人教版初中数学二次根式知识点复习
初中数学七、八、九年级知识点及公式总结大全(人教版)

九年级数学(上)知识点第二十一章 二次根式一.知识框架二.知识概念1、二次根式的定义:式子叫做二次根式,其中a叫做被开方数。
2、最简二次根式:满足下列两个条件的二次根式是最简二次根式:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质:(1)(2)=|a|= a (a>0)-a (a<0) 0 (a=0) (3)积的算数平方根性质:(a≥0,b≥0)(4)商的算数平方根性质:ba ba =(a≥0,b>0)5、二次根式的乘法:=(a≥0,b≥0)即两个二次根式相乘,根指数不变,被开方数相乘。
注意:法则是由积的算数平方根的性质(a≥0,b≥0)反过来即得。
6、二次根式的除法:baba =(a≥0,b>0) 注意:法则是由商的算数平方根的性质ba ba =(a≥0,b>0)反过来得到的。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法:将一元二次方程变形为(x+p)2 =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.(3)公式法:将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子x=242b b aca-±-就得到方程的根.第二十三章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
人教版数学八年级下 16.1 二次根式

课时1
初中数学
八年级下册 RJ
知识回顾
(1)什么叫一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫做a的平
方根或二次方根. a叫做被开方数,a的平方根是 ± .
(2)什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就叫做a的算术平
方根,记作 , 0的算术平方根是0.
−2
∴ =3
1
1
= 2= .
3
9
1
9 .
16.1 二次根式
课时2
初中数学
八年级下册 RJ
知识回顾
(1)什么叫二次根式?如何表示?
一般地,我们把形如 (a≥0)的式子叫做二次根式.
其中“ 1”称为二次根号.
(2)二次根式有意义的条件是什么?
被开方数(式子)为非负数, (≥0).
+3
当 x 为何值时,
(4)带分数与字母相乘时,要将带分数化成假分
数.
2
11
如3 ×a通常写作 a.
3
3
(5)除法运算通常用分数线.如3÷
3
通常写作 .
(6)在实际问题中,若有单位且代数式是几个式
子的和或差时,要将代数式用括号括起来. 如温度
由2℃上升t℃后是(2+t)℃.
列代数式的常用方法:
(1)直接法:根据问题的语言叙述直接写出代数式.
例2 化简:
(1) 16 .
(2)
−5 2.
解:(1)原式= 42 = 4.
(2)原式=5.
利用二次根式的性质3:
2
= =
-a(a<0)
数学八年级下《二次根式》复习课件

2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a
a
2
≥0 时, 当a ____
a
2
a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2
11 2 3 .
2
2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1
最全二次根式知识汇总,从性质到运算学霸知识清单!

最全二次根式知识汇总,从性质到运算学霸知识清单!今天我们来梳理一下新人教数学教材第十六章二次根式的相关内容。
二次根式是对实数领域的一个扩充,在学习完实数之后,在整个初中阶段,实数就成了最大的数的范畴。
二次根式来源于七年级下册“开平方”运算,实质就是平方根之间的加减乘除、乘法、绝对值和开方运算,以及运算定律对根式的应用。
首先来说什么是二次根式的问题。
二次根式的三个性质,第一是非负性,第二是平方根的深化,第三是二次根式与绝对值之间的联系。
其中二次根式的非负性有两个其一是自身非负数,另一个是被开方数非负数。
介绍最简二次根式的相关内容,被开房数是整数,因式是整式;被开方数中不含能开发开的尽方的数或因式,课本就讲解这两点,但是在其中补充一句,分母中不含根号。
同类二次根式的相关定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
分母有理化的相关定义:原为无理数的分母化为有理数的过程,也就是将分母中的根号化去。
有理化因式的相关定义:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
分母有理化的两种类型,其一分母是单项二次根式,分子和分母同时乘以同一个分母根式,其二是两项二次根式,这个时候要利用平方差公式在凑平法。
分母有理化的过程,①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
二次根式的乘除法要求:二次根式乘、除法运算法则要灵活运用,在实际运算中经常从等式右边变形至等式的左边,同时还要考虑字母取值范围,最后把运算结果化成最简二次根式。
人教版数学中考知识点梳理-二次根式

第4讲二次根式青海一中李清
一、知识清单梳理
【素材积累】
1、一个房产经纪人死后和上帝的对话一个房产经人死后,和上帝喝茶。
帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。
刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?阎王说:地狱的小。
2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。
因为一个人要想有所成旧,旧必须做那些困难的事。
只有做困难的事,才能推动社会发展进步。
初中数学二次根式基础知识点(共6篇)

初中数学二次根式根底知识点〔共6篇〕篇1:初中数学二次根式根底知识点 1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足以下条件:3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的_质:a(a0)22(1)(a)=a(a≥0);(2)aa0(a=0);5.二次根式的运算:a(a0)(1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一局部,一起挪动初中数学一元二次方程常见考法1.考察一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵敏,所以一直很吸引命题者。
二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如果 x • x 6 x(x 6) ,那么( )
A. x 0
【答案】B 【解析】
B. x 6
C. 0 x 6
∵ x ? x 6 xx 6 ,
∴x≥0,x-6≥0,
》
∴x 6.
故选 B.
D.x 为一切实数
5.下列运算正确的是( )
A.2 3 ﹣ 3 =1 B.(﹣ 2 )2=2 C. (-11)2 =±11 D. 32 -22
x20
根据题意,得{
解得,x≥2 且 x≠3.
x3 0
考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件
20.如果代数式 m 1 有意义,那么直角坐标系中 P(m,n)的位置在( ) mn
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】C
【解析】
【分析】
先根据二次根式与分式的性质求出 m,n 的取值,即可判断 P 点所在的象限.
A. (2)2 2 B. 2 8 4
C. 2 8 10 D. 2 2 2
【答案】B
【解析】
【分析】
·
根据 a2 =|a|, a b ab (a≥0,b≥0),被开数相同的二次根式可以合并进行计
算即可.
【详解】
A、 22 2 ,故原题计算错误;
B、 2 8 16 =4,故原题计算正确;
故选 D.
14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知
一长方体婴儿游泳池的体积为 300 立方米、高为 3 米,则该长方体婴儿游泳池的底面 8
积为( )
:
A. 40 3 平方米
B. 40 2 平方米
C. 20 3 平方米
D. 20 2 平方米
【答案】D
【解析】
【分析】
13.下列计算或化简正确的是( )
A. 2 3 4 2 6 5
B. 8 4 2
C. (3)2 3
D. 27 3 3
【答案】D
&
【解析】
解:A.不是同类二次根式,不能合并,故 A 错误;
B. 8 2 2 ,故 B 错误;
C. (3)2 3 ,故 C 错误;
D. 27 3 27 3 9 3 ,正确.
即符合条件的 x 的值有 4 个.
故选 C.
D.2 个
7.已知 y 2x 5 5 2x 3 ,则 2xy 的值为( )
A. 15
【答案】A
`
【解析】
B.15
C. 15 2
试题解析:由 y 2x 5 5 2x 3 ,得
2x 5 0
{
,
5 2x 0
x 2.5
解得{
.
y 3
2xy=2××(-3)=-15, 故选 A.
D.
2
试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式= ;C、
原式=2 ;D、原式= . 考点:最简二次根式
19.使代数式 x 2 有意义的 x 的取值范围( ) x3
A.x>2
B.x≥2
C.x>3
D.x≥2 且 x≠3
【答案】D
【解析】
试题分析:分式有意义:分母不为 0;二次根式有意义,被开方数是非负数.
D. x 0 且 x 1
,
【答案】B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求出 x 的
范围.
【详解】
x 0 根据题意得: x 1 0 ,
解得:x≥0 且 x≠1. 故选:B. 【点睛】
|
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为 0;二
a(a>0) a2 a = 0(a=0) ,可知 (-11)2 =|﹣11|=11,所以 C 选项错
a(a<0)
误;
D、根据二次根式的性质,可知 32 -22 = 9 4 = 5 ,所以 D 选项错误.
故选 B.
【点睛】
、
此题主要考查了的二次根式的性质 (
a )2 =a(a≥0),
a(a>0) a2 a = 0(a=0) ,正确利用
)
a2 | a b | b2 a a b b a (a b) b
a a b b 2a.
故选 A. 【点睛】 本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.
…
18.下列根式中属最简二次根式的是(
A. a2 1
【答案】A 【解析】
B. 1 2
)
C. 8
1
∴ 3 12 4
%
∴估计 2 6 2 值应在 3 到 4 之间. 2
故选:A 【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.
12.如果
A.
B.
【答案】B
(
【解析】
,则 a 的取值范围是( )
C.
D.
试题分析:根据二次根式的性质 1 可知:
,即
故
答案为 B. . 考点:二次根式的性质.
D. 15 2
8.下列各式中,运算正确的是( )
!
A. a6 a3 a2
B. (a3 )2 a5
C. 2 2 3 3 5 5
D. 6 3 2
【答案】D 【解析】 【分析】 利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算. 【详解】
解:A、a6÷a3=a3,故不对;
故选:B.
【点睛】
本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行
解题.
10.下列计算正确的是 ( ) A. 18 3 6
B. 8 2 2
C. 2 3 3 2
D. (5)2 5
}
【答案】B
【解析】
【分析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
C、 2 8 3 2 ,故原题计算错误;
D、2 和 2 不能合并,故原题计算错误;
故选 B. 【点睛】
…
此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法 则.
16.若二次根式 x 3 在实数范围内有意义,则 x 的取值范围是( )
A. x 3
【答案】C 【解析】
B. x 3
根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.
【详解】
解:根据题意,该长方体婴儿游泳池的底面积为 300 ÷ 3 = 300 3 = 800 =
8
8
20 2 (平方米)
故选:D.
'
【点睛】
考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.
15.下列各式中,运算正确的是( )
17.实数 a, b 在数轴上对应的点位置如图所示,则化简 a2 | a b | b2 的结果是( )
,
A. 2a
【答案】A 【解析】 【分析】
B. 2b
C. 2a b
D. 2a b
利用 a2 a , 再根据去绝对值的法则去掉绝对值,合并同类项即可.
【详解】
解: a<0<b, a >b , a b<0,
)
B、(a3)2=a6,故不对;
C、2 2 和 3 3
不是同类二次根式,因而不能合并; D、符合二次根式的除法法则,正确. 故选 D.
9.在下列算式中:① 2 5 7 ;② 5 x 2 x 3 x ;
③ 18 8 9 4 4 ;④ a 9a 4 a ,其中正确的是( ) 2
A.①③
C. x 3
D. x 0
【分析】
先根据二次根式有意义的条件是被开方式大于等于 0,列出关于 x 的不等式,求出 x 的取 值范围即可.
}
【详解】
解:∵二次根式 x 3 在实数范围内有意义,
∴x-3≥0,解得 x≥3. 故选:C. 【点睛】
本题考查的是二次根式有意义的条件,即被开方数大于等于 0.
A.±3 【答案】C 【解析】 【分析】
B.-3
C.3
根据 a2 =|a|进行计算即可.
—
【详解】
(3)2 =|-3|=3,
故选:C. 【点睛】 此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
D.9
3.若代数式 y x 有意义,则实数 x 的取值范围是( ) x 1
A. x 0
B. x 0 且 x 1 C. x 0
B.②④
C.③④
D.①④
—
【答案】B
【解析】
【分析】
根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案. 【详解】
解: 2 与 5 不能合并,故①错误;
5 x 2 x 3 x ,故②正确;
18 8 3 2 2 2 5 2 ,故③错误;
2
2
2
^
a 9a a 3 a 4 a ,故④正确;
11.估计 2 6 2 值应在( ) 2
A.3 到 4 之间
B.4 到 5 之间
C.5 到 6 之间
D.6 到 7 之间
【答案】A
%
【解析】
【分析】
先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估
算即可得解.
【详解】
解: 2 6 2 12 2
∵ 9 12 16 ∴ 9 12 16
a(a<0)
性质和运算法则计算是解题关键.
6.使式子 1 4 3x 在实数范围内有意义的整数 x 有( ) x3
A.5 个
B.3 个
C.4 个