井筒气液两相流基本概念

合集下载

2-2.井筒气液两相流

2-2.井筒气液两相流
⑦计算该段下端对应的深度及压力
i
Li hj j 1
Pi Po iP
⑧以L1处的压力为起点,重复②~⑦步,计算下一段的深 度和压力,直到各段的累加深度等于或大于管长(Ln>L) 时为止。
2)按压力增量迭代的步骤
①已知井底或井口的压力P0,选取合适的深度间隔h;
②估计一个对应于计算间隔的压力增量。
积之比值。
液相存容比(持液率)HL :管段中液相体积与管段容
积之比值。
滑脱速度:气相流速与液相流速之差。
vs

vsg Hg
vsL 1 Hg

qg Ap H g

qt qg Ap (1 H g )

Hg

1 [1 2
qt vs Ap

(1 qt )2 4qg
vs Ap
vs Ap
泡流摩擦损失梯度按液相进行计算:
dP g v dv f v2
dh
dh d 2
• 为了强调多相混合物流动,将方程中的各项流动参数 加下角“m”,则
dP dh

m g sin

mvm
dvm dZ

fm
m
d
vm2 2
(2)多相垂直管流压力分布计算步骤 1)按深度增量迭代的步骤
①已知任一点(井口或井底)的压力作为起点,任选一个 合适的压力降作为计算的压力间隔;
进入断面1的流体能量 +在断面1和2之间对流 体额外所做的功 -在断面1和2之间耗失 的能量 =从断面2流出的流体能 量
倾斜多相管流断面1和断面2的流体的能量平衡关系为:
U1

mgZ1 sin

mv12 2

气液两相流应用

气液两相流应用

气液两相流应用以气液两相流应用为题,我们将探讨气液两相流在不同领域的应用。

气液两相流是指同时存在气体和液体的流体状态,常见的应用包括石油工业、化工工艺、能源系统等。

在这些领域,气液两相流的研究和应用具有重要的意义。

气液两相流在石油工业中的应用十分广泛。

石油开采过程中,常常需要将地下的油气通过管道或井筒运输到地面。

在这个过程中,由于地下油气的特殊性,常常会形成气液两相流。

研究气液两相流的流动规律能够帮助工程师更好地设计和运营油气输送系统,提高输送效率。

化工工艺中的气液两相流应用也非常重要。

在化工生产过程中,常常需要进行气体和液体的混合反应或分离。

气液两相流在这个过程中起到了至关重要的作用。

研究气液两相流的传热、质传和动量传递规律,能够帮助工程师优化化工反应器的设计和操作参数,提高生产效率和产品质量。

能源系统中的气液两相流应用也备受关注。

例如,核电站中的蒸汽发生器就是一个典型的气液两相流装置。

蒸汽发生器中的核燃料产生的热量将水转化为蒸汽,然后驱动汽轮机发电。

研究气液两相流的动态特性和传热规律,能够帮助工程师更好地设计和优化蒸汽发生器,提高核电站的发电效率和安全性。

气液两相流还广泛应用于环境保护和污水处理领域。

例如,在废气处理中,常常需要将废气中的有害物质与液体进行接触和吸收,以实现废气的净化。

气液两相流技术可以提高废气与液体的接触面积,加快吸收反应速度,从而提高废气处理的效率。

在污水处理中,气液两相流也常被用于气浮和曝气等工艺中,通过气泡的作用来提高污水中悬浮物的去除效果。

气液两相流在石油工业、化工工艺、能源系统以及环境保护等领域都有重要的应用。

研究和应用气液两相流技术,能够帮助工程师更好地设计和优化工艺装置,提高生产效率和产品质量,同时也有助于保护环境和提高能源利用效率。

随着科学技术的不断进步,相信气液两相流技术在更多领域的应用将会得到进一步的拓展和深化。

油气井流体力学 第5章 气液两相流动

油气井流体力学 第5章 气液两相流动
2 2 W (q w ) Wdi d[WGG / 2 WLL / 2 WG sin dz]
气液两相流动基本方程式
di q dE dp(WG / G WL L )W
w 0
(dp / dz )[ x / G (1 x) / L ]
2 2 G x 2 G J G G
垂直上升管流型分布图
第五章 气液两相流动
第三节 气液两相流动流型和流型图
垂直下降管中的气液两相流流型 1-细泡状流型;2-气弹状流型;3-下降液膜流型; 4-带气泡的液膜流型;5-块状流型;6-雾式环状流型
第五章 气液两相流动
第三节 气液两相流动流型和流型图
第五章 气液两相流动
第二节
2.1 基本参数
〖例〗气液混合物在内径25mm的管道内流动,气体和液体的体积流量分别为 0.85m3/min和.15 m3/min,由高速摄影测得气泡的速度为50m/s,试求体积 含气率、截面含气率、液相的速度以及气相和液相的折算速度、漂移速度。 液相速度
气液两相流动基本方程式
2 2 2 dE / dz G 2 d{x3 /( G ) (1 x)3 /[ L (1 )2 ]}/ 2dz g sin
第五章 气液两相流动
第二节
2.2 基本方程
在均相流动时,上述3个基本方程式可简化
气液两相流动基本方程式
W Amm
Adp df Am g sin dz Wdm
第五章 气液两相流动
第一节 第二节 第三节 第四节
多相混合物特征 气液两相流动基本方程式 气液两相流动流型和流型图 气液两相流动压力降
第五章 气液两相流动
第一节
1.1 多相混合物简介

汽液两相流动的基本概念

汽液两相流动的基本概念

汽液两相流动的基本概念1. 引言汽液两相流动是指同时存在气体和液体两相的流动现象。

它在工程中具有重要的应用,如化工、石油、能源等领域。

本文将介绍汽液两相流动的基本概念,包括定义、特点、分类以及常见的流动模式等内容。

2. 定义汽液两相流动是指气体和液体同时存在并在一定空间内同时流动的现象。

在这种流动中,气体相和液体相之间存在明显的相互作用力,例如气泡、液滴、涡旋等。

3. 特点汽液两相流动具有以下特点:3.1 多相特性汽液两相流动中同时存在气相和液相,因此它是一种多相流动现象。

在流体动力学和传热学中,对多相流动的研究具有重要的理论意义和实际应用价值。

3.2 相互作用力汽液两相流动中,气体相和液体相之间存在相互作用力,这种力是流动过程中重要的影响因素之一。

例如在气泡形成和液滴破裂过程中,相互作用力的变化会导致流动特性的变化。

3.3 相变现象在汽液两相流动过程中,气体相和液体相之间可能发生相变现象。

相变现象会引起流动特性的变化,如气泡融合会导致流动阻力的增加。

4. 分类汽液两相流动可以根据流动性质、流速、液体表面张力等因素进行分类。

4.1 流动性质分类根据气体和液体相对流动速度的大小,可以将汽液两相流动分为气体连续相和液体连续相两种情况。

当气体相速度远大于液体相速度时,称为气体连续相,反之称为液体连续相。

4.2 流速分类根据流速的大小,可以将汽液两相流动分为亚临界流动和超临界流动两种情况。

亚临界流动是指流速低于气体临界速度的流动,超临界流动是指流速高于气体临界速度的流动。

4.3 表面张力分类根据液体表面张力的大小,可以将汽液两相流动分为低表面张力流动和高表面张力流动两种情况。

低表面张力流动指的是液体表面张力较小的流动,高表面张力流动指的是液体表面张力较大的流动。

5. 常见的流动模式汽液两相流动中常见的流动模式包括气泡流动、液滴流动、涡旋流动等。

5.1 气泡流动气泡流动是指在液体中存在气泡并随流体流动的过程。

油井流入动态及多相流动计算

油井流入动态及多相流动计算

1.906 107
k 1.201
非胶结地层紊流速度系数:
g
1.08 10 k 0.55
6
如果试井资料在单相渗流呈现非线性渗流,可绘
制 ( pR pwf ) q 与 q 的关系曲线 。
Pr Pwf C Dq q
Pr Pwf qo
C
由此可以看出, Pr Pwf / q 与 q
tan D
油井生产过程
四个基本流动过程:
油气从油藏流到井底(Pr→Pwf) -地层中的渗流 从井底流到井口(Pwf → Pt) -多相管流(泡流、段塞流、环流、雾流) 通过油嘴的流动(Pt → PB)
-嘴流
井口到分离器的流动( PB →Psep ) -近似水平管流
第一节 油井流入动态(IPR曲线)
Pwf
Qo
Beggs-Brill Correlation
自喷井生产系统
①—分离器 ②—地面油嘴 ③—井口 ④—安全阀(海上油井) ⑤—节流器(海上油井) ⑥—井底流压Pwf ⑦—井底油层面上的压力Pwfs ⑧—平均地层压力Pr ⑨—集气管网 ⑩—油罐
井筒设备:油管、封隔器、配产器;
地面设备:井口装置(又称采油树),内含有油嘴。
2)计算采油指数
Jo
qo2 qo1 pwf 1 pwf 2
60 20 11 9
m3 20
Mpa
3)查表得
re 0.571 40000 1142
rw
0.1
koh
J o B(ln
re rw
3 4
s)
0.4107109 (m3
/( pas))
0.4107
m2m
o
2
mPa s
4)直线外推至q=0,求得 PR 12Mpa.

两相流

两相流

井筒两相流 一、流动型态
油气水混合物在井筒中的 流动型态大致可以分为以 下五种: •1、泡状流 •2、段塞流 •3、过渡流 •4、环状流 •5、雾状流
井筒两相流
1 泡状流
井筒内流体的压力稍 低于饱和压力,少量的 气体从油气中分离出来, 以小气泡的形式分散于 油中
பைடு நூலகம்
井筒两相流
2 段塞流 井筒内流体压力进一步降低,气体继续分 离出来,并且进一步膨胀,且炮弹形大气 泡形成气体柱塞,使井筒内出现一段液体、 一段气体的柱塞状流动 气体段塞对液体举升有很大作用,气体的 膨胀能量得到充分的利用。但是,这种气 体段塞好像不严密的活塞,在举液过程中, 部分已被上举的液体又沿着气体段塞的边 缘滑脱下来,因此仍有一定的滑脱损失
井筒两相流
3 过渡流
井筒两相流
4 环状流
随着气体的继续分离和膨胀,气体段塞不断加长而 突破液体柱塞,形成中间为连续气体,管壁附近为 环形液流的流动型态
井筒两相流
5 雾状流 气体的量继续增加时,中间的气 柱几乎完全占据了井筒的横断面, 液体呈滴状分散在气柱之中,由 于液体被高速的气流所携带,所 以几乎没有什么滑脱损失。此时, 气体的速度增加很快,开始出现 明显的加速度损失。

2 气液两相管流分析ppt课件

2 气液两相管流分析ppt课件

dz
A
dz
压降梯度=重力梯度+摩阻梯度+动能梯度
15
单相流
dp g sin f v 2 v dv
dz
2D dz
水平管流(θ=0),且忽略动能
dp v 2
f dz 2D
多相流
dp dz
m g sin
fm
m
v
2 m
2D
mvm
dvm dz
16
分析 m
m L H L g 1 H L
19
• Orkiszewski方法
Orkiszewski(1967)采用148口油井实测数据,对比 分析了多个气液两相流模型。然后分不同流型择其优者, 综合他的研究成果得出四种流型的压降计算方法。
流型
选用方法
泡流 段塞流
过渡流 雾状流
Griffith和Wallis 密度项对Griffith和Wallis公式作了修正,摩阻 项用Orkiszewski方法 Ros和Duns Ros和Duns
当Nb≥8000时
vS (0.35 8.74 106 N R e ) gD
34
b.摩阻梯度
f
f Lvm2
2D
qL qm
vs vs
A A
C0
2
f
1.14
2
lg
e D
21.25 N 0.9
Re
35
3.雾状流
a.混合物密度
m (1 HG )L HG G
雾状流一般发生在高气液比、高流速条件下,液相 以小液滴形式分散在气柱中呈雾状,这种高速气流携液 能力强,其滑脱速度甚小,一般可忽略不计。
温度:-7.8~55.6℃

第1章绪论油井流入动态和多相流

第1章绪论油井流入动态和多相流

采油工程原理与设计
(二)斜井和水平井的IPR曲线
Cheng对溶解气驱油藏中斜井和水平井进行了 数值模拟,并用回归的方法得到了类似Vogel方程 的不同井斜角井的IPR回归方程:
q A BP CP2
P’=Pwf/Pr; q’=qo/qomax ;A、B、C为取决于井 斜角的系数。
Bendakhlia等用两种三维三相黑油模拟器研究了 多种情况下溶解气驱油藏中水平井的流入动态关 系。得到了不同条件下IPR曲线。
]
b.给定不同流压,计算相应的产量:
qo
1
0.2
Pwf
Pr
0.8
Pwf Pr
2
qo
m
ax
c.根据给定的流压及计算的相应产量绘制IPR曲线。
◆ 油藏压力未知,已知两个工作点
a.油藏平均压力的确定
A q1 1 q2
B B2 4 AC
Pr
2A
B
0.2
q1 q2
Pwf
2
Pwf 1
C
0.8
Pr oo pr
qo
ln
re
2kh
rw
3 4
s
K ro
o o
Pr
2
Pr
Pw2f
2Pr
令:
J o
ln
2k h
re
rw
3 4
s
K ro
o
o
pr
1 2Pr
当 Pwf 0 时:
qomax
ln
re
2k h
rw
3 4
s
Байду номын сангаас
K ro
oo
Pr
Pr 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节井筒气液两相流基本概念
一、教学目的
掌握井筒气液两相流动的特点、流态及其特征;井筒气液两相流动中能量平衡方程的推导以及压力分布计算的方法(按压力增量迭代和按深度增量迭代方法)。

二、教学重点、难点
教学重点:
1、气液两相流的特性;
2、井筒气液两相流动的能量平衡方程。

教学难点:
1、滑脱及其特征;
2、气液两相流动的能量平衡方程。

三、教法说明
课堂讲授并辅助以多媒体课件展示相关流态图形。

四、教学内容
本节主要介绍两个方面的问题:
1.井筒气液两相流动的特性.
2.井筒气液两相流能量平衡方程及压力分布计算步骤.
(一) 井筒气液两相流动的特性
相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开。

例如:水--冰系统、泥浆、油--气--水等均是多相体系
油气是深埋于地下的流体矿藏。

随压力的降低,溶解气将不断从原油中逸出,因此,井筒中将不可避免地出现气液两相流动。

采油设备的优化设计和工况分析、油气集输设计等都离不开气液两相流的理论与计算方法。

2、气液混合物在垂直管中的流动结构——流动型态的变化
流动型态(流动结构、流型):
流动过程中油、气的分布状态。

影响流型的因素:
气液体积比、流速、气液界面性质等。

①纯液流
当井筒压力大于饱和压力时,天然气溶解在原油中,产液呈单相液流。

②泡流
井筒压力稍低于饱和压力时,溶解气开始从油中分离出来,气体都以小气泡分散在液相中。

滑脱现象:
混合流体流动过程中,由于流体间的密度差异,引起的小密度流体流速大于大密度流体流速的现象。

如:油气滑脱、气液滑脱、油水滑脱等。

特点:气体是分散相,液体是连续相;
气体主要影响混合物密度,对摩擦阻力影响不大;
滑脱现象比较严重。

③段塞流
当混合物继续向上流动,压力逐渐降低,气体不断膨胀,小气泡
将合并成大气泡,直到能够占据整个油管断面时,井筒内将形成一段液一段气的结构。

特点:气体呈分散相,液体呈连续相;
一段气一段液交替出现;
气体膨胀能得到较好的利用;
滑脱损失变小;
摩擦损失变大。

④环流
油管中心是连续的气流而管壁为油环的流动结构。

特点:气液两相都是连续相;
气体举油作用主要是靠摩擦携带;
摩擦损失变大。

⑤雾流
气体的体积流量增加到足够大时,油管中内流动的气流芯子将变得很粗,沿管壁流动的油环变得很薄,绝大部分油以小油滴分散在气流中。

特点:气体是连续相,液体是分散相;
气体以很高的速度携带液滴喷出井口;
气、液之间的相对运动速度很小;
气相是整个流动的控制因素。

总结:
油井生产中可能出现的
流型自下而上依次为:纯油
(液)流、泡流、段塞流、环流
和雾流。

实际上,在同一口井内,
一般不会出现完整的流型变
化。

3、滑脱损失概念
因滑脱而产生的附加压
力损失称为滑脱损失。

g l f f f +=
g g g f v Q =
l l l f v Q =
无滑脱时:m l g v v v == g g g f v Q = l l l f v Q =
)(g l l l g
g l l m f
f f f f ρρρρρρ>>=+=' 由于有滑脱时,气体流速大,液体流速小,为了保持体积流量不变,气体过流断面将减小,而液体的过流断面将增加,即:
有滑脱时:l g v v > m m
ρρ<' f f f f f g l l l m ρρρ)()(∆-+∆+=)(g l l l l f
f f f ρρρρ>>∆+= 单位管长上滑脱损失为:m m m ρρρ'-=∆ l m f
f ρρ∆=∆
1
倾斜多相管流断面1和断面2的流体的能量平衡关系为:
2222221121112
sin 2sin V p mv mgZ U q V p mv mgZ U +++=-+++θθ
0)(sin =-+++dq pV d dZ mg mvdv dU θ
w dI pdV dq dU +-=
0sin =+++w dI dZ mg mvdv Vdp θ
0sin 1
=+++w dI dZ g vdv dp θ
随压力的增加,
油相被压缩,体积减小,水可视为不可压流体。

油相体积增为不可压流体。

随压力的增加,油相被压
b p p >
某不饱和油藏单井生产时,地面油产量Q o,生产气油比R p,不含水,井口温度和压力分别为T0和p0,需要确定井筒中某点(压力和温度为T和p)油相和气相的实际体积流量和物性参数,为压力梯度计
2
质参数,然而,这些参数又是压力和温度的函数,压力却又是计算中需要求得的未知数。

所以,多相管流通常采用迭代法进行计算。

有两种不同的迭代途径:按深度增量迭代和按压力增量迭代。

1)按深度增量迭代的步骤
①已知任一点(井口或井底)的压力作为起点,任选一个合适
的压力降作为计算的压力间隔∆p(0.5 -1.0MPa)。

②估计一个对应的深度增量∆h估计,计算与之对应的温度。

③计算该管段的平均温度及平均压力,并确定流体性质参数。

④计算该段的压力梯度dp/dh。

因。

掌握了气液两相流动中能量平衡方程的推导过程,了解了井筒压力计算的方法。

六、教学参考书
1、张琪主编.采油工程原理与设计. 中国石油大学出版社.
2、陈家琅主编. 气液两相管流.石油工业出版社.
七、复习思考题
1、何谓滑脱现象?产生滑脱的原因是什么?
2、持液率(液相存容比)指的是什么?有哪些主要因素影响持液率?
3、多相垂直管流中会出现哪些流态?各种流态有何特点?。

相关文档
最新文档