一起学奥数--有趣的数阵图
五年级下册数学奥数有趣的数阵图人教版

例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6
奥数知识点 简单数阵图

简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和。
先求重叠数。
数总和+中心数×重复次数=公共的和×线数重叠部分=线总和-数总和/线总和=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字(重叠数)重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1-5这五个数分别填在左下图中的方格中,使得横行三数与竖列三数之和都等于9。
例2、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以:总和数=(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
例3、把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等例4、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,(1+2+3+4+5)+重叠数=每条直线三数之和×2,每条直线上三数之和=(15+重叠数)÷2。
四年级奥数教程第7讲:有趣的数阵图

第七讲有趣的数阵图(二)例1将1~7这七个自然数分别填入右图的7个小圆圈中,使三个大圆圆周上及内部的四个数之和都等于定数S,并指出这个定数S的取值范围,最小是多少,最大是多少?并对S最小值填出数阵.分析为了叙述方便,用字母表示圆圈中的数.通过观察,我们发现,三个大圆上,每个大圆上都有4个小圆,由题设每个大圆上的4个小圆之和为S.从图中不难看出:B是三个圆的公共部分,A、C、D分别是两个圆的公共部分而E、F、G仅各自属于一个圆.这样三个大圆的数字和为:3S=3B+2A+2C+2D+E+F+G,而A、B、…、F、G这7个数的全体恰好是1、2、…、6、7.∴3S=1+2+3+4+5+6+7+2B+A+C+D.3S=28+2B+A+C+D.如果设2B+A+C+D=W,要使S等于定数即W最小发生于B=1、A=2、C=3、D=4W最大发生于B=7、A=6、C=5、D=4,综上所述,得出:13≤S≤19即定数可以取13~19中间的整数.本题要求S=13,那么A=2、B=1、C=3、D=4、E=5、 F=6、 G=7.注意:解答这类问题常常抓两个要点,一是某种共同的“和数” S.(同一条边上各数和,同一三角形上各数和,同一圆上各数和等等).二是全局考虑数阵的各数被相加的“次”数.主要突破口是估算或确定出S的值.从“中心数”B处考虑.(B是三个大圆的公共部分,常根据S来设定B的可能值.这里重视B不是简单地看到B处于几何中心,主要因为B参与相加的次数最多)此处因为定数是13,中心数可从1开始考虑.确定了S和中心数B,其他问题就容易解决了.解:例2把20以内的质数分别填入右图的八个圆圈中,使圈中用箭头连接起来的每条路上的四个数之和都相等.分析观察右图,我们发现:①有3条路,每条路上有4个数,且4个数相加的和要相等.②图形两端的两个数是三条路的公共起点和终点.因此只要使三条路上其余两个数的和相等,就可以确保每条路上的四个数的和相等.③20以内的质数共有8个,依次是2、3、5、7、11、13、17、19.如果能从这八个数中选出六个数凑成相等的三对数,问题就可迎刃而解.如要分析,设起点数为X,终点数为y,每条路上4个数之和为S,显然有:3S=2x+2y+2+3+5+7+11+13+17+19=2x+2y+77.即S最小=29,此时x=2,y=3但这时,中间二个质数之和为47-(19+13)=15,但17>15,17无处填.所以S=47是无法实现的.这题还另有一个独特的分析推理.即惟一的偶质数必处于起点或终点位上.不然,其他路上为4个质数之和,2处于中间位的路上.这条路为3奇1偶相加,另两条路上为4个奇相加,形成矛盾.再进一步分析,(终点,始点地位对称)始点放上2,终点放上另一个质数,其他6个质数之和必为3的倍数.而经试算,只有终点放上3,而可满足的解法只有一种(已在下图中表出).解:这样,轻而举地可得到:5+19=24,7+17=24,11+13=24.例3 把1、2、3、4、5、6、7、8这八个数分别填入右图中的正方形的各个圆圈中,使得正方形每边上的三个数的和相等.分析和解假设每边上的三数之和为S,四边上中间圆圈内所填数分别为a、b、c、d,那么:a+c=b+d=(1+2+…+8)-2S=36-2S∴2S=36-(a+C)=36-(b+d)①若S=15,则a+c=b+d=6,又1+5=2+4=6,试验可得下图②若S=14,则a+c=b+d=8,又1+7=2+6=3+5=8,试验可得下两图③若S=13,则a+c=b+d=10,又2+8=3+7=4+610,试验可得下两图④若S=12,则a+c=b+d=12,又4+8=5+7=12,试验可得下图例4在一个立方体各个顶点上分别填入1~9这九个数中的八个数,使得每个面上四个顶点所填数字之和彼此相等,并且这个和数不能被那个没有被标上的数字整除.试求:没有被标上的数字是多少?并给出一种填数的方法.分析为了叙述方便,设没有被标上的数字为a,S是每个面上的四个顶点上的数字之和.由于每个顶点数都属于3个面,所以得到:6S=3×(1+2+3+4+5+6+7+8+9)-3a6S=3×45-3a2S=45-a (1)根据(1)式可看出:因为左边2S是偶数,所以右边45-a也必须是偶数,故a必须是奇数.又因为根据题意,S不能被a整除,而2与a互质,所以2S不能被a整除,45也一定不能被a整除.”在奇数数字1、3、5、7、9中,只有7不能整除45,所以可以确定a=7.这就证明正方体每个面上四个顶点所填数字之和是19,解法如图.例5 将1~8这八个数标在立方体的八个顶点上,使得每个面的四个顶点所标数字之和都相等.分析观察下图,知道每个顶点属于三个面,正方体有6个面,所以每个面的数字之和为:(1+2+3+4+5+6+7+8)×3÷6=18.这就是说明正方体每个面上四个顶点所填数字之和是18.下面有3种填法的提示,作为练习,请读者补充完整.解:例6在下左图中,将1~9这九个数,填人圆圈内,使每个三角形三个顶点的数字之和都相等.分析为了便于叙述说明,圆圈内应填的数,先由字母代替.设每个三角形三个顶点圆圈内的数字和为S.即:A+B+C=S、D+E+F=S、G+H+I=S、C+G+E=S、A+G+D=S、B+H+E=S、C+I+F=S.将上面七个等式相加得到:2(A+B+C+D+E+F+G+H+I)+C+G+E=7S.即:A+B+C+D+E+F+G+H+I=3S又∵A、B、C、D、E、F、G、H、I,分别代表1~9这九个数.即:1+2+3+4+5+6+7+8+9=45.3S=45S=15.这15就说明每个三角形三个顶点的数字之和是15.在1~9九个数中,三个数的和等于15的组合情况有以下8种即:(1、9、5);(1、8、6);(2、9、4);(2、8、5);(3、7、5);(2、7、6);(3、8、4);(4、5、6);观察九个数字在上述8种情况下出现的次数看,数字2、4、5、6、8都均出现了三次,其他数字均只出现两次,所以,符合题意的组合中的2、8、5和4、5、6可填入图中的圆圈内,这样就得到本题的两个解.解:例7在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.分析为了叙述方便,我们将各个圆圈内填入字母,如上右图所示.如果设每个正方形角上四个数字之和为S,那么图中六个正方形可得到:a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S.9S=4×45S=20.这就说明每个正方形角上四个数字之和为20.所以:b2=5.从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数.这样,就比较容易找到此解.解:注:也可以这样想:因为1+2+3+4+5+6+7+8+9=45,中心数用5试填后,余下40,那么大正方形、中正方形对角数字之和一定为10,比如:2+8=10、3+7=10、1+9=10、4+6=10.再利用小正方形调整一下,便可以凑出结果了.习题十1.将1~6六个自然数字分别填入下图的圆圈内,使三角形每边上的三数之和都等于定数S,指出这个定数S的取值范围.并对S=11时给出一种填法.2.将1~10这十个自然数分别填入下左图中的10个圆圈内,使五边形每条边上的三数之和都相等,并使值尽可能大.3.将1~8填入上右图中圆圈内,使每个大圆周上的五个数之和为21.习题十解答1.分析设三个顶点为x、y、Z,三条边中点处放置a、b、c,每边三数之和为S.则有2(x+y+z)+a+b+c=3S.对 x+y+z+a+b+c=1+2+…+6=21∴定数S可取 9、10、11、12.经过试探、搜索知道:顶点放2、4、6,而2、4之间放5,2、6之间放上3,4、6之间放上1,即可.2.3.。
一年级奥数:《有趣的数阵图》

一年级奥数:《有趣的数阵图》《有趣的数阵图》课前预热所属体系板块:第二级下主要知识点:1、补全型(凑数)2、辐射型(最忙的数填在最忙的位置);3、封闭型(凑数法)能力培养:运算能力体系对接:第四级下《数阵图》例题展示:课前预热:1)认识数阵图,简单的补全型要会做(先填只剩一个的,然后凑数);2)了解小手拉大手;《有趣的数阵图》知识点精讲一、补全型数阵图 1、先填只剩1个的 2、凑数【例1】把1-10这十个数分别填入“六一”的10个空格里,使每条直线上所有数的和都是12。
【解析】要求是每条直线上所有数的和是12。
发现六一的“六”的一横的这条直线上只剩下一个空,根据计算填出5;剩下的分别进行凑数(情况较多时,要求按顺序来思考和凑数),最后发现还有两个空不知道,刚好还有两个数3和9,相加刚好是12 ,填进去即可。
二、辐射型数阵图通用:凑数法(最忙的数填最忙的位置) 连续数:砍头砍尾砍腰(小手拉大手)【例2】把3~9填入下面的中,使得每条直线上的数字之和都相等。
【解析】观察可得,这个数阵图是辐射型数阵图,而且让我们填的是连续的数字,所以可以采9用砍头砍腰砍尾的方法来完成。
3~8:3、4、5、6、7、8、9,头是3,腰是6,尾是9,其它的数“小手拉大手”。
三、封闭型数阵图(凑数法)【例3】小小三角阵,每边和为9,已知三个数,其它三个数怎么填?【解析】这个题我们可以用凑数法,如果最下面圆圈里面的数是1,那么答案不成立,接下来看最下面的圆圈里面是否能填2,正好可以得出答案,答案如上。
《有趣的数阵图》课后拓展练习1、把3,4,5,6,7这五个数分别填入空格中,使每条线上三个数相加的和都等于15。
2、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和为30。
3、把2-7填入中,使每条边上的三个数相加的和等于12。
4、将数字1—6填入下图中的小圆圈内,使每个大圆上4个数的和都是12。
第四讲-有趣的数阵图学生版-奥数教程-讲义

第四讲有趣的数阵图经典精讲:数阵图: 将一些数按照一定的要求排列成各种各样的图形。
数阵图是一种趣味性很强的填数游戏, 它的形式多样, 绚丽奇妙。
这里给同学们介绍三种形式的数阵图, 即封闭型数阵图、辐射型数阵图和复合型数阵图。
(一)辐射型数阵图(像雪花)从一个中心出发, 向外作若干条射线, 在每条射线上安放同样多个数, 使其和是一个不变的数。
突破关键:确定中间数, 多算的次数, 公共的和线数x公共的和=数和+中心数x重复次数【例1】把1—5 这五个数分别填在左下图中的方格中, 使得横行三数之和与竖列三数之和都等于9。
【例2】把1—7这七个数分别填入图1中的各○内, 使每条线段上三个○内数的和相等。
【课堂练习】将1~11这11个数分别填入图11中的方格内, 每个数只许用一次, 使相邻两个或三个方格内数的和都相等。
(二)封闭型数阵图(像围墙)多边形的每条边放同样多的数, 使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字, 公共的和边数x公和=数和+重叠数和【例3】把1~6这六个数分别填在下图中三角形三条边的六个○内, 使每条边上三个○内数的和相等。
(本题有24种填法, 你能想出几种?)【例4】将2—9这八个数分别填入右图的○里, 使每条边上的三个数之和都等于18。
【课堂练习】1.1—10这十个数, 分别填在图9中五边形五条边上的十个○内, 并使五条边上的三个○内数的和相等。
2.把1—8这8个数, 填入图13中的八个○内, 使每条线段上的四个数的和, 与每个四边形四个顶点上的四个数的和都相等。
(三)复合型数阵图既有辐射型数阵图的特点, 又有封闭型数阵图的特点。
突破点: 找出关键位置重复次数。
【例5】将1~7这七个数分别填入下图的○里, 使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
【课堂练习】1.将1.2.3.4.5.6六个数字填入图中的小圆圈内, 使每个大圆上四个数字的和是16。
2. 将1—8这八个数, 分别填入图10中两个圆圈的八个○内, 使每个圆圈上五个○内数的和分别为20、21.22。
小学奥数教程-数阵图2 (含答案)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
例题精讲知识点拨教学目标5-1-3-2.数阵图【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】 请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C )+(A+F+G )+(A+D+E )+(B+D+F )+(C+E+G )=5k ,3A+2B+2C+2D+2E+2F+2G=5k ,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
四年级下数学奥数-有趣的数阵图 全国通用( 17 张)

4
6
B3
5
C1
2~9填入左下图的八个○中,使得每条边上的三个数之和都等 于18。
4 A
5
9 B
四条边数字总和: 4×18=72
2-9九数之和:
6
2 2+3+4+5+6+7+8+9=44
A+B+C+D=72-44=28
C
3
D 故只能选,
8
7
4+9+8+7=28
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
6 31 5 4 72
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
3
1
2
4
6
5
把2~7这六个数填入右上图的○里,使每个圆 圈上的四个数之和都等于18。
将1、2、3、4、5、6填在下图中,使每条边上三个数之和等于9。
A:(48-45)÷3=1
练 1-9一数练之:和将:11~+27+入3+下4图+5的+6○+7内=,28使得每条边上的三个数字之6和都等于12。 4
横行、竖行五数和:24+24=48
7
8
9
四条线数之和: 12×4=48 1-9数之和:
1+2+3+4+5+6+7+8+9=45 A:(48-45)÷3=1 剩下的数字平均分成四组, 每组数字之和12-1=11 所以应为: 2+9、3+8、4+7、5+6。
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
五年级下册数学奥数课件--.9有趣的数阵图 人教版 (共25张PPT)

免费课件公开课免费课件下载免费ppt 下载优 质课件 优秀课 件五年 级下册 数学奥 数课件 --.9有 趣的数 阵图 人教版 (共25张PPT)
免费课件公开课免费课件下载免费ppt 下载优 质课件 优秀课 件五年 级下册 数学奥 数课件 --.9有 趣的数 阵图 人教版 (共25张PPT)
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
免费课件公开课免费课件下载免费ppt 下载优 质课件 优秀课 件五年 级下册 数学奥 数课件 --.9有 趣的数 阵图 人教版 (共25张PPT)
将1~9这九个数分别填入下图的小方格里,使横行和竖列上 五个数之和相等(至少找出两种本质上不同的填法)。
2 9 561 3 8 4 7
1 8 369 4 5 2 7
免费课件公开课免费课件下载免费ppt 下载优 质课件 优秀课 件五年 级下册 数学奥 数课件 --.9有 趣的数 阵图 人教版 (共25张PPT)
免费课件公开课免费课件下载免费ppt 下载优 质课件 优秀课 件五年 级下册 数学奥 数课件 --.9有 趣的数 阵图 人教版 (共25张PPT)
例2:将1~10填入○中,使每条线上四个数之和相等。你 有几种填法?
假设重叠数是a 1+2+3+…+9+10+a+a =55+a+a 55+a+a是3的倍数 a= 1 或4 或7 或10
例2:将1~10填入○中,使每条线上四个数之和相等。你 有几种填法?
我发现一条直线上四个数相加时,中间的 数加了三次,其他的三个数只加一次。而 且,和前面不一样的地方是:没有告诉我 们直线上的和是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
【分析】左图是一个三角形形状,每条边上有三个圆圈。三角形 中的六个圆圈可以分成两类。
6 2
5
4
3
一类是两条边的公共点,另一类是独立存在的。
把1-6这6个数填到6个圆圈中,则圆圈中的六个数字之和设为A: A=1+2+3+4+5+6=21
设三条边的和相加为S,则有:S=3×9=27,即顶角的三个数被加了两次
可以先把16个数字按如下排列:
14
1 234
11
5 67 8
四个扇形中所填数必定是每一行
9 10 11 12
挑选一个数。(原因分析)
8
13 14 15 16
左上角圆圈中空着的数应该在第1、2行中选,而第2行中的5、7、
8已经出现过,所以为(4、6);同理,右上为(1、12)、右下
随便挑选一组,填到左图圆圈内。
例5、将1~9这九个数,分别填入下图中的各个○内,使每条线段上三 个○内的数的和相等。
9
【分析】图形特征:这是中心辐射型,中间圆圈重复使用四次。
3
7
数字特征:1-9为九个连续自然数,呈等差数列。与上题 相比较,在图形特征与数字特征中,存在雷同性。
5
1
6
把1-9个数写出来:1、2、3、4、5、6、7、8、9,可以发现
有趣的数阵图
风子编辑
教育目标
观察图形,找出规律,进而发现数的规律 学会适当的推理,通过观察、尝试、验证等对问题进行思考
将问题简单化,找出解决问题的最佳途径
教育重点
观察发现图形规律,及数的规律。
教育难点
利用数形结合、容斥原理解决数阵图问题
第一课 横式数字谜
例1、把1-6这六个数填在下图六个○中,使每条边上的三个数之和都 等于9。
4组数列分别填在三个顶角,构建成的直线的和不同,所以基本解有4个。而每组三个数在 三个顶点的位置又有6种方式。所以合计填法为: 4×6=24种。
本题可以通过确定直线最小值和最大值,计算出公共点的和,再 分类讨论,剔除不合适的组。方法相对原始,但不容易漏掉。
例3、把1~12这十二个数,分别填在下图中正方形四条边上的十二个 ○内,使每条边上四个○内数的和都等于22,试求出一个基本解。
例:将1~16分别填入下图中圆圈内,要求每个扇形上四个数之和及中 间正方形的四个数之和都是34,图中已填好八个数,请将其余的数填完。
பைடு நூலகம்
9 15 5
10
【分析】图形特征:左图中有16个圆圈,要填的数字为16个,且16 个圆圈可以在大圆上组成4个扇形,4个扇形上的数字之和都为34
7
则可以将16个数字分成4组,分别填入4个扇形。分组16个数字,
因为1-12是一个等差数列,确定1-4为四个顶角,且按逆时针方向排列后,可以把剩下 的分成5-8,9-12两组,分别填在直线上对应的位置。
最后一步的规律必须让学生领会。可以把和都为22的条件去掉做讲解
例4、把1~7这七个数分别填入下图中的各个圆圈内,使每条线段上三个 ○内的数的和相等。
7
2
1
4 5
则顶角三个数的和为:S-A=6,而在1-6中,三个数之和为6的只有1+2+3,所以把1、2、3分 别填入三个顶角。
剩下4、5、6分别填在中间的圆圈中,使直线上三个数的和为9.
小结:1、观察图形的特征;2、找出公共点及被重复使用的次数; 3、通过不同方式,计算出公共点的和;4、根据数的特点确定公 共点的数。
上两题相比较,图形特征与数字特征存在雷同性,但每条线上 三个数字和受限制。因此需要确定公共圆圈的值。
五条线段上的数字和相加为: 22×5=110 11个圆圈内的数字和为: 11×12÷2=66 则公共圆圈的数字为: (110-66)÷(5-1)=11
剩余圆圈上的填法,与之前题目相同。对剩下的10个数首尾取 数即可。
1 10 7
8
11
2
5
12
4 【分析】图形特征:正方形的四条边上有四个数字,四个顶角
被重复使用。
数的特征:四条边上的数字和都为22,边上的数字为1~12
9
12个数字之和为: (1+12)×12÷2=78
6
4条边数字和的相加为:22×4=88 重复四个角的数字和为:88-72=10
3
因为1+2+3+4=10,所以1-4放在四个顶角。
擦掉1、5、9(留意这三个数的位置),剩下的数首尾相加,
和相等。
4
8
2
随便挑选一组,填到左图圆圈内。
分析例4、5,图形特征与数字特征相同的情况下,填数的方式雷同。
例6、把1~11这十一个数分别填入下图中的各个○内,使每条线段上 三个○内的数的和都等于22。
1
10 5 6 11 9 2
78
4
3
【分析】图形特征:这是中心辐射型,中间圆圈重复使用五次。 数字特征:1-11为11个连续自然数,呈等差数列。与
观察内圈与外圈的数字,这10个数按大小分了两组,并填写规则
第二讲 提高篇
例:将1~8这八个数分别填入右图的○中,使两个大圆上的五个数之 和都是等于21。
【分析】图形特征:两个大圆构成复合图形 数字特征:中间两个为重叠数,重叠次数1次
重叠数之和为: 21×2-(1+2+3+…+8)=6
八个数中可以使两个数之和为6的有1+5和2+4,剩下的 数再平分为两组和为15的数。
如果重叠数为1和5,则剩下数为2、3、4、6、7、8,因为6个数中2奇4偶,使和为15,则应 该为1奇2偶,所以3、7为不同组,即为3、4、8和2、6、7。
如果重叠数为2和4,则剩下数为1、3、5、6、7、8,因为6个数中4奇2偶,使和 为15,则应该为1奇2偶或者3奇,1+6+8=15,而3+5+7=15。
3 6
【分析】图形特征:这是中心辐射型,中间圆圈重复使用三次。 数字特征:1-7为七个连续自然数,呈等差数列。
每条线段上的数字和没有受到制约,因此只要考虑除中间数字之外, 其它6个数两两相加和相等。
把1-7个数写出来:1、2、3、4、5、6、7,可以发现擦掉1、4、7 (留意这三个数的位置),剩下的数首尾相加,和相等。
例2、将1-6填在下图中的○里,使每条边上的三个数之和相等,有几 个基本解?共有多少种填法?
【分析】与上一题的区别在于条件变成了三个数之和相等。即受 限条件减少。
图形特征:三角形每边三个数,顶点三个为公共点,中间点为独 立点。 数字特点:1-6为连续自然数,呈等差数列。 因此,需要把1-6这6个数分成两组,每组都是等差数列。即(123 和456,135和246)。