双单片机串口通信原理+程序
单片机双机串口通信

单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
两片单片机之间的串行通信(proteus仿真图+程序)

两片单片机之间的串行通信(proteus仿真图+程序)两片单片机之间的串行通信(仿真图+程序)AT89C51+MAX232功能:(1)甲机P1口的开关控制乙机P1口的发光二级管,开关闭合发光二级管亮,开关断开发光二级管灭。
(2)乙机P2口的开关控制甲机P2口的数码管,按下4*4矩阵键盘,显示对应的键值0~F (3)乙机P0^0口的开关控制甲机P2口的数码管,按下按键,数码管从0~9循环显示;乙机P0^2口的开关控制甲机P2口的数码管,按下按键,数码管清零。
/****************************甲机控制与接收*********************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit K0=P1^0;sbit K1=P1^1;sbit K2=P1^2;sbit K3=P1^3;sbit K4=P1^4;sbit K5=P1^5;sbit K6=P1^6;sbit K7=P1^7;uchar i;uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}void main(){ uchar i;P2=0x00;SCON=0x50; //串口模式1TMOD=0x20; //T1工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定6900TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断while(1){ if(K0==0) send('0'); else send('A');if(K1==0) send('1'); else send('B');if(K2==0) send('2'); else send('C');if(K3==0) send('3'); else send('D');if(K4==0) send('4'); else send('E');if(K5==0) send('5'); else send('F');if(K6==0) send('6'); else send('G');if(K7==0) send('7'); else send('H');}}void serial_int() interrupt 4 //甲机串口接收中断函数{ if(RI){ RI=0;if(SBUF>=0 &&SBUF<=15)P2=tab[SBUF];elseP2=0x00;if(SBUF=='x')if(i>=0&&i<9){i=i+1;P2=tab[i];}if(i==9) i=0;if(SBUF=='y'){P2=0x00;i=0;}}}/*****************************乙机控制与接收程序*****************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit L0=P1^0;sbit L1=P1^1;sbit L2=P1^2;sbit L3=P1^3;sbit L4=P1^4;sbit L5=P1^5;sbit L6=P1^6;sbit L7=P1^7;sbit KEY1=P0^0;sbit KEY2=P0^2;void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}uchar key() //按键扫描{ uchar keyon,temp;P2=0x0f;delay(1);temp=P2^0x0f;switch(temp){ case 1:keyon=3;break;case 2:keyon=2;break;case 4:keyon=1;break;case 8:keyon=0;break;default:keyon=16;}P2=0xf0;delay(1);temp=P2>>4^0x0f;switch(temp){ case 1:keyon+=0;break;case 2:keyon+=4;break;case 4:keyon+=8;break;case 8:keyon+=12;break;}return keyon;}void main(){ SCON=0x50; //串口模式1,允许接收TMOD=0x20; //T1 工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定: 9600TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断delay(100);while(1){ P2=0xf0; //矩阵键盘if(P2!=0xf0)send(key());if(KEY1==1) //独立按键{ delay(20);if(KEY1==0)send('x');}if(KEY2==0) //清零send('y');}}void serial_int() interrupt 4 //乙机串口接收中断函数{ if(RI) { RI=0;switch(SBUF){ case '0':L0=0;break;case '1':L1=0;break;case '2':L2=0;break;case '3':L3=0;break;case '4':L4=0;break;case '5':L5=0;break;case '6':L6=0;break;case '7':L7=0;break;case 'A':L0=1;break;case 'B':L1=1;break;case 'C':L2=1;break;case 'D':L3=1;break;case 'E':L4=1;break;case 'F':L5=1;break;case 'G':L6=1;break;case 'H':L7=1;break;}}}。
实验四两个单片机之间双向通信实验

实验四两个单片机之间双向通信实验一、实验目的1.了解MCS-51单片机串行口(UART)的结构、工作方式。
2.了解串行口通信的原理和数据交换过程。
3.掌握单片机之间进行串行口通信的编程方法。
二、实验内容将甲乙两台单片机串行口连接,即甲机的TXD与乙机的RXD相连;甲机的RXD与乙机的TXD相连;并实现双机共地。
整个系统实现双向通信。
具体是:1.甲机的K1按键可通过串行口分别控制乙机的LED1点亮;LED2点亮;LED1和LED2全亮或者全灭。
2.乙机的K2按键可通过串行口向甲机发送数字,甲机将接收到的数字显示在其P0端口的LED数码管显示器上。
三、实验程序甲机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90HMOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TAB HERE: SJMP HERESEND: CJNE R0,#04H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P0,ARETURN: RETILP1:JC SHOWCLR CMOV A,R0SUBB A,#04HMOV R0,AAJMP SHOWTAB: DB 00H,01H,02H,03H END乙机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90H MOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TABHERE: SJMP HERESEND: CJNE R0,#09H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P1,ARETURN: RETILP1: JC SHOWCLR CMOV A,R0SUBB A,#0AHMOV R0,AAJMP SHOWTAB: DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH END四、实验原理图五、实验仿真及结果六、实验总结通过本次实验,掌握了单片机之间进行串行口通信的编程方法,对MCS-51单片机串行口(UART)的结构、工作方式都有了进一步的了解。
单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。
而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。
一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。
串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。
在串行通信中,数据是一位一位地按顺序传输的。
常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。
在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。
UART 协议包括起始位、数据位、奇偶校验位和停止位。
起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。
二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。
首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。
在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。
即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。
同时,还需要共地以保证信号的参考电平一致。
此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。
三、软件设计软件设计是实现双机串行通信的核心部分。
在本次课程设计中,我们使用 C 语言来编写单片机的程序。
对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。
然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。
对于接收方单片机,同样需要对 UART 模块进行初始化。
单片机课程设计-双机串行通信

51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:
(1)数据缓冲器(SBUF)
接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。
SBUF=key_in;//发送数据
while(!TI);//等待数据发送,由TI判断发送是否结束
TI=0;
}
}
}
void chuankou() interrupt 4//串口中断函数
{
dis=SBUF;//接收数据
RI=0;//RI由软件清零;
}
六、仿真结果
八、实验器材
2个AT89C51
MAX232芯片
2个LCD
串口连接线
七、总结
本次设计采用两片AT89C51单片机实现信息的串行通信,设计过程中,从双机通信背景的了解,到89C51单片机具体功能的了解,到串行通信的原理的熟悉,到掌握具体串行通信在双机之间的实现;从硬件电路设计到程序编写;从硬件调试到软件模拟实现等。发送方的数据由串行口TXD断输出,经过传输线将信号传送到接收端。接收方接收电平信号,对于接口电路,短距离传送,减少抗干扰作用,如果短离远双机串口中可以连接电平转换器常用芯片RS232,在此不再叙述。设计中,收获不少东西,也遇到了不少的问题。
两个单片机间串口通讯

}
while(temp!=0xf0)
{
temp=P2;
temp=temp&0xf0;
}
send(num);
}
}
}
void main()
{
TMOD=0x20;//设置定时器1为工作方式2
TH1=0xfd;//装初值设置波特率
TL1=0xfd;
TR1=1;//打开定时器1
SM0=0;//8位异步收发
单片机间通讯
作者:冉纯雷
1.程序设计
发送程序:
#include<reg52.h>
#define uint unsigned int
#define uchar unsigned char
uchar num,temp;
void delay(uint z)//延时函数
{
uint x,y;
for(x=z;x>0;x--)
temp=P2;
temp=temp&0xf0;
if(temp!=0xf0)
{
temp=P2;
switch(temp)
{
case 0xee:num=16;
break;
case 0xde:num=12;
break;
case 0xbe:num=8;
break;
case 0x7e:num=4;
break;
}
{
delay(5);
temp=P2;
temp=temp&0xf0;
if(temp!=0xf0)
{
temp=P2;
switch(temp)
{
case 0xe7:num=13;
两个单片机之间的串行通信

两个单片机之间的串行通信一、设计要求在某个控制系统中有U1、U2这两个单片机,U1单片机首先将P1端口指拨开关数据载入SBUF,然后经由TXD将数据传送给U2单片机,U2单片机将接收数据存入SBUF,再由SBUF载入累加器,并输出至P1端口,点亮相应端口的LED。
二、实验所需元器件三、电路原理图:四、程序设计这两个单片机均工作在半工状态,U1将P1端口的状态通过TXD发半空给U2,而U2接收U1的数据,然后控制P1端口的LED显示。
因此,需编写两个不同的程序,其程序流程图如下所示:五、C语言程序:U1的C语言程序:#include "reg51.h"#define uint unsigned int #define uchar unsigned charvoid send(uchar state){SBUF=state;while(TI==0);TI=0;}void SCON_init(void){SCON=0x50;TMOD=0x20;PCON=0x00;TH1=0xfd;TL1=0xfd;TI=0;TR1=1;ES=1;}void main(){P1=0xff;SCON_init();while(1){send(P1);}}U2的C语言程序:#include "reg51.h"#define uint unsigned int #define uchar unsigned char uchar state;void receive(){while(RI==0)state=SBUF;RI=0;}void SCON_init(void) {SCON=0x50;TMOD=0x20;PCON=0x00;TH1=0xfd;TL1=0xfd;RI=0;TR1=1; }void main(){SCON_init();while(1){receive();P1=state;}}六、调试与仿真:。
单片机实现双机通信自己的

单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。
双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。
在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。
单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。
在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。
下面是一种基于串口通信的单片机双机通信的实现方法。
首先,我们需要确定通信的硬件配置。
通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。
发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。
在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。
这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。
接下来,我们需要实现发送和接收的程序。
首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。
接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。
另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。
这些校验机制可以用于检测和纠正数据传输中的错误。
在程序编写的过程中,还需要考虑到程序的稳定性和容错性。
例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。
同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。
最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。
这些功能可以根据具体的需求进行实现。
总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。
在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)
编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:
发送发程序:
#include<reg51.h>
#define uint unsigned int
uchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x)
{
uint i,j;
for(i=x;i>0;i--)
for(j=110;j>0;j--);
}
void main()
{
uchar i=0;
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
SM0=0;
SM1=1;
TR1=1;
EA=1;
ES=1;
while(1)
{
SBUF=table[i];
P1=table[i];
while(!TI);
TI=0;
i++;
if(i==8)
i=0;
delay(800);
}
}
接收方程序:
#include <reg51.h>
#define uchar unsigned char
uchar a;
void main()
{
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
REN=1;
TR1=1;
SM0=0;
SM1=1;
EA=1;
ES=1;
while(1);
}
void ser() interrupt 4
{
RI=0;
a=SBUF;
P1=a;
}
三、实验结果及分析
本实验需要完成两个程序,发送方和接受方的,但是并没有要求
加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
两个单片机都使用串口方式1进行通信,并且必须保证两单片机通信波特率完全一致,否则接受不到正确的数。
在发送数据时,向SBUF中写入一个数据后,使用“while(!TI);”等待是否发送完毕,因为当发送完毕后,TI被硬件置1,然后才退出“while(!TI);”接下来在将TI手动清零,同理,在接受数据时,在中断服务程序中也需要将接受中断标志位RI置零。