2019年全国硕士研究生入学统一考试数学(一)真题及解析

合集下载

2019年考研数学一真题附答案解析

2019年考研数学一真题附答案解析

2019年考研数学一真题解析一、选择题 1—8小题.每小题4分,共32分.1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A )1 (B )2 (C )3 (D )4【答案】(C )【详解】当0x →时,331tan ()3x x x o x =++,所以331tan ()3x x x o x -=-+,所以3k =. 2.设函数,0()ln ,0x x x f x x x x ⎧≤⎪=⎨>⎪⎩,则0x =是()f x 的( )(A )可导点,极值点 (B )不可导的点,极值点 (C )可导点,非极值点 (D )不可导点,非极值点【答案】(B )【详解】(1)01ln(00)lim ln lim 0,(00)lim 0,(0)01x x x x f x x f x x f x++-→→→-+===-===,所以函数在0x =处连续;(2)0ln (0)lim x x xf x++→'==-∞,所以函数在0x =处不可导;(3)当0x <时,2(),()20f x x f x x '=-=->,函数单调递增;当10x e<<时,()1ln 0f x x '=+<,函数单调减少,所以函数在0x =取得极大值.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是( )(A )1n n u n ∞=∑ (B )11(1)n n n u ∞=-∑ (C )111n n n u u ∞=+⎛⎫- ⎪⎝⎭∑ (D )2211()n n n u u ∞+=-∑【答案】(D )【详解】设{}n u 是单调增加的有界数列,由单调有界定理知lim n n u →∞存在,记为lim n n u u →∞=;又设n ∀,满足n u M ≤,则221111()()2()n n n n n n n n u u u u u u M u u ++++-=+-≤-,且2210n n u u +-≥,则对于正项对于级数2211()n n n uu ∞+=-∑,前n 项和:221111111()2()2()22nnn k kk k n n k k S uu M u u M u u Mu Mu ++++===-≤-=-≤→∑∑也就是2211()n n n uu ∞+=-∑收敛.4.设函数2(,)xQ x y y=,如果对于上半平面(0)y >内任意有向光滑封闭曲线C 都有 (,)(,)0CP x y dx Q x y dy +=⎰那么函数(,)P x y 可取为( )(A )22x y y - (B )221x y y - (C )11x y- (D )1x y -【答案】(D )【详解】显然,由积分与路径无关条件知21P Q y x y ∂∂≡=∂∂,也就是1(,)()P x y C x y=-+,其中()C x 是在(,)-∞+∞上处处可导的函数.只有(D )满足.5.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若22A A E +=,且4A =,则二次型T x Ax 的规范形是( )(A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222123y y y ---【答案】(C )【详解】假设λ是矩阵A 的特征值,由条件22A A E +=可得220λλ+-=,也就是矩阵A 特征值只可能是1和2-.而1234A λλλ==,所以三个特征值只能是1231,2λλλ===-,根据惯性定理,二次型的规范型为222123y y y --.6.如图所示,有三张平面两两相交,交线相互平行,它们的方程123(1,2,3)i i i i a x a y a z d i ++==组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则( )(A )()2,()3r A r A == (B )()2,()2r A r A == (C )()1,()2r A r A == (D )()1,()1r A r A == 【答案】(A )【详解】(1)显然三个平面没有共同交点,也就是非齐次方程组无解,从而()()r A r A <; (2)从图上可看任何两个平面都不平行,所以()2r A ≥;7. 设,A B 为随机事件,则()()P A P B =的充分必要条件是 ( )(A )()()()P A B P A P B =+ (B ) ()()()P AB P A P B =(C )()()P AB P B A = (D )()()P AB P AB =【答案】(C )【详解】选项(A )是,A B 互不相容;选项(B )是,A B 独立,都不能得到()()P A P B =; 对于选项(C ),显然,由()()(),()()()P AB P A P AB P B A P B P AB =-=-,()()()()()()()()P AB P B A P A P AB P B P AB P A P B =⇔-=-⇔=8.设随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ.则{1}P X Y -<( )(A )与μ无关,而与2σ有关 (B )与μ有关,而与2σ无关 (C )与μ,2σ都有关 (D )与μ,2σ都无关【答案】(A )【详解】由于随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ,则2~(0,2)X Y N σ-,从而{1}{11}21P X Y P X Y P -<=-≤-<=≤≤=Φ- 只与2σ有关.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.设函数()f u 可导,(sin sin )z f y x xy =-+,则11cos cos z zx x y y∂∂⋅+⋅=∂∂ . 【答案】cos cos y x x y+ 解:cos (sin sin ),cos (sin sin )z zx f y x y y f y x x x y∂∂''=-⋅-+=⋅-+∂∂ 11cos cos cos cos z z y xx x y y x y∂∂⋅+⋅=+∂∂ 10.微分方程2220yy y '--=满足条件(0)1y =的特解为y = .【答案】y =【详解】把方程变形2220yy y '--=得22()()20y y '--=,即222(2)22x d y dx y Ce y y +=⇒+=⇒=+由初始条件(0)1y =确定3C =,所以y =11.幂级数1(1)(2)!n nn x n ∞=-∑在(0,)+∞内的和函数()S x = . 看不清楚题目是1(1)(2)!n n n x n ∞=-∑还是0(1)(2)!n n n x n ∞=-∑,我以1(1)(2)!n nn x n ∞=-∑给出解答. 【答案】1【详解】注意20(1)cos ,(,)(2)!n nn x x x n ∞=-=∈-∞+∞∑,从而有:110(1)(1)(1)11,(0,)(2)!(2)!(2)!n n n n nn n n n x x n n n ∞∞∞===---==-=∈+∞∑∑∑ 12.设∑为曲面22244(0)x y z z ++=≥的上侧,则∑= .【答案】32.3【详解】显然曲面∑在xOy 平面的投影区域为22{(,)|4}xy D x y x y =+≤22220432dxdy dxdy 2sin 3x y y y d r dr πθθ∑∑+≤====⎰⎰⎰⎰⎰⎰ 13.设123(,,)A ααα=为三阶矩阵,若12,αα线性无关,且3122ααα=-+,则线性方程组0Ax =的通解为 .【答案】121x k -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,其中k 为任意常数.【详解】显然矩阵A 的秩()2r A =,从而齐次线性方程组0Ax =的基础解系中只含有一个解向量.由3122ααα=-+可知12320ααα-+-=也就是121x -⎛⎫ ⎪= ⎪ ⎪-⎝⎭为方程组基础解系,通解为121x k -⎛⎫⎪= ⎪ ⎪-⎝⎭,其中k 为任意常数.14.设随机变量X 的概率密度为,02()20,xx f x ⎧<<⎪=⎨⎪⎩其他,()F x 为其分布函数,()E X 其数学期望,则{()()1}P F X E X >-= .【答案】2.3【详解】20,01(){},0241,2x F x P X x x x x <⎧⎪⎪=≤=≤<⎨⎪≥⎪⎩,2204()23x E X dx ==⎰.012{()()1}{()}{133P F X E X P F X P X >-=>=>=-=三、解答题15.(本题满分10分)设函数()y x 是微分方程22x y xy e-'+=满足条件(0)0y =的特解.(1)求()y x ;(2)求曲线()y y x =的凸凹区间及拐点. 【详解】(1)这是一个一阶线性非齐次微分方程. 先求解对应的线性齐次方程0y xy '+=的通解:22x y Ce -=,其中C 为任意常数;再用常数变易法求22x y xy e-'+=通解,设22()x y C x e-=为其解,代入方程,得2222(),()1x x C x eeC x --''==,1()1C x dx x C ==+⎰,也就是通解为:221()x y x C e-=+把初始条件(0)0y =代入,得10C =,从而得到22().x y x xe -=(2)2222232222(),()(1),()(3)(x x x x y x xey x ex y x x x ex x x e----'''==-=-=令()0y x ''=得1230,x x x ===.当x <0x <<0y ''<,是曲线的凸区间;当0x <<或x >0y ''>,是曲线的凹区间.曲线的拐点有三个,分别为3322()--.16.(本题满分10分)设,a b 为实数,函数222z ax by =++在点(3,4)处的方向导数中,沿方向34l i j =--的方向导数最大 ,最大值为10.(1)求常数,a b 之值;(2)求曲面222(0)z ax by z =++≥的面积. 【详解】(1)222z ax by =++,则2,2z zax by x y∂∂==∂∂; 所以函数在点(3,4)处的梯度为()(3,4)(3,4)|,6,8z z gradf a b x y ⎛⎫∂∂==⎪∂∂⎝⎭;gradf = 由条件可知梯度与34l i j =--方向相同,且10gradf ==.也就得到2683410a b⎧=⎪--=解出11a b =-⎧⎨=-⎩或11a b =⎧⎨=⎩(舍).即11a b =-⎧⎨=-⎩.(2)22202133Sx y S dS d ππθ+≤====⎰⎰⎰⎰⎰. 17.(本题满分10分)求曲线sin (0)xy e x x -=≥与x 轴之间形成图形的面积.【详解】先求曲线与x 轴的交点:令sin 0x e x -=得,0,1,2,x k k π==当2(21)k x k ππ<<+时,sin 0xy e x -=>;当2(22)k x k πππ+<<+时,sin 0x y e x -=<.由不定积分1sin (sin cos )2x xe xdx e x x C --=-++⎰可得 2221sin (1)2k x k k e xdx e e πππππ+---=+⎰,22221sin (1)2k x k k e xdx e e πππππππ+----+=-+⎰所求面积为22202200220022220sin sin sin 11(1)(1)2211111(1)(1)22121k k xxx k k k k k k k k k k S exdx e xdx e xdxe e e e e e e e e e ππππππππππππππππππ∞∞+∞++---+==∞∞-----==-∞-----===-=++++=+=+=--∑∑⎰⎰⎰∑∑∑18.(本题满分10分)设1(0,1,2,)n a x n ==⎰(1)证明:数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+;(2)求极限1lim n n n a a →∞-. 【详解】(1)证明:1n a x =⎰,110(0,1,2,)n n a x n ++==⎰当(0,1)x ∈时,显然有1n nxx +<,1110(0n n n n a a x x ++-=-<⎰,所以数列{}n a 单调减少;先设220sin cos ,0,1,2,nn n I xdx dx n ππ===⎰⎰则当2n ≥时,12222202sin sin cos (1)sin cos (1)()nn n n n n I xdx xd x n x xdxn I I πππ---==-=-=--⎰⎰⎰也就是得到22,0,1,1n n n I I n n ++==+令sin ,[0,]2x t t π=∈,则122222201sin cos sin sin 2nnn n n n n a xt tdt dt tdt I I I n πππ++===-=-=+⎰⎰⎰⎰ 同理,2211n n n n a I I I n --=-=-综合上述,可知对任意的正整数n ,均有212n n a n a n --=+,即21(2,3,)2n n n a a n n --==+; (2)由(1)的结论数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+ 2111111222n n n n n a n n n a a a n n a n ------=>⇒>>+++ 令n →∞,由夹逼准则,可知1lim1nn n a a →∞-=.19.(本题满分10分)设Ω是由锥面222(2)(1)(01)x y z z +-=-≤≤与平面0z =围成的锥体,求Ω的形心坐标.【详解】先计算四个三重积分:22211120(2)(1)1(1)3zD x y z dv dz dxdy dzdxdy z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22211120(2)(1)(1)12zD x y z zdv zdz dxdy zdzdxdy z z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22211(2)(1)0zD x y z xdv dz xdxdy dzxdxdy Ω+-≤-===⎰⎰⎰⎰⎰⎰⎰⎰⎰22211120(2)(1)22(1)3zD x y z ydv dz ydxdy dzydxdy z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 0xdvx dvΩΩ==⎰⎰⎰⎰⎰⎰,2ydvy dvΩΩ==⎰⎰⎰⎰⎰⎰,14zdvz dvΩΩ==⎰⎰⎰⎰⎰⎰.从而设形心坐标为1(,,)(0,2,)4x y z =.注:其实本题如果明白本题中的立体是一个圆锥体,则由体积公式显然13dv πΩ=⎰⎰⎰,且由对称性,明显0x =,2y =.20.(本题满分11分)设向量组1231112,3,123a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为3R 空间的一组基,111β⎛⎫ ⎪= ⎪ ⎪⎝⎭在这组基下的坐标为1b c ⎛⎫⎪⎪ ⎪⎝⎭.(1)求,,a b c 之值;(2)证明:23,,ααβ也为3R 空间的一组基,并求23,,ααβ到123,,ααα的过渡矩阵.【详解】(1)由123b c βααα=++可得11231231b c b c a b c ++=⎧⎪++=⎨⎪++=⎩,解方程组,得32.2a b c =⎧⎪=⎨⎪=-⎩且当3a =时,()123111111,,23301110123012ααα===≠,即123,,ααα线性无关,确实是3R 空间的一组基.(2)()23111111,,33100220231011ααβ==-=≠-,显然23,,ααβ线性无关,当然也为3R 空间的一组基. 设()()23123,,,,a P αβααα=,则从23,,ααβ到123,,ααα的过渡矩阵为()()1123123111111011111110,,,,3312330.50.512330.501231123 1.50.501230.500P ααβααα---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪===--=- ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21.(本题满分11分)已知矩阵22122002A x -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与21001000B y ⎛⎫⎪=- ⎪ ⎪⎝⎭相似.(1)求,x y 之值;(2)求可逆矩阵P ,使得1P AP B -=. 【详解】(1)由矩阵相似的必要条件可知:A BtrA trB⎧=⎪⎨=⎪⎩,即2(24)241x y x y --+=-⎧⎨-+=+⎩,解得32x y =⎧⎨=-⎩.(2)解方程组221232(2)(2)(1)0002E A λλλλλλλ+--=--=+-+=+得矩阵A 的三个特征值1232,1,2λλλ==-=-;分别求解线性方程组()0(1,2,3)i E A x i λ-==得到分属三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231112,1,2004ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()1123111,,212004P ξξξ-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,则1P 可逆,且11212P AP -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭;同样的方法,可求得属于矩阵B 的三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231100,3,00014ηηη-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()2123110,,030001P ηηη-⎛⎫ ⎪== ⎪ ⎪⎝⎭,则2P 可逆,且12212P BP -⎛⎫⎪=- ⎪ ⎪-⎝⎭;由前面111122P AP P BP --=,可知令112111212004P PP --⎛⎫⎪==-- ⎪⎪⎝⎭,就满足1P AP B -=. 22.(本题满分11分)设随机变量,X Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为:{1}P Y p =-=,{1}1P Y p ==-,(01)p <<.令Z XY =.(1)求Z 的概率密度;(2)p 为何值时,,X Z 不相关;(3)此时,,X Z 是否相互独立.【详解】(1)显然X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩.先求Z XY =的分布函数:(){}{}{,1}{,1}(1){}{}1()(1())Z X X F z P Z z P XY z P X z Y P X z Y p P X z pP X z F z p F z =≤=≤=≤=+≥-=-=-≤+≥-=-+--()再求Z XY =的概率密度:,0()(())()(1)()0,0(1),0z Z Z X X z pe z f z F z pf z p f z z p e z -⎧<⎪'==-+-==⎨⎪->⎩(2)显然()1,()1;()12E X D X E Y p ===-;由于随机变量,X Y 相互独立,所以()()()()12E Z E XY E X E Y p ===-;22()()()()24E XZ E X Y E X E Y p ===-;(,)()()()12COV X Z E XZ E X E Z p =-=-;要使,X Z 不相关,必须(,)()()()120COV X Z E XZ E X E Z p =-=-=,也就是0.5p =时,X Z 不相关;(3),X Z 显然不相互独立,理由如下:设事件{1}A X =>,事件{1}B Z =<,则11(){1}x P A P X e dx e +∞--=>==⎰;11(){1}{1,1}{1,1}12P B P Z P X Y P X Y e -=<=>-=-+<==-;11(){1,1}{1,1}(1,}{1}{1}P AB P X Z P X XY P X Y P X P Y pe x -=><=><=><=>⋅=-=,当0.5p =时,显然()()()P AB P A P B ≠,也就是,X Z 显然不相互独立.23.(本题满分11分)设总体X 的概率密度为22()2,()0,x A e x f x x μσμσμ--⎧⎪≥=⎨⎪<⎩,其中μ是已知参数,σ是未知参数,A 是常数,12,,,n X X X 是来自总体X 的简单随机样本.(1)求常数A 的值;(2)求2σ的最大似然估计量.【详解】(1)由()1f x dx +∞-∞=⎰可知222()201x Aedx ed μσμσ---+∞+∞===⎰⎰所以A =似然函数为212()22121,(,,;)(,)0,ni i X n n i n i n i A ex L X X X f x μσμσσσ=--=⎧∑⎪⎪≥==⎨⎪⎪⎩∏其他, 取对数,得22212211ln (,,,;)ln ln()()22nn ii n L X X X n A Xσσμσ==---∑11 解方程221222221ln (,,,;)11()0()22()n n i i d L X X X n X d σμσσσ==-+-=∑,得未知参数2σ的最大似然估计量为2211()ni i X n σμ==-∑.。

数学(一)真题 参考答案及解析

数学(一)真题 参考答案及解析

D.
(un21 un2 ) .
n1
【解析】设 un
sin
1 n
,满足单调增加有界, un n1 n
n1
sin n
1 n
1 n1 n
,可
见级数 un 发散,故 A 错. n1 n
设 un
1 n
,满足单调增加有界,但级数
(1)n
n1
1 un
显然发散,故
B
错.
设 un
1 n
,此时 1
(
3, 0) 和 (
3,
)
,拐点为
3,
3e
3 2

(0,
0)

3,
3e
3 2
.
(16)设 a,b 为实数,函数 z 2+ax2 by2 在点 (3, 4) 处的方向导数中,沿方向
l 3i 4 j 的方向导数最大,最大值为 10.
(1)求 a,b ;
8
中公学员内部专用
版权所有 翻版必究
6
中公学员内部专用
版权所有 翻版必究
3 1 22 ,可知 r(A) 2 ,因此 r(A) 2 ,故 Ax 0 的基础解系中含有一个解
向量.
1
1
又根据3 1 22 ,可得 A 2 1 22 3 = 0 ,因此 2 为 Ax 0 的
1
1
基础解系. Ax 0 的通解为 k(1, 2,1)T , k 为任意常数.
(14)设随机变量
X
的概率密度为
f
(x)x 2ຫໍສະໝຸດ ,0,0 x 2, F(x) 为 X 的分布函数, 其他,
EX 为 X 的数学期望,则 P{F ( X ) EX 1} ________.

2019年考研数一真题及答案

2019年考研数一真题及答案

2019年全国硕士研究生招生考试试题一、选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(I )当X ----+ 0时,若x -ta n x 与x k 是同阶无穷小,则k =( (A )l .(B)2.(C)3.、丿(D)4.(2)设函数f(x )= { XIX I 'X 冬O '则X = 0是f (x)的()x l n x, x > 0,(A )可导点,极值点(B )不可导点,极值点(C)可导点,非极值点(D)不可导点,非极值点(3)设飞}是单调增加的有界数列,则下列级数中收敛的是()C B) Ic-1尸—1 ""' u ; (C )�(i-2:;)· (D )�(u !., 一式).(4)设函数Q(x ,y )=今.如果对上半平面(y > O )内的任意有向光滑封闭曲线C 都有乎P(x,y )d x + Q (x,y )d y = 0, 那么函数P(X,y )可取为() (A )y -子1 x2 (B)—-— 1 1 (C)—-—.1(D)x -—. y y (5)设A是3阶实对称矩阵,E 是3阶单位矩阵.若A 2+ A = 2E , 且IA I = 4, 则二次型x T A x 的规范形为()00 u (A ) I 二n=l n (A ) Y i + y ; + y ; ·(B) Y i + y ; -y ; ·(C) Y i -y ; -Yi·(D)-Yi -y ; -y ; ·(6)如图所示,有3张平面两两相交,交线相互平行,它们的方程a i l x + a i2y + a i3z = d;(i = l , 2 , 3)组成的线性方程组的系数矩阵和增广矩阵分别记为A,A,则((A )r (A) = 2, r (A ) = 3.(B)r (A) = 2, r (A ) = 2.(C)r(A) = 1, r (A ) = 2.(D)r(A) = 1, r (A ) = 1.(7)设A,B为随机事件,则P(A)= P (B )的充分必要条件是()(A ) P (A U B ) = P (A ) + P (B ) .(B ) P (AB ) = P (A) P (B) .(C) p (A B) = p (B A) .(D) p (AB) = p (A B ) .(8)设随机变豐X 与Y相互独立,且都服从正态分布N(µ,矿),则P l I X -Y I < 1 f ( )(A)与µ无关,而与矿有关.(B)与µ有关,而与矿无关(C)与µ,矿都有关(D)µ,矿都无关二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)(9)设函数八u)可导,z = /(sin y -sin x ) + x y, 则一—-. -+ . 一1加1加COS X 彻co s y 切(10)微分方程2yy'-r 2 -2 = 0满足条件y(O )= 1的特解y =(11)幕级数2(-1)" 几=O (2n ) ! x"在(0,+oo)内的和函数S(x)= (12)设凶设为曲面x 2+ y 2 + 4z 2 = 4 (z�0)的上侧,则ff J 4 -x 2 -4z 2d x d y =(13)设A = (a 1 , a 2 , a 3)为3阶矩阵.若a 1'a 2线性无关,且a 3= -a 1 + 2a 2 , 则线性方程组Ax =0的通解为(14)设随机变掀X的概率密度为八x)= (f'O <x < 2'F(x)为X的分布函数,E(X)为X的0, 其他,数学期望,则Pj F(X) > E(X) -1 l —,•三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)设函数y(x)是微分方程y'+xy = e 寻满足条件y(O )= 0的特解(I )求y(x);(II)求曲线y = y(x)的凹凸区间及拐点.(16)(本题满分10分)设a ,b为实数,函数z = 2 + a x 2 + by 2在点(3,4)处的方向导数中,沿方向l = -3i -4j 的方向导数最大,最大值为10.(I )求a,b ;(II)求曲面z = 2 + ax 2 + by 2 (z ;;,: 0)的面积.(17)(本题满分10分)求曲线y = e 一允sin x (x�0)与x轴之间图形的面积(18)(本题满分10分)1 设a ,.= L x "Jl了五x (n = 0, 1 , 2,…). (I)证明数列{叮单调递减,且a ,.=—一-n -1 n + 2 a 几一2(n = 2, 3,-·· ); (II ) . a 求hm n .n----+oo a 几一1(19)(本题满分10分)设0是由锥面忒+(y-z)2 = (l -z)2(0�z�1)与平面z = 0围成的锥体,求0的形心坐标(20)(本题满分11分)设向量组a (1 2 1 = )平=(1 , 3, 2) T ,a 3 = (1 , a , 3尸为R 3的一个基,/J =(l,1,l)T 在这个基下的坐标为(b,c, 1)飞(I )求a,b,c;(II )证明生立3/J 为R 3的一个基,并求生立3/J 到叮生立3的过渡矩阵.(21)(本题满分11分)已知矩阵A=厂。

2019考研数学一考试真题答案解析(完整版)

2019考研数学一考试真题答案解析(完整版)

2019考研数学一考试真题答案解析(完整版)来源:文都教育1.3tan 3x x x -- 若要tan x x -与b x 同阶无穷小,3k \=\选C2.①00(0)lim 0x x x f --®-¢==00ln (0)lim lim ln x x x x f x +++¢==不存在0x \=处()f x 不可导②当0x <时2()f x x =-()20f x x ¢=-> ()f x \单增当0x >时()ln f x x x =()ln 1f x x ¢=+ 1(0,e )x -Î时()0f x ¢<.()f x \单减0x \=为()f x 的极值点\选B.3.(D )∵{a n }单调增加有界∴由单调有界收敛定理可得{u n }极限存在,设lim n n u A →∞=.()2211n n n uu ∞+=-∑则的前n 项和为22222112211n u nn S u u u u u u ++=-++-=-…222111lim lim n n n n S u u A u +→∞→∞=-=-.选(D )4.由题意知,积分与路径无关则P Q y x∂∂=∂∂存在u (x ,y )使得(,),(,)u u P x y Q x y x y∂∂==∂∂∵xQ =∴(,)()x u x y c x y =-+则1()u P c x x y∂'==-+∂又∵x 可为0∴排除e ,选(D )5.选(C )解:由22A A E +=得22λλ=+,λ为A 的特征值,2=-l 或1,又1234A =λλλ=,故1231λ=λ=-2λ=,,规范形为222123y y y --,选(C )6.选(A )解:由条件知3张平面无公共交点,方程组无解,故()()r A r A ¹.又两平面交于一条直线,故()2r A =,因此()2,()3,r A r A ==选(A ).7.选(C )解:()()()P AB P A P AB =-()()()P B A P B P AB =-()()()()P A P B P AB P B A =\=选(C )8.解:因为22(,)(,)X N u Y N u s s X 与Y 相互独立2(0,2)X Y N s \-{}121222X YP X Y P s s s -÷ç\-<==F -÷ç÷ç\与u 无关,即与2s 有关选择(A )9.解析:'(sin sin )(cos )'(sin sin )(cos )z f y x x y x z f y x y x y∂=--+∂∂=-+∂所以11111'(sin sin )(cos )cos '(sin sin )cos cos cos cos cos cos cos cos z z x f y x x y yf y x x x y y x x y y y x x y∂∂+⋅=--⋅+⋅+⋅-+∂∂=+10.解析:2222'202'222yy y y y yy dy dx y --=+==+两边积分得2ln(2)ln y x C+=+22xy Ce +=由y (0)=1得C =3所以32x y e =-11.解析:200(1)(1)()()cos (2)!(2)!n n n n n n s x x x x n n ∞∞==--===∑∑12.解析:2222222222242222004444d 4(4)d d ||d d 2d sin 323x y x y x y x z x y x x y x y y x y y x y r d πθθθ+≤+≤+≤--∑=----====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰13.解:∵12,αα线性无关.∴()2r A ≥∵3132ααα=-+∴()3r A <∴()2r A =∴Ax =0为基础解系有()321n r A -=-=∵12320ααα-+=∴1231(,,)201ααα⎛⎫ ⎪-= ⎪ ⎪⎝⎭∴通解为12.1k k R ⎛⎫ ⎪-∈ ⎪ ⎪⎝⎭14.X 的p.d.f 为02()20x x f x else⎧<<⎪=⎨⎪⎩3222200022232231184d d |22236300()024121{()1}{()}{2}2}32d 231412(4)144333x x EX x x x x x x F x x x P F x Ex P F x P x P x x P x x x =⋅====<⎧⎪⎪=≤<⎨⎪≥⎪⎩≥-=≥=≥≠<⎫=<<=⎬⎭==-=-=⎰⎰⎰15.解:22()()e x P x x Q x -==∵()d ()d e ()e d P x x P x x y Q x x c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰22222d d 2222e e e d ee e d e ()x x x x x x x x x x c x c x c -----⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎡⎤=⋅+⎢⎥⎢⎥⎣⎦=+⎰⎰∵y (0)=0∴c=0∴2e x y x -=∴22222222232222()e e ()(1)e ()2e (1)e()(3)e (3)(3)ex x x x x x x y x x x x y x x x x x x x x x -------'=+-=-''=-+--=-=+-令()0y x ''=∴123033x x x ===当30x -<<或3x >()0y x ''>∴y (x )的凹区间为(3,0)和3,)+∞当3x <或03x <<时,()0y x ''<.∴y (x )的凸区间为(,3)3)-∞和所以曲线y (x )的拐点为(0,0),3322(3,3),(3,3--16.解:(1)在点(3,4)处的梯度方向为(3,4)grad |((3,4),(3,4))(6,8)x y z z z a b ''==且(3,4)|grad ||10,z =由题意知36510,48510a b ⎧-=⎪⎪⎨⎪-=⎪⎩故1.1a b =-⎧⎨=-⎩(2)由(1)知222z x y =--,由0z ≥得222x y +≤,令22{,|2}D x y x y =+≤,曲面面积为222222200222032221d 14()d 14d 12144)82(14)|43133x y D DS z z x y x y x ya r r rr r r πθπππ''=++=++=+=⨯++=⨯+=⎰⎰⎰17.解析:(1)22e 2x y xy x ¢-=()222222()d 2222e e d 2e e e d 2e d 2e x x xdx x x x x x x y ex C x x C xx C xx C 通解--÷ç÷ç=×+÷ç÷÷ç÷ç÷ç=×+÷ç÷÷ç÷ç=+÷ç÷ç=òòò由e (e f C +0C =所以22()=e x f x x (2)()2222222121222411e d e d e d e =e -e 222x x x xx V x xx xx p p p p p ÷ç÷ç=÷ç÷÷ç=×==òòò18.设1201(0,1,2,)n a x x dx n =-=⎰…(1)证明:数列{}n a 单调减少,且21(2,3,);2n n n a a n n --==+ (2)求1lim .nn n a a →∞-解析(1)1112212100011(1)10.n n n n a a x x dx x x dx x x x dx ----=---=--<⎰⎰⎰则{}n a 单调递减.1/2/2222200011sin sin cos sin (1sin ),2nn n n n n a x x dxx t t tdt t t dt I I I n ππ+=--⋅=⋅-=-=+⎰⎰⎰则2222111,.(2)(2)n n n n n n n a I a a I n n n n ------===++则(2)由(1)知,{}n a 单调递减,则211111, 1.222n n n n n an n n a a a n n n a ------=><<+++即由夹逼准则知,1lim 1.nn n a a →∞-=19.设W 是由锥面()222(1)(01)x y z z z +-=-与平面0z =围成的锥体,求W 的形心坐标.解:令()(){}222(,)1z D x y x y z z =+-£-,形心为(),x y z ,由于W 关于yOz 面对称.故0x =()1010*******20122300120d d d d d d d d d d z+sin d (1)d 311d (1)(1)sin d 233(1)d 14z z D D z z y x y y vy vzx y z r r r z zz z z z z z p p q q p q q p p p W W-===-=-+-=-=òò11200d 31d d d (1)d d z D z vz z x y z z z vpp p W W ===×-=,故W 的形心坐标为110,,÷ç÷ç÷ç.20.(1)由题意可知,123b c b a a a =++即1111112323112323b c b c a b c ab c ++=×+×+=++++023122b c b c a b c ì+=ïïïï++=íïïï+=-ïî即110023111202b c a ×=-110011001100231101110111120201020013A =----101110111002011101020102001300130013-----2,2,3b c a \==-=2323111111(2),,33100220,,231011ααβααβ==-=≠∴-线性无关.且向数量个数为3个23,,ααβ∴是R3的一个基.2323123123002(,,)2,2)(,,)102011ααβαααααααα⎛⎫ ⎪=-+=- ⎪ ⎪⎝⎭(,,002102011P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭()123123002100102010102010011001011001100100210011010100121001002110101210021101(,,)01(,,)21002P E P ααβααα-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪→- ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪∴=- ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪∴-= ⎪ ⎪ ⎪⎝⎭即23(,,)ααβ到123(,,)ααα的过渡矩阵为11010121002⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭21.2212102201000200A x B y --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦与相似(1)1231~413()()242210(2)010(1)(2)(2)00021,2,21211211201242000001210001001000022A Bx y x tr A tr B y x y E B x x A E A E λλλλλλλλλξλ∴-=+=⎧∴=⇒⇒⎨=-+=-⎩---=+=++-=-=-=-=---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-+=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=-+=T 时, =(-,,)时,()2311321410440125201050211240000000004212122102221200100112004000000211,122040A E P ξλξξξξ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦T T =(-,,)时, =(-,,0), 111122P AP --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1223310310100000113000100041010022010010001000000010010322030001100004000B E x B E x B E x λλλ⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-=-→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦T T 时, (-,,)时, (,,)时, (,,121232212212121211221()22122()1211030122001040130111212004101100()3000006100011011000P x x x P BP B P P B P P A PP P PP P iE -----⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦=-=---⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--→T ) 故=03310010001101100010001100100311000030100011001103⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦22.(1)随机变量X 的分布函数为⎩⎨⎧<≥-=-0,00,1)(x x e x F x X {}{}{}{}())(1)()1(1,1,)(z F p z F p Y z X P Y z X P z XY P z Z P z F X X Z --+-=-=-≥+=≤=≤=≤=当0<z 时,()z X Z pe z F p z F =--=)(1)(当0≥z 时,()p e p z F p z F p z F z X X Z +--=--+-=-)1)(1()(1)()1()(则⎩⎨⎧≤>-=-0,0,)1()(z pe z e p z f z z Z (2)p EY EX XY E EZ EX 21)(,1-=⋅===()())21(221)()()()()(222p p EX DX Y E X E Y X E XZ E -=-+===当())()(2Z E X E XZ E =时,Z X ,不相关.即)21(221p p -=-,可得21=p .(3)因为{}{}01,1,11,1=≥-=≤=-≤≤X Y X P Z X P 又{}111--=≤e X P ,{}11-=-≤peZ P 则{}{}{}111,1-≤⋅≤≠-≤≤Z P X P Z X P ,故不独立.23.(1)由1222222222)(2)(==-=⎰⎰∞+----∞+πσμσμσμσμμA x d e A dx e A x x 可得:π2=A .(2)设n x x x ,,,21 为样本值,似然函数为()()⎪⎩⎪⎨⎧>∑⎪⎪⎭⎫ ⎝⎛==--else x x x e L n x n nn i i ,0,,,,2121212122μπσσμσ 当μ>n x x x ,,,21 时,()()()()2122221ln 2ln 2ln 2ln ∑----==n i i x n n L μσσπσ令()()()0)(2112ln 1222222=∑-+-==n i i x n d L d μσσσσ,可得()nx n i ∑=-=1212μσ故2σ的最大似然估计量为()n X n i ∑=-=1212μσ .。

(完整版)2019考研数学一真题及答案解析参考,推荐文档

(完整版)2019考研数学一真题及答案解析参考,推荐文档

2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当时,若与是同阶无穷小,则0→x x x tan -k x =k A.1. B.2.C.3.D.4.2.设函数则是的⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 0=x )(x f A.可导点,极值点. B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设是单调增加的有界数列,则下列级数中收敛的是{}n u A. B...1∑∞=n n nu nn nu 1)1(1∑∞=-C.. D..∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u ()∑∞=+-1221n nn u u4.设函数,如果对上半平面()内的任意有向光滑封闭曲线都2),(y xy x Q =0>y C 有,那么函数可取为⎰=+Cdy y x Q dx y x P 0),(),(),(y x P A..B..32yx y -321yx y -C.. D..y x 11-yx 1-5.设是3阶实对称矩阵,是3阶单位矩阵.若,且,则二次型A E E A A 22=+4=A 的规范形为Ax x T A.. B..232221y y y ++232221y y y -+C.. D..232221y y y --232221y y y ---6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i 组成的线性方程组的系数矩阵和增广矩阵分别记为,则A A ,A..3)(,2)(==A r A r B..2(,2)(==A r A r C..2(,1)(==A r A r D..1)(,1)(==A r A r 7.设为随机事件,则的充分必要条件是B A ,)()(B P A P =A.).()()(B P A P B A P += B.).()()(B P A P AB P =C.((A B P B A P =D.).()(B A P AB P =8.设随机变量与相互独立,且都服从正态分布,则X Y ),(2σμN {}1<-Y X P A.与无关,而与有关.μ2σB.与有关,而与无关.μ2σC.与都有关.2,σμD.与都无关.2,σμ2、填空题:9~14小题,每小题4分,共24分.9.设函数可导,则= .)(u f ,)sin (sin xy x y f z +-=yz cosy x z cosx ∂∂⋅+∂∂⋅1110.微分方程满足条件的特解.02'22=--y y y 1)0(=y =y 11.幂级数在内的和函数 .nn n n ∑∞=-0)!2()1()0∞+,(=)(x S12.设为曲面的上侧,则=.∑)0(44222≥=++z z y x dxdy z x z⎰⎰--224413.设为3阶矩阵.若线性无关,且,则),,(321αααA =21αα,2132ααα+-=线性方程组的通解为.0=x A 14.设随机变量的概率密度为 为的分布函数,X ⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F X 为的数学期望,则 .X E X {}=->1X X F P E )(3、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数是微分方程满足条件的特解.)(x y 2'2x e xy y -=+0)0(=y (1)求;)(x y (2)求曲线的凹凸区间及拐点.)(x y y =16.(本题满分10分)设为实数,函数在点(3,4)处的方向导数中,沿方向b a ,222by ax z ++=的方向导数最大,最大值为10.j i l 43--=(1)求;b a ,(2)求曲面()的面积.222by ax z ++=0≥z 17.求曲线与x 轴之间图形的面积.)0(sin ≥=-x x ey x18.设,n =(0,1,2…)dx x xa nn ⎰-=121(1)证明数列单调减少,且(n =2,3…){}n a 221-+-=n n a n n a (2)求.1lim-∞→n nn a a19.设是锥面与平面围成的锥体,求的形Ω())10()1(2222≤≤-=-+z z y x 0=z Ω心坐标.20.设向量组,为的一个基,T T T a )3,,1(,)2,3,1(,)1,2,1(321===ααα3R 在这个基下的坐标为.T )1,1,1(=βT c b )1,,((1)求.c b a ,,(2)证明,为的一个基,并求到的过度矩阵.32,a a β3R ,,32a a β321,,a a a 21.已知矩阵与相似⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012(1)求.y x ,(2)求可可逆矩阵,使得P .1B AP P =-22.设随机变量与相互独立,服从参数为1的指数分布,的概率分布为X Y X Y 令{}{}),10(,11,1<<-===-=p p Y P p Y P XYZ =(1)求的概率密度.z (2)为何值时,与不相关.p X Z (3)与是否相互独立?X Z 23.(本题满分11分)设总体的概率密度为X ⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中是已知参数,是未知参数,是常数,来自总体的简μ0>σA n X …X X ,,21X 单随机样本.(1)求;A(2)求的最大似然估计量2σ2019年全国硕士研究生入学统一考试数学试题解析(数学一)1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos +10.23-xe 11.x cos 12.33213.为任意常数.,T)1,2,1(-k k 14.3215.解:(1),又,)()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰0)0(=y 故,因此0=c .)(221x xex y -=(2),22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x ex x xe x xey -----=-=---=''令得0=''y 3,0±=x x)3,(--∞3-)0,3(-0)3,0(3),3(+∞y ''-+-+y凸拐点凹拐点凸拐点凹所以,曲线的凹区间为和,凸区间为和)(x y y =)0,3(-),3(+∞)3,(--∞,拐点为,,.)3,0()0,0()33(23---e )3,3(23-e16.解:(1),,)2,2(by ax z =grad )8,6()4,3(b a z =grad 由题设可得,,即,又,4836-=-ba b a =()()108622=+=b a z grad 所以,.1-==b a (2)=dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1====dxdy y x y x ⎰⎰≤+++22222441ρρρθπd d ⎰⎰+20224120232)41(1212ρπ+⋅.313π17.18.19.由对称性,,2,0==y x =⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ10212101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ.4131121)1()1(1212==--⎰⎰dz z dz z z 20.(1)即,123=b c βααα++11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得.322a b c =⎧⎪=⎨⎪=-⎩(2),所以,则()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,()233r ααβ=,,可为的一个基.23ααβ,,3R ()()12323=P αααααβ,,,,则.()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,21.(1)与相似,则,,即,解得A B ()()tr A tr B =A B =41482x y x y -=+⎧⎨-=-⎩32x y =⎧⎨=-⎩(2)的特征值与对应的特征向量分别为A ,;,;,.1=2λ11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭2=1λ-22=10α-⎛⎫ ⎪ ⎪⎪⎝⎭3=2λ-31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭所以存在,使得.()1123=P ααα,,111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦的特征值与对应的特征向量分别为B ,;,;,.1=2λ11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭2=1λ-21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭3=2λ-30=01ξ⎛⎫⎪ ⎪⎪⎝⎭所以存在,使得.()2123=P ξξξ,,122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦所以,即112211=P AP P AP --=Λ1112112B P P APP P AP ---==其中.112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦22.解:(I )的分布函数Z (){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当时,;当时,0z ≤()zF z pe =0z >()()()()1111z zF z p p e p e --=+--=--则的概率密度为.Z ()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩(II )由条件可得,又()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,从而当时,,即不相关.()()1,12D X E Y p ==-12p =(),0Cov X Z =,X Z (III )由上知当时,相关,从而不独立;当时,12p ≠,X Z 12p =121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而,,显12112P X e -⎧⎫≤=-⎨⎬⎩⎭121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭然,即不独立. 从而不独立.1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,X Z ,X Z 23. 解:(I )由,()2221xAedx μσμσ--+∞=⎰t=201t e dt +∞-==⎰从而A =(II )构造似然函数,当()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩L L 其他,1,2,,i x i n μ≥=L 时,取对数得,求导并令其()22211ln ln ln 22ni i n L n A x σμσ==---∑为零,可得,解得的最大似然估计量为()22241ln 1022ni i d L n x d μσσσ==-+-=∑2σ.()211n ii x n μ=-∑。

2019年数学一考研试题和答案共15页文档

2019年数学一考研试题和答案共15页文档

2019年研究生入学考试数学一试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x +→等价的无穷小量是(A )1- (B )(C 1 (D )1- [ ](2)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0. (B )1. (C )2. (D )3. [ ] (3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是: (A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f = .(C )若0()lim x f x x →存在,则(0)0f '= (D )若0()()lim x f x f x x→--存在,则(0)0f '=.(5)设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()n u f n =,则下列结论正确的是:(A) 若12u u > ,则{}n u 必收敛. (B) 若12u u > ,则{}n u 必发散(C) 若12u u < ,则{}n u 必收敛. (D) 若12u u < ,则{}n u 必发散. [ ] (6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第Ⅱ象限内的点M 和第Ⅳ象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 (A )(,)d Tf x y x ⎰. (B )(,)d Tf x y y ⎰(C )(,)d Tf x y s ⎰. (D )(,)d (,)d x y Tf x y x f x y y ''+⎰. [ ](7)设向量组123,,ααα线性无关,则下列向量组线性相关的是(A) 122331,,αααααα---(B) 122331,,αααααα+++(C) 1223312,2,2αααααα---. (D) 1223312,2,2αααααα+++. [ ](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A) 合同且相似 (B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ] (10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为(A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上. (11)12211e d x x x=⎰=__________. (12) 设(,)f u v 是二元可微函数,(,)yxz f x y =,则zx∂=∂ __________. (13) 二阶常系数非齐次微分方程2432e xy y y '''-+=的通解为y =________.(14) 设曲面:||||||1x y z ∑++=,则()||d x y S ∑+=⎰⎰Ò(15)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 .三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分11分)求函数2222(,)2f x y x y x y =+-在区域(){}22,|4,0D x y xy y =+≤≥上的最大值和最小值. (18)(本题满分10分) 计算曲面积分 d d 2d d 3d d I xz y z yz z x xy x y ∑=++⎰⎰,其中∑为曲面221(01)4y z x z =--≤≤ 的上侧. (19) (本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本题满分10分)设幂级数nn n a x∞=∑在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0)1y xy y y y ''''--===.(Ⅰ)证明:22,1,21n n a a n n +==+L ; (II )求()y x 的表达式.(21) (本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23) (本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >;(II) 求Z X Y =+的概率密度.1. 【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当0x +→时,1-:1:,211122x -=:, 故用排除法可得正确选项为(B ).事实上,000lim lim lim 1x x x +++→→→==,或ln(1)ln(1()x x o x o o =+-=++=:.所以应选(B )【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(理工类)第一篇【例1.54】 【例1.55】.2. 【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断.【详解】()()11lim lim ln 1e ,lim lim ln 1e 0xxx x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e xx x y x→→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线. 故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意e x当,x x →+∞→-∞时的极限不同.类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(理工类)第一篇【例6.30】,【例6.31】.3. 【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰. 所以 33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型. 本题利用定积分的几何意义比较简便.类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(理工类)第一篇【例3.39】【例3.40】.4.. 【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x →存在,则00()(0)()(0)0,(0)lim lim 00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.完全类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).5.. 【分析】本题依据函数()f x 的性质,判断数列{}()n u f n =. 由于含有抽象函数,利用赋值法举反例更易得出结果.【详解】选(D ).取()ln f x x =-,21()0f x x''=>,12ln10ln 2u u =-=>-=,而()ln f n n =-发散,则可排除(A );取21()f x x =,46()0f x x ''=>,12114u u =>=,而21()f n n =收敛,则可排除(B );取2()f x x =,()20f x ''=>,1214u u =<=,而2()f n n =发散,则可排除(C );故选(D ).事实上,若12u u <,则211(2)(1)()02121u u f f f ξ--'==>--. 对任意()1,x ξ∈+∞,因为()0f x ''>,所以1()()0f x f c ξ''>>>,对任意()21,ξξ∈+∞,()121()()()()f x f f x x ξξξ'=+-→+∞→+∞.故选(D ).【评注】对于含有抽象函数的问题,通过举符合题设条件的函数的反例可简化计算. 类似例题见文登强化班笔记《高等数学》第1讲【例24】,《数学复习指南》(理工类)第一篇【例1.22】.6.. 【分析】本题考查对弧长的曲线积分和对坐标的曲线积分的计算.【详解】M 、N 点的坐标分别为1122(,),(,)M x y N x y ,则由题设可知1212,x x y y <>.因为21(,)d d 0TT f x y x x x x ==->⎰⎰,()x N 表示N 的横坐标;21(,)d d 0TTf x y y y y y ==-<⎰⎰; (,)d d TTf x y s s ==⎰⎰T 的弧长>0;(,)d (,)d 0d 0d 0x y TTf x y x f x y y x y ''+=+=⎰⎰.所以应选(B ).【评注】本题属基本概念题型,注意求对坐标的曲线积分时要考虑方向,对于曲线积分和曲面积分,应尽量先将曲线,曲面方程代入被积表达式化简,然后再计算. 其计算方法见《数学复习指南》(理工类)第十一章第1节知识点精讲中对弧长的曲线积分和对坐标的曲线积分的相关性质,类似例题见文登强化班笔记《高等数学》第12讲【例5-例7】,《数学复习指南》(理工类)【例11.1】. 7.. 【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性. 一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(理工类)《线性代数》【例3.3】.8.. 【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ).【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值. 所以通过计算A 与B 的特征值可立即排除(A )(C ). 完全类似例题见《数学复习指南》(理工类)第二篇【例5.17】.9.. 【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数. 【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.完全类似例题见《数学复习指南》(理工类)第三篇【例1.29】【例1.30】 10. 【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ).【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的. 类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(理工类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上. 11.. 【分析】本题为简单定积分的计算,利用牛-莱公式和凑微分法求解. 【详解】11112222121111e d e d e e e x x x x x x=-=-=-⎰⎰.【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第5讲【例14】,《数学复习指南》(理工类)第一篇【例3.27】.12.. 【分析】本题为二元复合函数求偏导,直接利用公式即可.【详解】利用复合函数的求导公式,可直接得出112ln .y x zf yx f y y x-∂''=⋅+⋅∂ 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性.完全类似例题见文登强化班笔记《高等数学》第9讲【例8】, 【例9】,《数学复习指南》(理工类)第一篇【例8.16】,【例8.17】,【例8.18】.13.. 【分析】本题求解二阶常系数非齐次微分方程的通解,利用二阶常系数非齐次微分方程解的结构求解,即先求出对应齐次方程的通解Y ,然后求出非齐次微分方程的一个特解*y ,则其通解为 *y Y y =+.【详解】对应齐次方程的特征方程为2124301,3λλλλ-+=⇒==, 则对应齐次方程的通解为 312e e x xy C C =+.设原方程的特解为 2*e xy A =,代入原方程可得 22224e8e 3e 2e 2xx x x A A A A -+=⇒=-,所以原方程的特解为2*2e xy =-,故原方程的通解为 3212e e 2e x x xy C C =+-,其中12,C C 为任意常数.【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第7讲【例11】,《数学复习指南》(理工类)第一篇【例5.13】.14.. 【分析】本题求解对面积的曲面积分,利用对称性可简化计算. 【详解】由积分域与被积函数的对称性有d 0,d d d x S x S y S z S ∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰乙乙,所以()111d .d d 833323y S x y z S S ∑∑∑=++==⋅⋅=⎰⎰⎰⎰⎰⎰乙?.故()||d x y S ∑+=⎰⎰Ò【评注】对面积的曲面积分,应利用积分区域的对称性简化计算.类似例题见文登强化班笔记《高等数学》第12讲第4节【例1】和【例2】, 《数学复习指南》(理工类)第一篇【例11.18】. 15.. 【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫⎪⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【评注】本题为基础题型.矩阵相关运算公式见《数学复习指南》(理工类)第二篇第二章第1节中的知识点精讲.16.. 【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便.【详解】利用几何概型计算. 图如下:所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===.【评注】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例11】,《数学复习指南》(理工类)第三篇【例2.29】,【例2.47】.三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤.17.. 【分析】本题求二元函数在闭区域的最值. 先求出函数在区域内的驻点,然后比较驻点的函数值和边界上的极值,则最大者为最大值,最小者为最小值. 【详解】(1)求函数2222(,)2f x y x y x y =+-的驻点.因为22220420x y f x xy f y x y ⎧'=-=⎪⎨'=-=⎪⎩,所以0011x x x y y y ⎧⎧=⎧==⎪⎪⎨⎨⎨===-⎪⎪⎩⎩⎩,所以函数在区域(){}22,|4,0D x y xy y =+≤≥内的驻点为),()和()0,0.(2)求函数在边界线上的极值. 作拉格朗日函数如下 222222(,)2(4)L x y x y x y x y λ=+-++-, 则22222220422040L x xy x x L y x y y y L x y λλλ⎧∂=-+=⎪∂⎪∂⎪=-+=⎨∂⎪⎪∂=+-=⎪∂⎩,解之得02,201x x x y y y ⎧==±⎧⎧=⎪⎨⎨⎨=±==±⎪⎩⎩⎩. 于是条件驻点为),(),()0,2,()2,0±.而()2f =,()2f =,()0,00f =,()0,28f =,()2,04f ±=. 比较以上函数值,可得函数在区域(){}22,|4,0D x y xy y =+≤≥上的最大值为8,最小值为0.【评注】多元函数的最值问题,一般都用拉格朗日乘数法解决. 利用拉格朗日乘数法确定目标函数的可能极值点后,不必一一检验它们是否为极值点,只要比较目标函数在这些点处的值,最大者为最大值,最小者为最小值. 但当只有惟一的可能极值点时,目标函数在这点处必取到最值,究竟是最大值还是最小值需根据问题的实际意义判定.完全类似例题见文登强化班笔记《高等数学》第9讲【例14-例17】,《数学复习指南》(理工类)第一篇【例8.33-8.36】.18.. 【分析】本题∑不是封闭曲面,首先想到加一曲面212:14z y x =⎧⎪∑⎨+≤⎪⎩,取下侧,使1∑+∑构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】∑的方程为: 221(01)4y z x z =--≤≤. 添加一个平面2120:14z y x =⎧⎪∑⎨+≤⎪⎩,取下侧,则∑与1∑构成闭曲面*∑,其所围区域记为Ω.于是11*1I ∑+∑∑∑∑=-=-⎰⎰⎰⎰⎰⎰⎰⎰Ò.而*d d 2d d 3d d xz y z yz z x xy x y ∑++⎰⎰Ò()()()23xz yz xy x y z Ω∂∂∂⎛⎫=++ ⎪∂∂∂⎝⎭⎰⎰⎰1122143d d d 3d d d 6(1)d y x zz x y z z zx y z z z ππΩ+≤-===-=⎰⎰⎰⎰⎰⎰⎰,211214d d 2d d 3d d 3d d 3d d 0y x xz y z yz z x xy x y xy x y xy x y ∑∑+≤++===⎰⎰⎰⎰⎰⎰(上式可直接由被积函数的奇偶性和积分区域的对称性可得) 所以 11*1I π∑+∑∑∑∑=-=-=⎰⎰⎰⎰⎰⎰⎰⎰Ò.【评注】本题属基本题型,不论是用球面坐标还是用柱面坐标进行计算,均应特别注意计算的准确性,主要考查基本的计算能力.完全类似例题见文登强化班笔记《高等数学》第12讲第4节例5和练习,《数学复习指南》(理工类)第一篇【例11.19】,P.321【例11.21】 19.. 【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=, 于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是 111222()()()0,()()()0F c f c g c F c f c g c =->=-<, 于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c = 于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 【评注】对命题为()()0n fξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n f x -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n fx -在包含x ξ=于其内的区间上满足罗尔定理条件.类似例题见文登强化班笔记《高等数学》第4讲【例7】,《数学复习指南》(理工类)第一篇【例4.8】,【例4.9】.20.. 【分析】可将幂级数代入微分方程通过比较同次项系数,从而证得(Ⅰ);由(Ⅰ)求(II ). 【详解】(Ⅰ)由题设可得122012,,(1)(1)(2)nn n n n n n n n n n n y a x y na xy n n a xn n a x ∞∞∞∞--+===='''===-=++∑∑∑∑,代入240,(0)0,(0)1y xy y y y ''''--===,可得201(1)(2)240nnnn n nn n n n n ax na x a x ∞∞∞+===++--=∑∑∑,0120,1,0a a a === 即2(1)(2)240nnn n n n n n n n n ax na x a x ∞∞∞+===++--=∑∑∑,比较同次项系数可得22,1,21n n a a n n +==+L . (II )由 0120,1,0a a a ===,22,1,21n n a a n n +==+L 可得 22121231222110,22(22)!!n n n n a a a a a n n n n n +--===⋅===-L , 故 ()22120011e !!nn x n n y x x x x n n ∞∞+=====∑∑.【评注】本题为一道幂级数与二阶微分方程的综合题,考查了幂级数的逐项微分法及e x的麦克老林级数展开式. 所以需记住常见函数e x,11x-,ln(1)x +等函数的麦克劳林级数展开式.完全类似例题见文登强化班笔记《高等数学》第11讲【例16】,《数学复习指南》(理工类)第一篇【例7.25】,【例7.26】21.. 【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a . 【详解】将方程组和方程合并,后可得线性方程组12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪⎪----⎝⎭⎝⎭.显然,当1,2a a ≠≠时无公共解. 当1a =时,可求得公共解为 ()T1,0,1k ξ=-,k 为任意常数;当2a =时,可求得公共解为()T0,1,1ξ=-.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.完全类似例题见文登强化班笔记《线性代数》第4讲【例8】,《数学复习指南》(理工类)第二篇【例4.12】,【例4.15】.22.. 【分析】本题考查实对称矩阵特征值和特征向量的概念和性质. 【详解】(I )()()5353531111111111144412B A A Eααλαλααλλαα=-+=-+=-+=-,则1α是矩阵B 的属于-2的特征向量. 同理可得 ()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即 1230x x x -+=,解方程组可得B 的属于1的特征向量T T212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数. 由前可知B 的属于-2的特征向量为 T3(1,1,1)k -,其中3k 不为零.(II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式. 请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值 21,,,(),,(Ak a b f A λλλλλλ+可逆),且对应的特征向量是相同的.(2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的类似例题见文登强化班笔记线性代数第5讲【例12】,《数学复习指南》(理工类) 第二篇【例5.24】 23.. 【分析】(I )可化为二重积分计算; (II) 利用卷积公式可得. 【详解】(I ){}()()12002722d d d 2d 24xx yP X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II) 利用卷积公式可得 ()(,)d Z f z f x z x x +∞-∞=-⎰20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他.【评注】 (II)也可先求出分布函数,然后求导得概率密度.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例10】,【例11】,《数学复习指南》(理工类)第三篇【例2.38】,【例2.44】. (24) (本题满分11分)设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值.(I )求参数θ的矩估计量θ);(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()?224E X θ=.【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰,令112242X X θθ=+⇒=-).(II )()()()()222214444E XE X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()2221221()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰,所以 ()2225121248DX EX EX θθ=-=-+, 所以()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭,故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.完全类似例题见文登强化班笔记《概率论与数理统计》第5讲【例3】,《数学复习指南》(理工类)第三篇【例6.3,例6.6,例6.9】,。

2019考研数一真题答案及详细解析

2019考研数一真题答案及详细解析

(皿)因为
P{X<1,z<— l}=P{X< l,XY<— l}=O,
P{X< l} > O, P{Z<-1} > O,
所以
P{X< ,Z<— l} #- P{X< l}P{Z<— 1}. I
�o 由a,� —a, +za, 可知A (�z) 气 -Za, +a,
从而(—;z)即为Ax�O的基础解系
Ax=0的通解为k(l,-2,l)T,故应填X =k(1, — 2,l)T ,k为任意常数.
2
(14)

3
=订尸 解 由随机变址X的概率密度f(x)
O<x<2 '可知X的分布函数
厂; a·< Q,
故应选A
二、填空题
(9) — y + — X cosx cosy
a a ax 解 —之 = -cosx • J'+y ' — 之 =cosy • J'+x,代入得 切
l • o—z + l如 • — cosx扣cosy oy
= y + — X .故应填 y
cosx cosy
cosx
立' 十cosy

则』JydV= J'nzCl — z) 2dz 0
=王, 12
fl
主+). (o, 故;三飞,则形心为
{1
(20)解 C I)由题目可知:
』b+c+l = l
』a = 3
P = ba1 +c贮+a 3'代入可得2b+3c+a = l,解得b = 2

2019年考研数学一真题答案解析

2019年考研数学一真题答案解析

u n

1

,故根据极限形式的比较审敛发,
u
n与
1

同敛散,而
1
发散,故选项
nn
n 1 n n 1 n
n 1 n
第 1 页 共 13 页
A
发散。本选项也可举反例u n
=
arctan
n

1
选项 B:un 单调递增有界,知 un
收敛.故lim n
u n
u

0,故 lim n u
0 ,由数列收
n
敛的必要条件可知 B 发散。本选项也可举反例un = arctan n ;
选项 C:该选项最具迷惑性,一般项趋近 0,是正项级数,单调减.但这种正项级数是否收敛
n
取决于递减的速度。比如举反例u =

n n 1
u
1 n =
n 1
【答案】C
【答案解析】由 A2 A 2E 可知,矩阵的特征值满足 2 2,所以A的两个特征值为 2,1; 又知道行列式等于所有特征值的乘积,故矩阵
的第三个特征值为-2,所以二次型的正、负惯性指数分别为 1,2.故选 C. 6.如图所示,有 3 张平面两两相交,交线相互平行,它们的方程

1


1

第 6 页 共 13 页
1
所以通解为 x k 2 , k R

1

x
,0 x 2
14.设随机变量 X 的概率密度为 f (x) 2
,F(x)为 X 的分布函数,X 为
0 ,其他,
X 的数学期望,则 PF(X) X 1 ________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年全国硕士研究生入学统一考试数学(一)真题及解析
(江南博哥)
1 [单选题]当x→0时,x-tanx与x k是同阶无穷小,则k=( ).
A.1
B.2
C.3
D.4
正确答案:C
参考解析:
因,若要x一tanx与x‘是同阶无穷小,则k=3,故选C项.
2 [单选题]
A.可导点,极值点
B.不可导点,极值点
C.可导点,非极值点
D.不可导点,非极值点
正确答案:B
参考解析:
因为
不存在,所以x=0是f(x)的不可导点;又因为f(x)连续,当x<0时,f’(x)=-2x>0,当0<x<e-1时,f’(x)=lnx+1<0,所以x=0是f(x)的极值点.
3 [单选题]设{u n}是单调增加的有界数列,则下列级数中收敛的是( ).
A.
B.
C.
D.
正确答案:D
参考解析:
由单调有界收敛定理知{u n}极限存在,由有界性知了C>0满足|u n|≤C,
绝对收敛.
4 [单选题],如果对上半平面(y>O)内的任意有
向光滑封闭曲线C都有Q(x,y)dy=0,那么函数P(x,y)可取为( ).
A.
B.
C.
D.
正确答案:D
参考解析:
由题意知,积分与路径无关,则,故只需选择在上半平
面有连续偏导数,且满足的P函数只有D项.
5 [单选题]设A是三阶实对称矩阵,E是三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型x T Ax的规范形为( ).
A.
B.
C.
D.
正确答案:C
参考解析:
设λ是A的特征值,根据A2+A=2E,得λ2+λ=2,解得λ=1或-2,所以A的特征值是1或-2.因为|A|=4,所以A的三个特征值为1,-2,-2,从而二次型x T Ax的规
范形为;,故选c项.
6 [单选题]如图所示,有3张平面两两相交,交线相互平行,它们的方程a i1x+a i2y+a i3z=d i(i=1,2,3)组成的线性方程组的系数矩阵和
增广矩阵分别记为A,,则( ).
A.r(A)=2,r()=3
B.r(A)=2,r()=2
C.r(A)=1,r()=2
D.r(A)=1,r()=1
正确答案:A
参考解析:
由题意知3张平面无公共交点,且交线相互平行,所以r(A)≠r(),故排除B和D选项;又因为它们两两相交于一条直线,故其中任意
两个平面不平行,所以2=r(A),r()=3,故选A项.
7 [单选题]设A,B为随机事件,则P(A)=P(B)的充分必要条件是( ).
A.P(A∪B)=P(A)+P(B)
B.P(AB)=P(A)P(B)
C.P(A)=P(B)
D.P(AB)=P()
正确答案:C
参考解析:
因为P(A)=P(A)-P(AB),P(B)=P(B)-P(AB),所以P(A)=P(B
)(A)=P(B),故选C项.
8 [单选题]设随机变量X和Y相互独立,且都服从正态分布N(μ,σ
2),则P{|X-Y|<1}( ).
A.与μ无关,而与σ2有关
B.与μ有关,而与σ2无关
C.与μ,σ2都有关
D.与μ,σ2都无关
正确答案:A
参考解析:
X~N(μ,σ2),Y~N(μ,σ2),且X与Y相互独立,
则E(X—Y)=0,D(X—Y)=D(X)+D(Y)=2σ2,
与μ无关,而与σ2有关.故选A项.
9 [填空题]
设函数f(u)可导,z=f(siny-sinx)+xy,则
参考解析:
【解析】
10 [填空题]
微分方程2yy’-y2-2=0满足条件y(0)=1的特解为______.参考解析:
【解析】
11 [填空题]
幂级数内的和函数S(x)=______.参考解析:
【解析】
12 [填空题]
设∑为曲面x2+y2+4z2=4(z≥0)的上侧,则
参考解析:
【解析】
将曲面方程代入积分表达式,原积分为
13 [填空题]
设A=1,2,3为三阶矩阵,若1,2线性无关,且3=-
1+22,则线性方程组Ax=0的通解为_______.
参考解析:
【解析】
∵1,2线性无关,
∴r(A)≥2.
∵3=-1+22,∴r(A)<3,∴r(A)=2,
∴Ax=0的基础解系中有n-r(A)=3-2=1个线性无关的解向量.∵1-22+3=0,
14 [填空题]
设随机变量x的概率密度为F(X)为X的分布函数,E(X)为X的数
学期望,则P{F(X)>E(X)-1}=.
参考解析:
【解析】
方法一
方法二
易知Y=F(X)~U(0,1),
15 [简答题]
设函数y(x)是微分方程满足条件y(0)=0的特解.(I)求y(x);
(Ⅱ)求曲线y=y(x)的凹凸区间及拐点.
参考解析:
(I)
16 [简答题]
设a,b为实数,函数z=2+ax2+by2在点(3,4)处的方向导数中,沿方向l=-3i-4j的方
向导数最大,最大值为10.
(I)求a,b;
(11)求曲面z=2+ax2+by2(z≥0)的面积.
参考解析:
(I)函数梯度为▽=(2ax,2by),则函数在点(3,4)处的梯度为(6a,8b),则可知沿方向(-3,-4)的最大方向导数为
17 [简答题]
求曲线y=e-x sinx(x≥0)与x轴之间所成图形的面积.
参考解析:
18 [简答题]
(Ⅰ)证明:数列{a n}单调递减,且
(Ⅱ)
参考解析:
证明:
19 [简答题]
设Ω是由锥面x2+(y-z)2=(1-z)2(0≤z≤1)与平面z=0围成的锥体,求Ω的形心坐标.
参考解析:
设力的形心坐标为,根据对称性可知=0.
对于0≤z≤1,记D z={(x,y)|x2+(y-z)2≤(1-z)2},则
20 [简答题]
设向量组1=(1,2,1)T,2=(1,3,2)T,3=(1,a,3)T为R3的一个基,β=(1,1,1)T,在这组基下的坐标为(b,c,1)T.
(I)求a,b,c;
(Ⅱ)证明2,3,β为R3的一个基,并求2,3,β到1,
2,3的过渡矩阵.
参考解析:
21 [简答题]
已知矩阵
(I)求x,y;
(II)求可逆矩阵P,使得P-1AP=B.
参考解析:
(Ⅱ)A的特征值与对应的特征向量分别为
B的特征值与对应的特征向量分别为
22 [简答题]
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=
p,P{Y=1}=1-p,(0<p<1),令Z=XY.
(I)求Z的概率密度;
(Ⅱ)p为何值时,X与Z不相关?
(Ⅲ)X与Z是否相互独立?
参考解析:
23 [简答题]
设总体x的概率密度为
其中μ是已知参数,σ>0是未知参
数,A是常数,X1,X2,…,X n是来自总体X的简单随机样本.(I)求A;
(Ⅱ)求σ2的最大似然估计量.
参考解析:。

相关文档
最新文档