湖北,20)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四周体称之为鳖臑.在如图所示的阳马P ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E 是PC的中点,连接DE、BD、BE.(1)证明:DE⊥平面PBC.试推断四周体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马P ABCD的体积为V1,四周体EBCD的体积为V2,求V1V2的值.解(1)由于PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PCD,所以BC⊥DE.又由于PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.由BC⊥平面PCD,DE⊥平面PBC,可知四周体EBCD的四个面都是直角三角形,即四周体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB. (2)由已知,PD是阳马P ABCD的高,所以V1=13S ABCD·PD=13BC·CD·PD;由(1)知,DE是鳖臑DBCE的高,BC⊥CE,所以V2=13S△BCE·DE=16BC·CE·DE.在Rt△PDC中,由于PD=CD,点E是PC的中点,所以DE=CE=22CD,于是V1V2=13BC·CD·PD16BC·CE·DE=2CD·PDCE·DE=4.8.(2021·浙江,18)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.(1)证明设E为BC的中点,由题意得A1E⊥平面ABC,所以A1E⊥AE,由于AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以AA1DE为平行四边形.于是A1D∥AE.又由于AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)解作A1F⊥DE,垂足为F,连接BF.由于A1E⊥平面ABC,所以BC⊥A1E.由于BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E =14.由DE=BB1=4.DA1=EA=2,∠DA1E=90°,得A1F=7 2.所以sin ∠A1BF=7 8.。

全国数学高考考试大纲之欧阳育创编

全国数学高考考试大纲之欧阳育创编

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。

(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩(Venn)图表达集合的关系及运算。

2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2) 指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

④知道指数函数是一类重要的函数模型。

(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③知道对数函数是一类重要的函数模型。

④了解指数函数与对数函数互为反函数(a>0,且 a≠1 )。

(4) 幂函数①了解幂函数的概念。

②结合函数的图像,了解它们的变化情况。

高考数学(文科)考试大纲

高考数学(文科)考试大纲

高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。

二、考试形式本科目考试采取笔试形式。

三、考试时间考试时间为 120 分钟。

四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。

2021年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (文科)(解析版)

2021年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (文科)(解析版)

2绝密★启用前2011 年普通高等学校招生全国统一考试文科数学(必修+选 修 I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷 1 至 2 页。

第Ⅱ卷 3 至 4 页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:第Ⅰ卷1.答题前,考生在答题卡上务必用直径 0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚, 并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在.试.题.卷.上.作.答.无.效.. 3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合 U= {1, 2, 3, 4}, M = {1, 2, 3}, N = {2, 3, 4}, 则ð(U MI N )= ( )(A ) {1,2} 【答案】D(B ) {2,3} (C ) {2,4}(D ) {1,4}【命题意图】本题主要考查集合交并补运算.【解析】Q M I N = {2, 3},∴ ðU (M I N ) = {1, 4}(2)函数 y = 2 x (x ≥ 0) 的反函数为()x 2x 2(A ) y = (x ∈ R )4 (B ) y = (x ≥ 0)4(C ) y = 4x 2(x ∈ R ) 【答案】B(D ) y = 4x 2 (x ≥ 0)【命题意图】本题主要考查反函数的求法.y 2【解析】由原函数反解得 x = ,又原函数的值域为 y ≥ 0,所以函数 y = 2 4x (x ≥ 0) 的反函数为y = x (x ≥ 0) .4r r 1 (3)设向量 a , b 满足| a |=| b |= 1, a ⋅ b = - 2,则 a + 2b = ()(A ) 【答案】B(B ) (C ) 5 (D ) 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.r r r 2 2 r r ur 2 1r r 【解析】| a + 2b | =| a | +4a ⋅ b + 4| b | = 1+ 4 ⨯ (- ) + 4 = 3 ,所以 a + 2b = 22 3 73⎪⎩⎧x + y ≤ 6 (4)若变量 x ,y 满足约束条件 ⎨x - 3y ≤ -2 ,则z =2x + 3y 的最小值为( )⎪x ≥ 1 (A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线 z =2x + 3y 过直线 x=1 与 x-3y=-2 的交点(1,1)时取得最小值,所以最小值为 5.(5)下面四个条件中,使 a > b 成立的充分而不必要的条件是()(A ) a >b +1 【答案】A(B ) a >b -1 (C ) a 2>b 2(D ) a 3>b 3【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题 P ,使 P ⇒ a > b ,且 a > b 推不出 P ,逐项验证知可选 A.(6)设 S n 为等差数列 {a n }的前 n 项和,若 a 1 = 1,公差 d = 2 , S k +2 - S k = 24 ,则 k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一 S 得k = 5 .k +2- S k = [(k + 2) ⨯1+ (k + 2)(k +1) ⨯ 2] - [k ⨯1+ k (k -1)⨯ 2] = 4k + 4 = 24 ,解2 2解法二: S k +2 - S k = a k +2 + a k +1 = [1+ (k +1) ⨯ 2] + (1+ k ⨯ 2) = 4k + 4 = 24,解得 k = 5 .(7)设函数 f (x ) = cos ωx (ω> 0) ,将 y = f (x ) 的图像向右平移图像重合,则ω的最小值等于 1π个单位长度后,所得的图像与原3(A )3(B ) 3 (C ) 6 (D ) 9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.π π【解析】由题意将 y = f (x ) 的图像向右平移 个单位长度后,所得的图像与原图像重合,说明了33是此函数周期的整数倍,得 2π⨯ k = π(k ∈ Z ) ,解得ω= 6k ,又ω> 0 ,令 k = 1,得ω= 6 .ω 3min(8)已知直二面角α- l - β,点 A ∈α, AC ⊥ l , C 为垂足, B ∈β, BD ⊥ l , D 为垂足,若 AB = 2, AC = BD = 1,则CD = ()(A ) 2 (B ) 【答案】C(C ) (D )1 【命题意图】本题主要考查二面角的平面角及解三角形. 【解析】因为α- l - β是直二面角, AC ⊥ l ,∴ AC ⊥平面αAlDCβB3 23 (a - 4)2 + (a -1)2 2⨯ (100 - 4⨯17) 3 134 15β,∴ AC ⊥ BC∴ BC = ,又 BD ⊥ l ,∴CD =(9) 4 位同学每人从甲、乙、丙 3 门课程中选修 1 门,则恰有 2 人选修课程甲的不同选法共有( )(A) 12 种 (B) 24 种 (C) 30 种 (D)36 种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出 2 人选修课程甲有C 2= 6 种方法,第二步安排剩余两人从乙、丙中各选 1 门课程有 2 ⨯ 2 种选法,根据分步计数原理,有6 ⨯ 4 = 24 种选法.(10) 设 f (x ) 是周期为 2 的奇函数,当0 ≤ x ≤ 1时, f (x ) = 2x (1 - x ) ,则 f (- 5) = ()21 (A) -2【答案】A(B) - (C) 14 41 (D)2【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量 - 转化到区间[0,1]上进行求值.2【解析】由 f (x ) 是周期为 2 的奇函数,利用周期性和奇偶性得:f (- 5) = f (- 5 + 2) = f (- 1) = - f ( 1) = -2 ⨯ 1 ⨯ (1- 1) = - 12 2 2 2 2 2 2(11)设两圆C 1 、C 2 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 C 1C 2 = (A)4 (B) 4 【答案】C(C)8 (D) 8 【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线 y=x 上并且在第一象限,设圆心坐标为(a , a )(a > 0) ,则a = ,即 a 2 -10a +17 = 0 ,所以由两点间的距离公式可求出C 1C 2 = = = 8 .(12)已知平面α截一球面得圆 M ,过圆心 M 且与α成600二面角的平面β截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4π,则圆 N 的面积为 (A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆 M 的面积为 4π知球心O 到圆 M 的距离OM = 2 3 ,在 Rt ∆OMN 中, ∠OMN = 30︒ , ∴ON = 1OM = ,故圆 N 的半径 r 2的面积为 S = πr 2= 13π.= ,∴圆 N22 2 2[(a + a )2- 4a a ] 1 2 1 2R 2 - ON 25 第Ⅱ卷注意事项: 1 答题前,考生先在答题卡上用直径 0.5 毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚, 然后贴好条形码。

山东高考数学大纲解析

山东高考数学大纲解析

2021年山东高考数学大纲解析文科数学:“双基〞仍为根本,主干还是核心解读人:山师附中文科数学备课组长、高级教师王俊亮从2021年的数学(文史类)山东卷考试说明看,命题指导思想、考试内容及要求、考试形式与试卷结构与去年保持一致。

选修系列4的内容,在2021年仍不列入数学(文史类)科目的考试范围。

考查学生的数学根底知识、根本技能以及运用所学知识分析解决问题的能力是高考不变的主旨。

自2021年山东卷题量改成单项选择题减少2题(分值减少10分),填空题增加1题(分值增加9分),解答题题量不变(分值增加1分)后,主观性试题从试题量到分值都有较大的增加。

2021年基于这样一种相比照拟稳定的试卷结构,试卷既加强对考生根本知识根本技能的考查,更需要考生充分发挥主观能动性,也更好地反映考生的实际学情。

考生在复习备考中,仍要认真研究历年的高考真题,特别是文科数学的六大主干知识(三角函数、概率、数列、立体几何、函数与导数、解析几何),“零距离〞的感受高考题的命题导向、命题意图以及评分标准;在综合模拟题的训练中穿插静悟,静心思考,反复感悟,不拘泥于题海,有针对性地进行专题训练,也争取在主干知识的交汇处进行复习提升。

理科数学:命题根本与去年一致,突出考查核心内容解读人:山师附中理科数学备课组长孙宁从2021年的数学(理工类)山东卷考试说明看,命题指导思想、考试内容及要求、考试形式与试卷结构与去年保持一致。

以能力立意,在考查根底知识和根本技能的同时,注重考查考生的数学思想方法及学科能力,展现了数学的科学价值和人文价值的考试要求是不变的。

从近三年的山东卷来看,试卷依据课程标准和考试说明,强调回归根底知识和根本技能的重要性,试卷中有的试题直接源自于课本中的例题和习题,充分表达出“源于教材,高于教材〞的理念,试卷对数学知识的考查覆盖面比拟广,并且各个模块分布合理。

考生在复习备考的过程中要用好教材。

试卷对数学根底知识全面考查的同时,突出考查中学数学学科体系的核心内容,并到达了必要的深度,三角函数、立体几何、概率统计、数列、函数与导数、解析几何等主干知识在整份试卷中得到充分考查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科数学Ⅰ.考核目标与要求根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列 4 的内容,确定文史类高考数学科考试内容.一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算, 对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法, 选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”, 是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.1.集合的含义与表示必考内容(一)集合(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法) 表示函数.(3)了解简单的分段函数,并能简单应用.a (4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数 y = a x 与对数函数 y = log x 互为反函数( a > 0 ,且 a ≠ 1).4.幂函数(1)了解幂函数的概念.1 1(2)结合函数 y = x , y = x 2 , y = x 3 , y = , y = x 2 的图像,了解它们的变化情况. x 5.函数与方程(2)根据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三) 立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. • 公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面 内.• 公理 2:过不在同一条直线上的三点,有且只有一个平面.•公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理 4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含 义.(六) 统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎 叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七) 概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八) 基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出 π± α , π ± α 的正弦、余弦、正切的诱导公2 式,能画出 y = sin x , y = cos x , y = tan x 的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0, 2π ] 上的性质(如单调性、最大值和最小值以 及与 x 轴的交点等),理解正切函数在区间⎛ - π , π ⎫ 内的单调性.2 2 ⎪ ⎝ ⎭(4)理解同角三角函数的基本关系式:sin 2 x + cos 2 x = 1, sin x = tan x . cos x(5)了解函数y =A sin(ωx +ϕ) 的物理意义;能画出y =A sin(ωx +ϕ) 的图像,了解参数A , ω, ϕ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法ab (1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式: a b ≥ (a ≥0,b ≥0)2(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若 p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作 用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义⎣ ⎦(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算 (1)能根据导数定义求函数 y = C( C 为常数), y = x , y = x 2 , y = 1 的导数. x(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.• 常见基本初等函数的导数公式:(C )' = 0 ( C 为常数); ( x n )' = nx n -1 , n ∈ N + ;(sin x )' = cos x ; ( cos x )' = -sin x ;( e x )' = e x ; ( a x )' = a x ln a ( a > 0 ,且a ≠ 1); ( ln x )' = 1 ; ( log x )' = 1 log e ( a > 0 ,且 a ≠ 1).x• 常用的导数运算法则:a x a 法则 1: [u (x ) ± v (x ) ]' = u '(x ) ± v '(x ) .法则 2: [u (x )v (x ) ]' = u '(x )v (x ) + u (x )v '(x ) .法则 3: ⎡u (x ) ⎤' ⎢ v (x ) ⎥ = u '(x )v (x ) - u (x )v '(x ) v 2 (x ) ( v (x ) ≠ 0 ). 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其简单应用.2.回归分析了解回归分析的基本思想、方法及其简单应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推 理.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考 过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.(十九)数系的扩充与复数的引入1.复数的概念(1)理解复数的基本概念.(2)理解复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.2.复数的四则运算(1)会进行复数代数形式的四则运算.(2)了解复数代数形式的加、减运算的几何意义.(二十)框图1.流程图(1)了解程序框图.(2)了解工序流程图(即统筹图).(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.2.结构图(1)了解结构图.1.坐标系(1)理解坐标系的作用.选考内容(一)坐标系与参数方程(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.(二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1) a +b ≤ a +b .(2) a -b ≤ a -c +c -b .(3)会利用绝对值的几何意义求解以下类型的不等式:ax +b ≤c ;ax +b≥c;x -a +x -b≥c.。

相关文档
最新文档