组卷高中数学组卷—统计案例
高中数学 统计案例同步训练题 北师大版选修23精品.doc

统计案例1•下列抽样试验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3 : 2 : 8 : 2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样2.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为()A. 180B. 400C. 450D. 2 0003.1,在等腰直角三角形ABC中,在斜边AB上任取一点M,则AM>AC的概率是__________答案:耳124.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,施{1,2,3,4,5,6},若|«-^|<1,就称甲乙"心有灵犀” •4 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为•答案:一9 5.每次抛掷一枚骰子(六个面上分别标以1, 2, 3, 4, 5, 6).连续抛掷2次,则2次向上的数之和不小于10的概率为__________ •答案:丄66.若从集合{1,2,3,4,5}的所有子集中任取一个子集,则取出的集合含有至少两个元素的13概率是______________ •答案:—167. _________________________________________________________________ 设aw {1,3,5},施{2,4,6},则函数y = log h丄是增函数的概率为______________________ 答案:丄方x 3 &设有一个回归方程为y = 2-1.5x则变量x每增加一个单位时,y平均减少_____________1. 5个单位9.若变量y与x之间的相关系数r =-0.9362,则变量y与x之间()A、不具有线性相关关系B、具有线性相关关系C、它们的线性关系还要进一步确定D、不确定10.下列说法:①将一组数据中的每个数据都加上或减去一个常数后,方差恒不变;②设A有一个回归方程y = 3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方A程y = bx + a必过点(x, y);④曲线上的点与改点的坐标之间具有相关关系;⑤在一个2x2列联表中,由计算得力2=13. 079,则其两个变量间有关系的可能性是90%,其中错误的序号是________________ ②④⑤11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟试根据上述数据计算力2= __________________比较这两种手术对病人又发作心脏病的影响有没有差别. ______________________________________________1. 78;不能作出这两种手术对病人又发作心脏病的影响有差别的结论12.(09天津)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A, B,C三个区中抽取7个工厂进行调查,已知A,B, C区中分别有18, 27, 18个工厂(I )求从A.B.C区中分别抽取的工厂个数;(II)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。
高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D. 【考点】关联判断2. 对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由附表:则下列说法正确的是:( ) A .在犯错误的概率不超过的前提下认为“对激素敏感与性别有关”; B .在犯错误的概率不超过的前提下认为“对激素敏感与性别无关”; C .有以上的把握认为“对激素敏感与性别有关”; D .有以上的把握认为“对激素敏感与性别无关”; 【答案】C 【解析】因为,所以有以上的把握认为“对激素敏感与性别有关”.3. 设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合。
对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值。
对如下数表A ,求K (A )的值;11-0.8(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【答案】(1)0.7 (2)1 (3)【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力【解析】(1)因为,所以不妨设.由题意得.又因为,所以,于是,,所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,…任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表,并且,因此,不妨设,且。
天津市高三数学单元测试题16《统计案例》 新人教版

( 时间:60分钟 满分100分)一、选择题(每小题5分,共50分)1、对于散点图下列说法中正确一个是( )(A )通过散点图一定可以看出变量之间的变化规律(B )通过散点图一定不可以看出变量之间的变化规律(C )通过散点图可以看出正相关与负相关有明显区别(D )通过散点图看不出正相关与负相关有什么区别2、在画两个变量的散点图时,下面叙述正确的是( )(A )预报变量在x 轴上,解释变量在y 轴上(B )解释变量在x 轴上,预报变量在y 轴上(C )可以选择两个变量中的任意一个变量在x 轴上(D )可以选择两个变量中的任意一个变量在y 轴上3、如果根据性别与是否爱好运动的列联表,得到841.3852.3>≈k ,所以判断性别与运动有关,那么这种判断出错的可能性为( )(A )0020 (B )0015 (C )0010 (D )0054、下列关于线性回归的说法,不正确的是( )(A )变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;(B )在平面直角坐标系中用描点法的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图;(C )线性回归直线方程最能代表观测值y x ,之间的关系;(D )任何一组观测值都能得到具有代表意义的回归直线方程;5、在两个变量y 与x 的回归模型中,分别选择了四个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的为( )(A )模型①的相关指数为976.0 (B )模型②的相关指数为776.0(C )模型③的相关指数为076.0 (D )模型④的相关指数为351.06、关于如何求回归直线的方程,下列说法正确的一项是( )(A )先画一条,测出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测出此时的斜率与截距,就可得到回归直线方程(B )在散点图中,选两点,画一条直线,使所画直线两侧的点数一样多或基本相同,求出此直线方程,则该方程即为所求回归方程(C )在散点图中多选几组点,分别求出各直线的斜率与截距,再求它们的平均值,就得到了回归直线的斜率与截距,即可产生回归方程(D )上述三种方法都不可行7、若对于变量y 与x 的10组统计数据的回归模型中,相关指数95.02=R ,又知残差平方和为53.120,那么∑=-1012)(i i y y的值为( )(A )06.241 (B )6.2410 (C )08.253 (D )8.25308、右表是对与喜欢足球与否的统计列联表依据表中的数据,得到( )(A )564.92=K(B )564.32=K(C )706.22<K(D )841.32>K9、某医院用光电比色计检验尿汞时,得尿汞含量)/(L mg 与消光系数读数的结果如下:如果y 与x 之间具有线性相关关系,那么当消光系数的读数为480时,( )(A )汞含量约为L mg /27.13 (B )汞含量高于L mg /27.13(C )汞含量低于L mg /27.13 (D )汞含量一定是L mg /27.1310、由一组样本数据),(,),,(),,(2221n n y x y x y x 得到的回归直线方程a bx y +=∧,那么下面说法正确的是( )(A )直线a bx y +=∧必过点),(--y x(B )直线a bx y +=∧必经过),(,),,(),,(2221n n y x y x y x 一点(C )直线a bx y +=∧经过),(,),,(),,(2221n n y x y x y x 中某两个特殊点(D )直线a bx y +=∧必不过点),(--y x二、填空题(每小题4分,共16分.把答案填在题中的横线上)11、下表是关于出生男婴与女婴调查的列联表那么,A= ,B= ,C= ,D= ,E= ;12、如右表中给出五组数据),(y x ,从中选出四组使其线性相关最大,且保留第一组)3,5(--,那么,应去掉第 组。
高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。
【组卷】高中数学组卷—统计案例

高中数学组卷—统计案例1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2011 2012 2013 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2010 2011 2012 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C) 10 11 13 12 8发芽数y(颗) 23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷"与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷"中任意选取2人,求至少有1名女性观众的概率.P(K2≥k) 0.05 0.01k 3。
高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D.【考点】关联判断2.某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【答案】(1);(2).【解析】(1)回归方程必过样本中心点,,将样本中心点代入回归方程,求出,即得回归方程,当广告费支出万元时,代入求得就是销售额;(2)将实际值与观测值对应列出,列举法一一列出任取两组的所有基本事件,至少有一组数据其预测值与实际值之差的绝对值不超过的对立事件为,两组都超过,找到两组都超过的基本事件的个数,.(1)因为点(5,50)在回归直线上,代入回归直线方程求得,所求回归直线方程为: 3分当广告支出为12时,销售额. 5分(2)实际值和预测值对应表为在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个, 10分两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为. 12分【考点】1.回归方程;2.古典概型的概率问题.3.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:在的范围是()A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下【答案】B【解析】则a=-b=-0.857 5.∴回归直线方程为=0.728 6x-0.857 5.要使y≤10,则0.728 6x-0.857 5≤10,∴x≤14.901 9.因此,机器的转速应该控制在15转/s以下.故选B.4.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310-1由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.-10B.-8C.-6D.-6【答案】C【解析】由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.【考点】回归分析5.在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。
统计案例高中数学

统计案例高中数学
高中数学统计案例示例如下:
假设你是一名学生,想要了解不同科目在学校的成绩分布。
你使用班级的成绩表来计算每个科目的平均分数,并将结果展示在学校官方网站上。
计算平均分数的过程如下:
1. 整理成绩表,将每个科目的成绩按列排序。
2. 计算每个科目的平均分数。
- 如果有一个科目有多个学生成绩,需要选取取平均值。
- 如果只有一个科目,则可以直接计算所有学生成绩的和再除以人数。
例如,如果成绩表如下所示:
| 科目 | 成绩 |
|------|----------|
| 数学 | 90 |
| 英语 | 85 |
| 物理 | 80 |
| 化学 | 75 |
| 历史 | 80 |
那么平均分数为(90 + 85 + 80 + 75 + 80) / 5 = 175/5 = 34.33(保留两位小数)。
将平均分数和学校官方网站上的成绩进行比较,以确保成绩分布
符合预期。
该学生在学校官方网站上发布了数学、英语和历史的平均分数分别为34.33、34.33和33.67。
这意味着在这个班级中,数学、英语和历史的平均分数相对较高,而物理、化学和历史的平均分数相对较低。
高中数学第九章统计经典大题例题(带答案)

高中数学第九章统计经典大题例题单选题1、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B×组距,即可得解.分析:利用频率=频率组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B2、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,,中位数在[400,500)且占该组的45×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题3、某地区对当地3000户家庭的当年所得年收入情况调查统计,年收入(单位:万元)的频率分布直方图如图所示,数据的分组依次为[2,4),[4,6),[6,8),[8,10],则年收入不超过6万元的家庭有( )A.900户B.600户C.300户D.150户分析:根据频率分布直方图求出[2,4)和[4,6)这两组的频率之和,用这个频率之和乘以样本总量3000即可的答案.由图可知,[2,4)和[4,6)这两组的频率之和为(0.05+0.1)×2=0.3,年收入不超过6万元的家庭有3000×0.3=900户.故选:A.4、新莽铜嘉量是由王莽国师刘歆等人设计制造的标准量器,它包括了龠(yuè)、合、升、斗、斛这五个容量单位.每一个量又有详细的分铭,记录了各器的径、深、底面积和容积.现根据铭文计算,当时制造容器时所用的圆周率分别为3.1547,3.1992,3.1498,3.2031,比《周髀算经》的“径一而周三”前进了一大步,则上面4个数据与祖冲之给出的约率(227≈3.1429)、密率(355113≈3.1416)这6个数据的中位数与极差分别为()A.3.1429,0.0615B.3.1523,0.0615C.3.1498,0.0484D.3.1547,0.0484答案:B分析:先对这6个数由小到大(或由大到小)排列,然后利用中位数和极差的定义求解即可所给6个数据由小到大排列依次为3.1416,3.1429,3.1498,3.1547,3.1992,3.2031,所以这6个数据的中位数为(3.1498+3.1547)÷2≈3.1523,极差为3.2031−3.1416=0.0615,故选:B.5、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D6、某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()注:90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多答案:D解析:根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.对于选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;对于选项C,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C正确;选项D,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.小提示:关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.7、总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为()第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A.27B.26C.25D.19答案:D分析:根据随机数表法的步骤即可求得答案.由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19.故选:D.8、某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且a:b:c=2:5:3,全校参加登山的人数占总人数的1.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进4行调查,则应从高三年级参加跑步的学生中抽取()A.15人B.30人C.40人D.45人答案:D分析:由题知全校参加跑步的人数为2000×3=1500,再根据分层抽样的方法求解即可得答案.4=1500,解:由题意,可知全校参加跑步的人数为2000×34=450.所以a+b+c=1500.因为a:b:c=2:5:3,所以c=1500×32+5+3因为按分层抽样的方法从中抽取一个容量为200的样本,所以应从高三年级参加跑步的学生中抽取的人数为450×200=45.2000故选:D多选题9、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.甲同学体温的极差为0.4℃B.乙同学体温的众数为36.4℃,中位数与平均数相等C.乙同学的体温比甲同学的体温稳定D.甲同学体温的第60百分位数为36.4℃答案:ABC分析:根据给定的折线图,逐一分析判断各个选项即可作答.观察折线图知,甲同学体温的极差为36.6−36.2=0.4℃,A正确;乙同学体温从小到大排成一列:36.3℃,36.3℃,36.4℃,36.4℃,36.4℃,36.5℃,36.5℃,(36.3×2+36.4×3+36.5×2)=46.4℃,B正乙同学体温的众数为36.4℃,中位数为36.4℃,平均数x=17确;乙同学的体温波动较甲同学的小,极差为0.2℃,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,C正确;将甲同学的体温从小到大排成一列:36.2℃,36.2℃,36.4℃,36.4℃,36.5℃,36.5℃,36.6℃,因7×60%=4.2,则甲同学体温的第60百分位数为36.5℃,D不正确.故选:ABC10、下表记录了某地区一年之内的月降水量是53mm和56mmC.该年份月降水量的25%分位数是52mmD.该年份月降水量的中位数是56mm答案:ACD分析:A. 利用极差的定义判断;B.利用众数的定义判断;C.利用百分位数的定义判断;D.利用中位数的定义判断.A. 该年份月降水量的极差是71-46=25mm,故正确;B.该年份月降水量的众数是56mm,故错误;C.该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,12×25%=3,=52mm,故正确;所以年份月降水量的25%分位数是51+532D. 该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,所以该年份月降水量的中位数是56+56=56mm,故正确;2故选:ACD11、某教育局对全区高一年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到统计图表如下,则下列结论正确的是().A.男生人数为80人B.B层次男女生人数差值最大C.D层次男生人数多于女生人数D.E层次女生人数最少答案:ABD分析:根据条形图求出抽取女生人,得出抽取男生人,再对照图表判断选项中的命题是否正确即可.解:由条形图知,抽取女生学生有18+48+30+18+6=120(人),所以抽取男生有200−120=80(人),选项A正确;B层次的男生有80×(1−10%−15%−20%−25%)=24(人),A,B,C,D,E五个层次男生人数分别:8,24,20,16,12(人),与女生各层次差值分别为:10,24,10,2,6,选项B正确;D层次的男生有12(人),女生有18人,男生人数少于女生,选项C错误;E层次的女生人数最少,选项D正确.故选:ABD.12、某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例:用该样本估计总体,以下四个选项正确的是()A.54周岁以上参保人数最少B.18~29周岁人群参保总费用最少C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群20%答案:AC分析:根据选项逐一对相应的统计图进行分析判断即可.解:对A:由扇形图可知,54周岁以上参保人数最少,故选项A正确;对B:由折线图可知,18~29周岁人群人均参保费用最少,但是由扇形图知参保人数并不是最少的,所以参保总费用不是最少,故选项B错误;对C:由柱状图可知,丁险种参保比例最高,故选项C正确;对D:由扇形图可知,30周岁以上的人群约占参保人群80%,故选项D错误.故选:AC.13、睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万个学生时间利用信息得出下图,则以下判断正确的有()A .高三年级学生平均学习时间最长B .中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C .大多数年龄段学生平均睡眠时间长于学习时间D .与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠答案:BC分析:根据图象提供数据对选项进行分析,从而确定正确答案.根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A 选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B 选项正确.学习时间大于睡眠时间的有:初二、初三、高一、高二、高三,占比516.睡眠时间长于学习时间的占比1116,C 选项正确.从高三到大学一年级,学习时间减少9.65−5.71=3.94,睡眠时间增加8.52−7.9=0.62,所以D 选项错误. 故选:BC填空题14、已知一组样本数据5、2、3、6,则该组数据的第70百分位数为__________.答案:5分析:首先计算指数,再由百分位数的定义可得答案.解:这组样本数据5、2、3、6,从小到大排列为2、3、5、6,又4×70%=2.8,则该组数据的第70百分位数为第3个数5,所以答案是:5.15、若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的标准差为_______.答案:2解析:若一组数据x1,x2,x3,⋯,x n的方差为s2,则数据ax1+b,ax2+b,ax3+b,⋯,ax n+b的方差为a2s2.若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则其方差也为1,所以数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的方差为4,标准差为2.所以答案是:2.16、某车间生产A,B,C三种不同型号的产品,产量之比分别为5:k:3,为检验产品的质量,现用分层抽样的方法抽取一个容量为120的样本进行检验,已知B种型号的产品共抽取了24件,则C种型号的产品抽取的件数为_________.答案:36分析:根据题意可得24120=k5+k+3,解方程求出k的值,再根据C种型号的产品所占的比例,求出C种型号的产品应抽取的数量.由题意,得24120=k5+k+3,所以k=2,所以C种型号的产品抽取的件数为120×35+2+3=36.所以答案是:36.解答题17、在①55%分位数,②众数这两个条件中任选一个,补充在下面问题中的横线上,并解答问题.维生素C又叫L-抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.现从猕猴桃、柚子两种食物中测得每100克维生素C的含量(单位:mg)各10个数据如下,其中猕猴桃的一个数据x被污损.猕猴桃:104,119,106,102,132,107,113,134,116,x;柚子:121,113,109,122,114,116,132,121,131,117.已知x等于柚子的10个数据中的___________.(1)求x的值与猕猴桃的数据的中位数;(2)分别计算上述猕猴桃、柚子两种食物中测得每100克维生素C含量的平均数.答案:(1)121,中位数为114.5(2)115.4mg,119.6mg分析:(1)先将柚子从小到大排序,若选①,利用55%分位数的定义得到x=121,若选②,利用众数的定义进行也得到x=121,接着代入猕猴桃里面,从小到大排序算出中位数;(2)利用平均数的定义进行计算(1)柚子的10个数据按照从小到大的顺序排列为:109,113,114,116,117,121,121,122,131,132.选①,因为10×55%=5.5,所以柚子10个数据的55%分位数为第6个数,即121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12选②,因为柚子的10个数据的众数为121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12(2)×(102+104+106+107+113+116+119+121+由(1)得每100克猕猴桃维生素C含量的平均数为110132+134)=115.4mg×(109+113+114+116+117+121+121+122+131+每100克柚子维生素C含量的平均数为110132)=119.6mg18、从某校高一年级新生中随机抽取一个容量为20的身高样本,数据如下(单位:cm,数据间无大小顺序要求):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x,174,175.(1)若x为这组数据的一个众数,求x的取值集合;(2)若样本数据的第90百分位数是173,求x的值;(3)若x=174,试估计该校高一年级新生的平均身高.答案:(1){164,165,168,170}(2)172(3)166.5(cm)分析:(1)首先排列19个数据,根据众数的定义,即可确定x的取值集合;(2)首先确定第90百分位数是第18项和第19项数据的平均数,再讨论x的取值,根据百分位数,列式求值;(3)根据平均数公式,列式求值.(1)其余十九个数据152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,174,175中,数据出现的频数为3的数有165,170,出现频数为2的数据有164,168.因为x为这组数据的一个众数,所以x的取值集合为{164,165,168,170}.(2)因为20×90%=18,所以90百分位数是第18项和第19项数据的平均数,若x⩽171,则90百分位数为1(171+174)=17,矛盾.2(x+174)=173,所以x=172.若171<x<175,即12(174+175)=174.5,矛盾.若x⩾175,则90百分位数为12综上,x的值为172.(3)依题意可得152+155+158+164+164+165+165+165+166+167+168+168+169+170+170+170+171+174+174+175=3330所以平均数为3330÷20=166.5(cm),估计该校高一年级学生的平均身高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学组卷—统计案例1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.05 0.01k 3.841 6.635附:K2=.6.(2016•衡阳二模)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)几何题代数题总计男同学22 8 30女同学8 12 20总计30 20 50(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.附表及公式P(k2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828K2=.7.(2016•宝鸡二模)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:是否近视1~50 951~1000年级名次近视41 32不近视9 18根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.P(K2≥k)0.10 0.05 0.025 0.010 0.005k 2.706 3.841 5.024 6.635 7.879附:.8.(2016•广州模拟)“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性45 15 60女性25 15 40合计70 30 100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)0.100 0.050 0.010 0.001k0 2.706 3.841 6.635 10.8289.(2014•安徽)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.10 0.05 0.010 0.005k0 2.706 3.841 6.635 7.879附:K2=.10.(2014•辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:X2=P(x2>k)0.100 0.050 0.010k 2.706 3.841 6.635高中数学组卷—统计案例参考答案与试题解析1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)【解答】解:(1)=(79+81+83+85+87)=83.∵=(77+79+79+82+83)=80,∴政治成绩的方差=[(77﹣80)2+(79﹣80)2+(79﹣80)2+(82﹣80)2+(83﹣80)2]=4.8(2)(x i﹣)(y i﹣)=30,(x i﹣)2=40,∴b=,∴a=80﹣=17.75,∴y=x+17.75.2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)【解答】解:(Ⅰ),,,,,∴z=1.2t﹣1.4•…(6分)(Ⅱ)t=x﹣2010,z=y﹣5,代入z=1.2t﹣1.4得到:y﹣5=1.2(x﹣2010)﹣1.4,即y=1.2x﹣2408.4•…(9分)(Ⅲ)x=2020,∴y=1.2×2020﹣2408.4=15.6,∴预测到2020年年底,该地储蓄存款额可达15.6千亿元•…(12分)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.【解答】解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y关于t的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?【解答】解:(I)由题意知本题是一个等可能事件的概率,试验发生包含的事件共有C52=10种结果,满足条件的事件是事件“m,n均小于25”的只有1个,∴要求的概率是p=.(II)∵,∴b==∴a=27﹣,∴所求的线性回归方程是y=(III)当x=10时,y=22,当x=8时,y=17,与检验数据的误差是1,满足题意,被认为得到的线性回归方程是可靠的.5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.05 0.01k 3.841 6.635附:K2=.【解答】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下:。