光学三维测量 ppt课件
三维形貌仪测量原理

三维形貌仪测量原理
三维形貌仪是一种用于测量物体表面形貌的仪器。
它基于光学原理,通过记录光线在物体表面的反射或散射来获取物体的三维形状信息。
三维形貌仪的测量原理主要包括以下几个步骤:
1. 光源发射:三维形貌仪通过发射光源(如激光或白光)照射在物体表面,光源发射出的光线传播到物体表面。
2. 光线反射/散射:光线照射到物体表面后,根据物体表面的
性质,光线可能会有反射或散射现象。
其中,反射光线的方向与入射光线的方向相对称,散射光线的方向则随机分布。
3. 光线收集:三维形貌仪通过相机或其他光学探测器收集物体表面反射或散射的光线。
收集到的光线会通过光学系统进入成像系统。
4. 成像:收集到的光线经过光学系统的聚焦和成像处理,最终形成物体表面的图像。
成像系统可以利用单一的相机或多个相机进行成像。
5. 图像分析:通过对物体表面图像进行分析处理,可以得到物体表面的三维形貌信息。
常用的分析方法包括三角剖分法、相位测量法、结构光法等。
通过以上测量原理,三维形貌仪可以实现对物体表面的高精度、非接触式的三维形貌测量。
它在工业、制造、科学研究等领域中广泛应用,可用于表面质量检测、产品设计、模具制造、雕刻等方面。
光学三维扫描仪原理

光学三维扫描仪原理
光学三维扫描仪是一种通过光学原理实现物体三维信息获取的设备。
其原理基于光学测量和图像处理技术,使用扫描仪内部的激光器发射一束光线照射到待测物体表面,然后通过一组镜头或光学系统对反射回来的光线进行捕捉和记录。
光学扫描仪通过改变光线的入射角度和位置,以及记录物体表面的反射光线信息,来获取物体表面的形状和纹理细节。
通过扫描仪的高速数据捕捉功能,能够准确地获取物体表面的坐标位置和颜色信息。
在光学扫描过程中,激光器发射的光束会在物体表面发生折射、反射和散射。
扫描仪会采集反射回来的光线,并通过镜头或光学系统将光线聚焦到光电探测器上。
光电探测器会将反射光线转化为电信号,并传输给计算机系统进行处理。
通过对多个不同角度和位置的光线进行捕捉和记录,光学三维扫描仪可以获取整个物体表面的三维坐标信息。
计算机系统会根据捕捉到的数据点,生成物体的三维模型或点云,并进行后续的数据处理和分析。
除了获取物体的形状信息,光学三维扫描仪还可以获取物体表面的纹理细节。
通过记录光线与物体表面的散射情况,扫描仪可以获取物体表面的纹理图像,用于精确还原物体的外观特征。
在实际应用中,光学三维扫描仪具有高精度、高效率和非接触等优点,已广泛应用于制造业、工艺设计、文化遗产保护等领
域。
通过光学原理的应用,光学三维扫描仪能够准确获取物体的三维信息,为多个领域的研究和应用提供了强大的技术支持。
测量培训ppt课件

总结词
详细描述
1. 室内地图制作
2. 室内导航服务
3. 室内物流配送
室内定位技术是近年来 发展迅速的一种技术, 可应用于商场导购、工 厂物流等领域。
室内定位技术的测量应 用主要包括以下几个方 面
通过室内地图的制作, 为用户提供准确的室内 位置信息,包括商场的 店铺位置、公共设施位 置等。室内地图制作需 要采用定位技术、三维 建模等技术手段。
案例二:地质勘测中的测量应用
2. 矿产勘查
通过矿产勘查,对矿床的位置、大小、形状等进行测量和评估,为后续开采和利用提供基础资料。矿 产勘查中需要使用探矿仪器、GPS定位等技术和设备。
3. 水文地质
通过水文地质调查,了解地下水的形成、分布和水质状况,为水资源利用和水质保护提供基础资料。 水文地质调查中需要使用水位计、电导率计等设备,采用地球物理勘探等方法可以提高调查精度和效 率。
测量仪器的选用与维护
根据测量任务选择合适的测量仪器。 根据仪器使用说明正确操作仪器。 注意仪器的维护和保养,保证仪器的长期使用效果。
03
测量技术及应用
距离测量
总结词
距离测量是测量培训的基础内容,涵盖了传统测量方法和现代技术。
详细描述
距离测量是测量培训的基础内容之一,涵盖了多种传统测量方法和现代技术。传统测量方法包括钢尺测量、视距 测量和三角测量等,而现代技术则包括GPS测量、激光雷达测量和三维扫描等。不同方法的适用范围和精度要求 也有所不同,需要根据具体应用场景选择合适的测量方法。
THANKS
测量培训ppt课件
目录
• 测量基本知识 • 测量仪器概述 • 测量技术及应用 • 测量数据处理与分析 • 测量技术的发展趋势与挑战 • 案例分析与实践操作
ARAMIS三维应变光学测量系统

在物理力学性能测试中,使用ARAMIS系统,有助于深入了解材料和零件的力学行为和性能,特别适于测量瞬时和局部应变。
ARAMIS系统采用非接触测量方式,适用于各种材料的静态和动态试验,获取完整的力学性能参数。
在物理力学性能测试中,使用ARAMIS系统,有助于您深入了解材料和零件的力学行为和性能,特别适于测量瞬时和局部应变。
ARAMIS系统采用非接触测量方式,适用于各种材料的静态和动态试验,获取完整的力学性能参数。
其中包括:三维型面坐标三维位移和变形速度表面应变应变率区别于传统的应变测量,ARAMIS提供了全新的全场应变测量方法。
测量范围涵盖几毫米的式样到数十米的大型零件。
无需对试样进行复杂和费时的制备,测量过程方便快速。
对试样的几何形状及测量环境(温度)没有限制。
ARAMIS为材料测试提供新的解决方案测定材料特性分析零件强度验证有限元分析实时监控试验设备ARAMIS技术特点:非接触测量适合于各种材料不受试样的几何形状限制二维和三维测量便携、灵活全场测量高精度满足高温测试高速测试便于与各种测试设备集成测量范围从小尺寸到大型零件应变范围从微应变到大应变ARAMIS系统配置:武汉中创联达科技有限公司,专业从事光电子影像产品(低照度相机、高速摄像机,超高速摄像机,高分辨率相机及其图像分析软件)的销售、研发, 提供特殊环境下的拍摄、成像服务。
在以下应用领域提供产品:1、高速摄影 (弹道学、碰撞实验、高速粒子运动实验 PIV 、材料学、气囊膨胀实验、燃烧实验、电弧运动、 离子束运动、流体力学、喷射实验、爆炸分析以及其他超高速运动领域)2、高分辨率成像 (弹道学、粒子运动实验 PIV 、工业质量检测、喷射实验、电泳现象、火焰分析)3、 显微成像 (微生物光学成像、分子细胞成像)4、 低照度成像 (燃烧实验、弹道学、碰撞实验、爆炸分析、天文学领域、微光成像、工业检测监视)5、光谱成像 (红外感应范围应用、光源波谱分析)6、高速运动分析软件及PIV 系统分析软件。
光学三维测量技术 ppt课件

1 概述
光学三维测量技术是集光、机、电和计算机技术于 一体的智能化,可视化的高新技术,主要用于对物体空 间外形和结构进行扫描,以得到物体的三维轮廓,获得 物体表面点的三维空间坐标。随着经济的发展和科技的 进步,光学三维测量技术由于非接触、快速测量、精度 高的优点在机械、汽车、航空航天等制造工业及服装、 玩具、制鞋等民用工业得到广泛的应用,其中三维激光 扫描技术发展的最为成熟,应用也最为广泛。
基于结构光的主动三角法
被动三角法 数字摄影测量技术
双目视觉
点光源法 点照明
1D线探测器 2D扫描
线光源法 线照明
2D线探测器 1D扫描
面光源法 面照明 2D线探测器 不需要扫描
莫尔轮廓 如:阴影莫尔
投射莫尔
23-01
序列编码技术
相位测量技术
如:格雷(Gray 如:相位测量轮廓术
)
傅里叶变换轮廓术
编码序列
彩色编码技术
如:彩色多通道 编码实现相移
2 测量原理
23-01
2 测量原理
23-01
3 应用
1、逆向工程:
逆向工程是一种新的制造手段和系统,通过对已有样件或模型 的内外轮廓进行精确测量,获得其三维数据,配合计算机软件系统 进行曲面重建,并在线精度分析、评价构造效果,重构CAD模型, 生成IGES或STL数据,或者生成数控加工NC代码,据此进行快速成 型或CNC数控加工,从而大大缩短产品或模具的开发制造周期。利 用光学三维测量技术生成的虚拟模型可以实现快速响应设计制造, 3D光学数字化系统与CAD/CAM/CAE以及RP&M集成可以构成基于 虚拟模型的快速响应的设计和制造系统,主要优点包括:实际物体 的准确和完整的模型;提供原始CAD文件格式;曲面造型和参数实 体模型;在设计和制造中节省投入的时间和资金。
光学三维测量技术应用举例并解析

光学三维测量技术应用举例并解析
光学三维测量技术是一种通过光学原理和数学模型来测量物体三维形态和位置的技术,可以应用于很多领域。
以下是一些光学三维测量技术的应用举例:
1. 航空航天:光学三维测量技术可以用于飞机、火箭、卫星等的设计、制造和维护中。
例如,利用激光三角测量法和相移法可以快速测量飞机机翼、机身的形态尺寸和表面粗糙度;利用三维扫描仪可以对航空设备进行三维建模,方便进行数字化制造。
2. 汽车制造:光学三维测量技术可以应用于汽车设计、制造、测试和维护中。
例如,在汽车制造过程中,可以利用激光三角测量仪对车身各部位进行快速、高精度的三维测量,以保证车身的精度和稳定性;利用三维扫描仪可以对汽车零部件进行三维建模。
3. 医疗领域:光学三维测量技术可以用于医学成像、手术导航和矫形医疗等领域。
例如,在牙科矫形过程中,利用激光三角测量仪可以快速,准确地测量牙齿位置和尺寸,以确定矫形方案。
4. 文化遗产保护:光学三维测量技术可以应用于文化遗产保护,如对文物、建筑、遗址等进行三维测量和数字化保护。
例如,利用三维激光扫描仪可以对文物、
建筑等进行全面而精确的三维数字化保护,方便后续保护、修复和展示。
总之,光学三维测量技术是一种非常实用的测量技术,可以在各个领域得到广泛应用,为很多工作带来了便利和效率提高。
实验讲义_条纹投影三维面性测量实验

光学传感三维面形测量实验GCS-SWCL实验讲义大恒新纪元科技股份有限公司版权所有不得翻印光学传感三维面形测量1. 引言非接触三维自动测量是随着计算机技术的发展而开展起来的新技术研究,它包括三维形体测量﹑应力形变分析和折射率梯度测量等方面。
应用到的技术有莫尔条纹、散斑干涉、全息干涉和光阑投影等光学技术和计算机条纹图像处理技术。
条纹投影以及各种光阑投影自动测量技术在工业生产控制与检测、医学诊断和机器人视觉等领域正占有越来越重要的地位。
本试验是利用投影式相移技术,对形成的被测物面条纹进行计算机相移法自动处理的综合性实验。
2. 实验目的通过本实验了解投影光栅相位法的形成机理;了解一种充分发挥计算机特长的条纹投影相位移处理技术。
对于非接触测量有一定的感性认识。
3. 基本原理投影光栅相位法是三维轮廓测量中的热点之一,其测量原理是光栅图样投射到被测物体表面,相位和振幅受到物面高度的调制使光栅像发生变形,通过解调可以得到包含高度信息的相位变化,最后根据三角法原理完成相位---高度的转换。
根据相位检测方法的不同,主要有Moire轮廓术、Fourier变换轮廓术,相位测量轮廓术,本实验就是采用了相位测量轮廓术。
相位测量轮廓术采用正弦光栅投影相移技术。
基本原理是利用条纹投影相移技术将投影到物体上的正弦光栅依次移动一定的相位,由采集到的移相变形条纹图计算得到包含物体高度信息的相位。
基于相位测量的光学三维测量技术本质上仍然是光学三角法,但与光学三角法的轮廓术有所不同,它不直接去寻找和判断由于物体高度变动后的像点,而是通过相位测量间接地实现,由于相位信息的参与,使得这类方法与单纯基于光学三角法有很大区别。
相位测量轮廓术的基本原理将规则光栅图像投射到被测物表面,从另一角度可以观察到由于受物体高度的影响而引起的条纹变形。
这种变形可解释为相位和振幅均被调制的空间载波信号。
采集变形条纹并对其进行解调,从中恢复出与被测物表面高度变化有关的相位信息,然后由相位与高度的关系确定出高度,这就是相位测量轮廓术的基本原理。
4.2 点结构光测量原理_光学轮廓术_[共2页]
![4.2 点结构光测量原理_光学轮廓术_[共2页]](https://img.taocdn.com/s3/m/bd26c986f01dc281e43af0d2.png)
第4章 光切法三维轮廓测量技术944.2 点结构光测量原理点结构光的光透射器发射出一束激光,激光束与被测物体表面相交产生亮点,亮点经透视成像到摄像机像平面上,其几何模型如图4-1所示。
在光线上以一点s o 为原点,以光线为s x 轴,建立点结构光传感器测量参考坐标系s s s s o x y z −。
光线上某一点P 在测量参考坐标系中的方程为s s s 00x t y z =⎧⎪=⎨⎪=⎩ (4-1)式中,t 为P 点到测量参考坐标系原点s o 的距离。
将式(4-1)代入考虑摄像机镜头畸变时的摄像机模型变换式(4-2),可得点结构光视觉传感器的数学模型表达式(4-3)。
1123789456789()()d x x x d y y w w w x d xr xt w w w z w w w y d yr yt w w w z X s d U C Y d V C r x r y r z T fX r x r y r z T r x r y r z T f Y r x r y r z T δδδδ−⎧=−⎪=−⎪⎪+++⎪=++⎨+++⎪⎪+++⎪=+++++⎪⎩ (4-2) 11s 7s 4s 7s ()()d x x x d y y x d xr xt z y d yr yt z X s d U C Y d V C r x t fX r x t r x t f Y r x t δδδδ−⎧=−⎪=−⎪⎪+⎪=++⎨+⎪⎪+⎪=+++⎪⎩(4-3) 式中,T 147[]r r r 和T []x y z t t t 是点结构光视觉传感器的结构参数。
由式(4-3)可知,只要己知s x 轴在s s s s o x y z 坐标系中的方向矢量T 147[]r r r 和平移矢量T []x y z t t t (f 作为内部参数已确定,在各传感器模型中均作为已知参数),就可由计算机图像坐标(,)U V 求出t ,从而得到点结构光传感器的测量坐标(,0,0)t ,达到测量的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
光学三维测量
相移测量法存在的问题
相移测量法研究焦点在于不断提高测量的空间分辨率及测量精度、 扩大物体的横向及纵向测量范围。
目前,相移测量法仍存在以下几个问题:
1)阴影和盲区问题
相移测量法的测量受被测物表面散射特性的限制,必须满足 “光线所及(光线能照到)和视线所及(能被观察到)”两个条件, 对于光线不可及或视线不可及的地方,形状测量则无法实现,出 现阴影和盲区问题。
3
光学三维测量
光学三维测量
光学三维测量方法
相移测量法
4
傅里叶轮廓术
相位测量轮廓术
光学三维测量
表面三维形貌测量
三维形面测量方法又称为三维轮廓测量术、三维面形 测量等,其目的都是通过测量复原物体的三维外形。
按照测量物体的尺度大小可分为宏观物体三维形貌测 量、细观形貌测量和微观形貌测量。
按照一次测量取得的数据量可分为点扫描式、线扫描 式及面测量。
14
光学三维测量
相移测量法
相移法的优点是一种在时间轴上的逐点运算,不会造成全面影响, 计算量少。另外,这种方法具有一定抗静态噪声的能力。
缺点是不能消除条纹中高频噪声引起的误差。在传统相移系统中, 精确移动光栅的需要增加了系统的复杂性。而在数字相移系统中, 用软件控制精确的实现相位移动。某些应用场合不允测量多幅图 像,但只要没有以上限制,相移法仍是首选。
2)表面不连续问题
当表面不连续时,条纹相对级次不确定,就会造成解调相位 不准确。
16
光学三维测量
相移测量法存在的问题
3)图像的预处理 4)相位去包裹
仪,其测量范围大、分辨率高、结果稳定可靠、重复性好。 接触式测量的缺点:因其属于点扫描测量方式,所以测量速
度慢。此外,由于采用接触测量,在测量过程中可能损伤被 测表面,因此不能测量弹性或脆性材料。
8
光学三维测量
光学三维测量
非接触式测量的特点。
非接触式测量中的代表是光学测量,由于不接触被测表面,在保 护表面的同时也增加了测量速度,并以其高分辨率而倍受重视。 该方法具有受环境电磁场影响小、工作距离大、测量精度高等特 点。随着各种高性能器件如半导体激光器LD、电荷祸合器件 CCD等的出现,光学非接触式测量应用将越来越广泛,
10
光学三维测量
光学非接触式三维测量技术
光学式非接触式三维测量技术根据获取三维信息的基本方法可分 为两大类:被动式与主动式两大类。
被动式是在自然光(包括室内可控照明光)条件下,通过摄像机等 光学传感器摄取的二维灰度图像获取物体的三维信息。
主动式是利用特殊的受控光源(称为主动光源)照射被测物,根据 主动光源的已知结构信息(几何的、物体的、光学的)获取景物 的三维信息。
非接触式测量技术基于光学原理,具有高效率、无破坏性、工作距 离大等特点,可以对物体进行静态或动态的测量。此类技术应用在 产品质量检测和工艺控制中,可大大节约生产成本,缩短产品的研 制周期,大大提高产品的质量,因而倍受人们的青睐。
7
光Байду номын сангаас三维测量
光学三维测量
接触式测量的优缺点。 接触式测量的优点:接触式测量中广泛使用的是三坐标测量
光学三维测量
1
光学三维测量
光学测量
光学测量是光电技术与机械测量结合的高
科技。光学测量主要应用在现代工业检测。借 用计算机技术,可以实现快速,准确的测量。 方便记录,存储,打印,查询等等功能。
2
光学三维测量
光学三维测量
随着现代检测技术的进步,三维测量技术 逐步成为人们的研究重点,特别是随着激光技 术、计算机技术以及图像处理技术等高新技术 的发展,使得光学式三维测量技术得到广泛的 应用。
(x,y)为调制度; δ k为相移量(k=1,2,3,…); φ(x,y)为相位,
它是物体形状h( x,y)的函数。
相移法有多种方案,出现较早的N步法将投影到物体表面的正弦
光栅条纹移动N次,每次移动的相位值为2π/(N+l),从而得到
N+1幅图像。除此之外还有N段积分法、N+1步法、最小二乘法、
Carre相移法等。
9
光学三维测量
光学三维测量技术的应用
光学非接触式三维形面测量技术正由于其非接触、高效率、
精度较高等优点,被广泛应用于电子、汽车、纺织、机械加工等
现代工业中,此外,在生物医学、人体测量学等方面也有广泛的
应用。
非接触式光学形面测量技术的几个主要应用: 1)自动加工和质量控制 2)磨具CAD(计算机辅助设计)/CAM 3)机器人视觉 4)医疗应用
5
光学三维测量
表面三维形貌测量
表面三维形貌测量可分为接触式和非接触式两类,具体分 类如图1.1所示
6
光学三维测量
光学三维测量
三维测量技术大体分为接触式与非接触式两类。
接触式测量基本上在坐标测量机(Coordinate Measuring Machine, CMM)上进行。坐标测量机是一种大型精密的三坐标测量仪器,可 以对具有复杂形状的工件的空间尺寸进行测量。
11
光学三维测量
被动式光学三维测量技术
被动式测量技术主要用于受环境约束不能使用激光或特殊照 明光的场合或者由于保密需要的军事场合。
一般是从一个或多个摄像系统获取的二维图像中确定距离信 息,形成三维面形数据,即单目、多目视觉。这种方法的系统结 构比较简单,目前在机器视觉领域应用广泛。
12
光学三维测量
主动式光学三维测量技术
主动式光学非接触测量技术大体上可分为飞行时间法、主动三角 法、莫尔轮廓术、傅里叶变换轮廓法、自动聚焦法、离焦法、全 息干涉测量法、相移测量法等。
目前主动式光学三维测量技术已经广泛用于工业检测、反求工程、 生物医学、机器视觉等领域。三维高速度、高精度测量技术将随 着测量方法的完善和信息获取与处理技术的改进而进一步发展, 在新的更加广阔的研究和应用领域中发挥重要作用。
13
光学三维测量
相移测量法
在主动式光学三维测量技术中相移测量法比较常用。
相移测量法是一种重要的三维测量方法,它采用正弦光栅投影和
相移技术,投影在物体上的光栅,根据物体的高度而产生变形, 变形的光栅图像叫做条纹图,它包含了三维信息。
变形光栅的光强一般形式为:
I1(x,y)=I0[(l+γ (x,y) cos (φ (x,y) + δ k)] 式中I1(x,y)为物体(x,y)点上的光强; I0 (x,y)为背景光强; γ