利用导数求参数的取值范围方法归纳

合集下载

导数专题(一)参数的取值范围

导数专题(一)参数的取值范围
导数应用专题一 求参数的取值范围
太原市新希望双语学校 钱大平
(一)、概述:求参数的取值范围是数学 中普遍存在的问题(如函数、解析几何、 向量等)。宏观地讲,求参数的取值范围, 就是通过寻求参数所满足的不等量关系 (特殊地也可以是等量关系,一般地是不 等式或不等式组)而得到参数的取值范围 (特殊地范围可以夹挤为一个常数,也可 以无解)。应用导数求参数的取值范围就 是在求范围的过程中,采用了导数的方法 和手段。这类问题有一定的特定数学背景 (首先是函数问题的大背景)。
(二)、预备知识:
一、恒成立、能成立问题的化归(参考《成功密 码》9月刊P14)
1、利用分离参数确定不等式 f ( x, a ) 0 ( x D, a为实参数) 恒成立中参数a的取值范围的基本步骤: (1)将参数与变量分离,即化为 g ( a ) 恒成立的形式
f ( x) (或g (a) f ( x))
(2)求 f ( x)在x D 上的最大(或最小)值 (3)解不等式 g (a) f ( x) max (或g (a) f ( x) min ) ,得到a的取值范 围
例:已知两函数 f ( x) 8 x 2 16 x k , g ( x) 2 x 3 5 x 2 4 x , 其中k为实数。 (1)对任意 x 3, 3 ,都有 f ( x) g ( x) 成立,求k的取 值范围; (2)存在 x 3, 3 ,使 f ( x) g ( x) 成立,求k的取值范围 (3)对 x1 , x2 3, 3 ,都有 f ( x1 ) g ( x2 ) ,求k的取值范 围;
二、参数满足的条件与参数取值范围的逻辑关系 (集合观点理解:即用充分条件得到的参数范围是 用充要条件得到的范围的子集,用必要条件得到的 参数范围含盖用充要条件得到的范围)

导数含参数取值范围分类讨论题型总结与方法归纳

导数含参数取值范围分类讨论题型总结与方法归纳

一.含参数导数问题的分类讨论问题求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

★例1已知函数ax x a x x f 2)2(2131)(23++-=(a>0),求函数的单调区间 ★★例2已知函数x a x a x x f ln )2(2)(+--=(a>0)求函数的单调区间★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。

(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。

练习:已知函数当时,讨论的单调性.二.已知函数的单调性求参数范围可以转化为不等式恒成立问题;.例4.已知函数f (x )=ln a +ln x x在[1,+∞)上为减函数,则实数a 的取值范围为__________.练习:已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎪⎫23. (1)求a 的值;(2)设函数g (x )=(f (x )-x 3)·e x,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.恒成立分参例1:设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.练习: 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2] D .[-4,-3]。

(2021年整理)利用导数求参数的取值范围

(2021年整理)利用导数求参数的取值范围

利用导数求参数的取值范围(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(利用导数求参数的取值范围(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为利用导数求参数的取值范围(推荐完整)的全部内容。

利用导数求参数的取值范围(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望利用导数求参数的取值范围(推荐完整)这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <利用导数求参数的取值范围(推荐完整)〉这篇文档的全部内容。

利用导数求参数的取值范围摘要:在讨论方程根的个数,研究两个函数图像的交点个数,以及不等式恒成立问题时,常常要求参数的取值范围,而这类问题的本质就是通过导函数来研究函数的单调性和极(最)值,画出函数图像的大致走势,数形结合分析问题。

例1.已知函数321()3f x x ax b =-+在2x =-处有极值。

(1) 求函数()f x 的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。

解:(1) 由321()3f x x ax b =-+,得22'()32f x x ax a =-- 令222a '()320,=-,(0)3f x x ax a x a a =--==>1得x 当(),'()x f x f x 变化时,的变化情况如下表:由上述表格可知,3223()=()()()()11333327f x f a a a -=-----+=+极大值 3333()()11f x f a a a a a ==--+=-极大值(2)由(1)可知()(,)(,)3a f x a -∞-+∞在和上单调递增,在-a (,a )3上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <≤-=+>≥极大值极小值 a ()-y f x ∴=∞在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得 又()y f x =在(,)3a -∞-上单调递增,且2(1)(1)0f a a a a -=-=-≤ ()--y f x ∴=∞a 在(,)3上最多有一个实数根 于是,当01a <≤时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。

如何利用导数求参数的取值范围公开课

如何利用导数求参数的取值范围公开课
解:
f x x x 2a
' 2
2 函数 f x 在 , 上存在单调递增区间, 3 2 即导函数在 , 上存在函数值大于零的部分 3
2 3
1 2 2 2 f 2a 0 a 9 3 3 3
例8
解:
(2010新课标理) 设函数 f(x)= e x 1 x ax 2 .
(Ⅰ)若 a=0,求 f(x)的单调区间; (Ⅱ)若当 x≥0 时 f (x)≥0,求 a 的取值范围.
x
( x) e 1 2ax, 令h( x) f ( x), 则h( x) e x 2a f 1 ()a 1时 即 a 时 h( x) 0, 1 2a 1 , , 2
'
2
பைடு நூலகம்
问题 3:若函数 f ( x)在1, 单调递增, x ( x 1)( x 2 2ax 3),求 a的范围 且经计算得 f
f x ( x 1)( x 2ax 3) 0在1, 恒 立 成
2
即x 2ax 3 0在1, 恒 立 成
间是函数单调递增(递减)区间的一个子区间即 (Ⅰ)讨论函数 f ( x ) 的单调区间; 可。 f ( x) 在区间 2 , 1 内是减函数,求 a 的取值范围 (Ⅱ)设函数
( x) 3x2 2ax 1 f 2 当 a 3时 2 当 a ≤ 3 时, ≤ 0 , f ( x) ≥ 0 , f ( x ) 在 R 上递增
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
一般情况 两个根都小于K 两个根都大于K
一个根小于K,一个 根大于K

导数中的参数范围的求法

导数中的参数范围的求法

导数中的参数范围的求法一、 与单调性有关的参数问题此时参数可以位于函数中也可以位于区间内,常见的提问方式是函数在某个区间单调递减、单调递增、单调、不单调,研究这类问题的关键是把握原函数和导函数的关系,这里需要注意的一个问题:若函数()f x 单调,则'()f x 恒为非正或非负,函数的极值点并不等同于导函数的零点,极值点的个数和导函数的根的个数也不能直接划等号。

例1.已知函数32()39f x x x x =--在区间(,21)a a -上单调递减,求a 的取值范围。

解析:先根据函数单调性作出函数的趋势图像,再安排存在参数的区间位置即可。

'2()3693(1)(3)f x x x x x =--=+-令'()0f x >,则3x >或1x <-;令'()0f x <,则13x -<<,作出趋势图像如下:函数在区间(,21)a a -上单调递减,需满足12131221a a a a a ≥-⎧⎪-≤⇒<≤⎨⎪->⎩例2.已知函数22()ln f x x a x x=++在[1,4]上是减函数,求实数a 的取值范围。

解析:转化为函数单调性与导函数的正负性的关系即可,'22()2a f x x x x=+- 在[1,4]上是减函数,即'22()02f x a x x≤⇒≤-+在[1,4]上恒成立 令22()2g x x x =-+,因为()g x 在[1,4]上递减,则min 63()(4)2g x g ==- 所以632a ≤-例3.已知函数(),()ln ,f x ax g x x a R ==∈,若函数()2()()xf x G x ag x a x=++在区间[1,)+∞上为单调函数,求a 的取值范围。

解析:题目只是说明函数是单调函数,并未说明是单增还是单减,因此需要分两种情况讨论,将单调性转化为参数恒成立问题即可。

利用导数求参数的取值范围课件

利用导数求参数的取值范围课件
f′(x)≤0在区间(a,b)上恒成立; • (3)可导函数f(x)在区间(a,b)上为增函数是f′(x)
>0的必要不充分条件.参数法 • 当参数的系数符号确定时,可以先考虑分离参数,
进而求另一边函数的最值,有a>f(x)恒成立,即a> f(x)max,或有a<f(x)恒成立,即a<f(x)min.
利用导数求参数的取值范围
• 探究提高 本题关键是把极值点看做是函数的导函数 对应方程的根;在求范围时通常的做法就是构造相应 函数,再由导数讨论单调性与极值求解.
利用导数求参数的取值范围
• (2)设φ(x)=h(x)+ax+5=-x2+(a-2)x+6, • F(x)=g(x)-xg(x)=ex-3-x(ex-3)=(1-x)ex+3x-3. • 依题意知:当x∈[-1,1]时,φ(x)min≥F(x)max. • ∵F′(x)=-ex+(1-x)ex+3=-xex+3,易知F′(x)
∴f′(x)=2x+1-1x=2x-1xx+1,
x∈0,12,f′(x)<0,x∈12,+∞,f′(x)>0,
∴f(x)的减区间为0,12,增区间为12,+∞.
利用导数求参数的取值范围
• 规律方法 (1)当f(x)不含参数时,可通过解不等式 f′(x)>0( 或 f′(x)<0) 直 接 得 到 单 调 递 增 ( 或 递 减 ) 区 间.
=ax2-ex,a∈R. • (1)当a=1时,试判断f(x)的单调性; • 取值(2范)若围f(.x)有两个极值点x1,x2(x1<x2),求实数a的
利用导数求参数的取值范围
• 解 (1)当a=1时,f(x)=x2-ex, • 则f′(x)=2x-ex. • 设g(x)=f′(x)=2x-ex, • 则g′(x)=2-ex. • 当x=ln 2时,g′(x)=0, • 当x∈(-∞,ln 2)时,g′(x)>0; • 当x∈(ln 2,+∞)时,g′(x)<0, • f恒′成(x立)ma,x=g(x)max=g(ln 2)=2ln 2-2<0,故f′(x)<0 • ∴f(x)在R上单调递减.

高中数学:利用导数求参数的取值范围

高中数学:利用导数求参数的取值范围

真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
专题训练· 对接高考
解析 而得
2 2
πx0 π f(x)的极值点 x0 满足 f(x0)=± 3,则 m =2+kπ(k∈Z),从
1 1 2 2 2 x0=k+2m(k∈Z), 所以不等式 x0+[f(x0)] <m , 即为k+2
f(x)恒成立,即a<f(x)min.
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
专题训练· 对接高考
热点一
已知函数的单调性求参数的取值范围
【例1】 (2014·杭州模拟)设函数f(x)=x2+ax-ln x(a∈R). (1)若a=1,求函数f(x)的单调区间; (2)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围.
第 4讲
利用导数求参数的取值范围
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
专题训练· 对接高考
高考定位
由含参函数的单调性、极值、最值求参数的取值范
围是近几年高考命题的重点,试题难度较大.
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
专题训练· 对接高考
[真题感悟] 辽宁卷)当 x∈[-2,1]时,不等式 ax3-x2+4x+3≥0 恒 1.(2014· 成立,则实数 a 的取值范围是 A.[-5,-3] C.[-6,-2]
9 B.-6,-8
(
).
D.[-4,-3]
真题感悟· 考点整合
热点聚焦· 题型突破
归纳总结· 思维升华
专题训练· 对接高考
解析
当 x∈(0,1]时, 得

利用导数求参数取值范围的若干策略

利用导数求参数取值范围的若干策略

利用导数求参数取值范围的若干策略贺凤梅(新疆伊犁巩留县高级中学ꎬ新疆伊利835400)摘㊀要:在含参不等式恒成立问题中ꎬ经常需要借助导数求解参数的取值范围.解决这类问题通常需要用到函数与方程㊁转化与化归㊁数形结合以及分类讨论等数学思想.文章通过具体问题的研究ꎬ切实提升学生的解题能力和学科核心素养.关键词:导数ꎻ参数范围ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)34-0007-03收稿日期:2023-09-05作者简介:贺凤梅(1979-)ꎬ女ꎬ湖北省随州人ꎬ本科ꎬ中学一级教师ꎬ从事中学数学教学研究.㊀㊀题目呈现㊀(2022年山东数学模拟试题)已知函数f(x)=aex-1-lnx+lnaꎬ(1)当a=e时ꎬ求曲线y=f(x)在点(1ꎬf(1))处的切线与两坐标轴围成的三角形的面积ꎻ(2)若f(x)ȡ1ꎬ求a的取值范围.1总体分析本题第(1)问考查导数的几何意义ꎬ属于常规题.第(2)问则是利用导数研究不等式恒成立问题ꎬ求参数的范围.此问可以多视角解答ꎬ涉及隐零点㊁同构法㊁切线放缩㊁分类讨论㊁反函数法等多种策略.2试题解答第(1)问略解:易求得切点(1ꎬe+1)ꎬ斜率k=fᶄ(1)=e-1ꎬ切线方程y=(e-1)x+2ꎬ与两坐标轴交点(0ꎬ2)ꎬ(-2e-1ꎬ0)ꎬ所求面积s=2e-1.以下重点探讨第(2)问.视角1㊀隐零点.解法1㊀令g(x)=aex-1-lnx+lna-1ꎬxɪ(0ꎬ+ɕ)ꎬa>0ꎬ则gᶄ(x)=aex-1-1x.令gᶄ(x0)=aex0-1-1x0=0ꎬ得aex0-1=1x0.①两边取自然对数ꎬ整理ꎬ得lna+x0-1=-lnx0.②因为gᵡ(x)=aex-1+1x2>0ꎬ所以gᶄ(x)在(0ꎬ+ɕ)上单调递增ꎬ且xң0+时ꎬgᶄ(x)ң-ɕꎻxң+ɕ时ꎬgᶄ(x)ң+ɕ.所以xɪ(0ꎬx0)时ꎬgᶄ(x)<0ꎻxɪ(x0ꎬ+ɕ)时ꎬgᶄ(x)>0.因此g(x)在x=x0处取得极小值ꎬ也为最小7值ꎬ即g(x)min=aex0-1-lnx0+lna-1.将①②代入整理得g(x)min=x0+1x0+2lna-2.显然ꎬ要使原不等式恒成立ꎬ必有g(x)min=x0+1x0+2lna-2ȡ2lnaȡ0ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).评注㊀此解法通过构造函数g(x)ꎬ利用隐零点x0表示出g(x)的最小值ꎬ借助基本不等式得出关于a的不等式ꎬ求解即得[1].视角2㊀同构.条件f(x)ȡ1ꎬ即aex-1-lnx+lna-1ȡ0(∗)在xɪ(0ꎬ+ɕ)上恒成立.解法2㊀将(∗)式变形得ex-1+lna+x-1+lnaȡx+lnx=elnx+lnx.构造函数g(t)=et+tꎬ求导得gᶄ(t)=et+1>0.所以函数g(t)=et+t在R上单调递增.由g(x-1+lna)ȡg(lnx)ꎬ得x-1+lnaȡlnx.即lnaȡlnx-x+1在xɪ(0ꎬ+ɕ)上恒成立.令h(x)=lnx-x+1ꎬx>0ꎬ求导ꎬ得hᶄ(x)=1x-1=1-xxꎬh(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ所以h(x)ȡh(1)=0ꎬ故lnaȡ0即可ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).视角3㊀同构+切线放缩.解法3㊀将(∗)式变形ꎬ得ex-1+lna+lnex-1+lnaȡx+lnx.构造函数g(x)=x+lnxꎬx>0ꎬgᶄ(x)=1+1x>0ꎬg(x)单调递增.由g(ex-1+lna)ȡg(x)ꎬ得ex-1+lnaȡx.结合exȡx+1ꎬ得x-1+lnaȡx-1.所以lnaȡ0ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).解法4㊀将(∗)式变形ꎬ得aex-1-lnxaȡ1(a>0).所以ex-1ȡ1alnexaꎬ即exȡealnexa.亦即xexȡexalnexa(x>0).构造函数H(x)=xexꎬx>0ꎬHᶄ(x)=(x+1)ex>0ꎬ所以H(x)在xɪ(0ꎬ+ɕ)上单调递增.由H(x)ȡH(lnexa)得xȡlnexa=1+lnx-lnaꎬ易证xȡ1+lnxꎬ所以lnaȡ0即可ꎬ解得aȡ1ꎬ即aɪ[1ꎬ+ɕ).评注㊀视角2中的三种解法均属于同构法ꎬ从解答过程可以知晓ꎬ根据不同的变形形式ꎬ得到有一定差异的同构函数ꎬ借助于函数的单调性ꎬ得出变量间的关系ꎬ进一步变形求解ꎬ问题也就迎刃而解了.当然ꎬ在解答的过程中ꎬ用到了exȡx+1与xȡ1+lnx这两个有关切线放缩的不等式ꎬ作为解答题ꎬ需要简单证明方可使用[2].视角4㊀放缩+极值.解法5㊀由已知条件ꎬ得aex-1+lnaȡ1+lnx.易证x-1ȡlnxꎬ即xȡ1+lnx.所以只需aex-1+lnaȡx.构造函数φ(x)=aex-1+lna-xꎬ求导得φᶄ(x)=aex-1-1.以下对a分情况讨论:(Ⅰ)当aȡe时ꎬφᶄ(x)=aex-1-1ȡe ex-1-1=ex-1>0在(0ꎬ+ɕ)上恒成立ꎬφ(x)=aex-1+lna-xȡe ex-1+lne-x=ex-x+1>0(x>0)ꎬ满足题意.(Ⅱ)当0<a<e时ꎬ令φᶄ(x)=aex-1-1=0得x-1=-lnaꎬ即x=1-lnaꎬ显然φ(x)在(0ꎬ1-lna)上单调递减ꎬ在(1-lnaꎬ+ɕ)上单调递增.所以φ(x)ȡφ(1-lna)=ae-lna+2lna-1ȡ0.所以lnaȡ0即可ꎬ解得1ɤa<e.综上可得aɪ[1ꎬ+ɕ).评注㊀此解法通过不等式放缩ꎬ介入中间量ꎬ借助于极值求解也可以成功突破.但因为定义域的限8定ꎬ需对a进行分类讨论ꎬ再取两种情况的并集ꎬ此处易出现纰漏ꎬ值得大家重视.再给一例ꎬ感兴趣的读者可以自行求解或查阅.已知函数f(x)=ex-2-lnx.若g(x)=f(x)+lnx-axꎬ讨论g(x)的单调性.(提示:此题需分aɤ1e2与a>1e2进行求解ꎬ你发现了吗?)视角5㊀分类讨论.解法6㊀由f(x)=aex-1-lnx+lnaꎬxɪ(0ꎬ+ɕ)ꎬa>0ꎬ对a进行分类讨论:(Ⅰ)当0<a<1时ꎬ易得f(1)=a+lna<1ꎬ不满足f(x)ȡ1.(Ⅱ)当a=1时ꎬf(x)=ex-1-lnxꎬ则fᶄ(x)=ex-1-1xꎬxɪ(0ꎬ1)时ꎬfᶄ(x)<0ꎬf(x)单调递减ꎻxɪ(1ꎬ+ɕ)时ꎬfᶄ(x)>0ꎬf(x)单调递增.所以f(x)ȡf(1)=1ꎬ满足题意. (Ⅲ)当a>1时ꎬf(x)=aex-1-lnx+lnaȡex-1-lnxꎬ易证ex-1ȡ(x-1)+1=xꎬxȡ1+lnxꎬ所以f(x)ȡf(1)=1ꎬ满足题意.综上可得aɪ[1ꎬ+ɕ).评注㊀此解法属于对a进行分类讨论求解ꎬ通过推理和论证ꎬ符合就要ꎬ不符合则舍去.难点在于找参数a的分类界限ꎬ这需要通过日积月累的训练方能达成.视角6㊀反函数.解法7㊀由已知ꎬ得aex-1-lnx+lnaȡ1.所以aex-1ȡlnx-lna+1.令y=aex-1ꎬ则x=lnya+1=lny-lna+1.所以y=aex-1与y=lnx-lna+1互为反函数ꎬ只需aex-1ȡx即可ꎬ整理得aȡxex-1.令G(x)=xex-1=exexꎬ求导ꎬ得Gᶄ(x)=e(1-x)ex.所以G(x)在(0ꎬ1)单调递增ꎬ在(1ꎬ+ɕ)单调递减.㊀则G(x)ɤG(1)=1ꎬ故aȡ1.即aɪ[1ꎬ+ɕ).评注㊀此法确实很巧妙ꎬ能通过变形㊁观察和求解得出不等式两边对应函数恰好互为反函数ꎬ利用凸凹反转ꎬ借助于临界的切线得出大小关系ꎬ化繁为简.3试题链接题1㊀(2010年高考新课标卷理科)设函数f(x)=ex-1-x-ax2ꎬaɪR.若当xȡ0时ꎬf(x)ȡ0恒成立ꎬ求a的取值范围.题2㊀若不等式ax-lnxȡa(2x-x2)对∀xɪ[1ꎬ+ɕ)恒成立ꎬ求a的取值范围.导数问题博大精深ꎬ对于学生而言ꎬ基础知识和基本理论易于学懂ꎬ但是ꎬ受众多关联知识和高数背景的限制ꎬ很多导数问题难以突破.对于高校来讲ꎬ导数是学生深造学习的重要基础.基于此种原因ꎬ高考一直重点考查导数ꎬ因此我们有必要多花时间和精力研究导数ꎬ总结规律ꎬ提炼解法ꎬ积累经验ꎬ创新思路ꎬ在比较和不断尝试中增长技能.这类参数问题入口宽ꎬ结果唯一ꎬ研究它就是对导数的全面理解和应用ꎬ这对我们的学习大有裨益.参考文献:[1]李文东.利用导数解决含参不等式取值范围问题的策略[J].中学数学研究ꎬ2020(4):12-16. [2]余铁青.从一道导数大题谈参数分类讨论的依据[J].数理化学习ꎬ2022(03):7ꎬ21.[责任编辑:李㊀璟]9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数求参数的取值范围方法归纳导数在数学中广泛应用,它可以表示函数的变化率。

在求取参数的取值范围时,可以利用导数的性质来推导出函数与参数之间的关系。

下面将介绍利用导数求参数取值范围的一些常见方法。

一、利用导数判断函数的单调性:
考虑函数$f(x)$的单调性,可以使用导数来帮助我们判断。

如果函数$f(x)$在其中一区间上的导数恒大于零,那么函数在该区间上是递增的;如果导数恒小于零,那么函数递减。

1.对于一元函数$f(x)$,可以计算其导数$f'(x)$,然后解方程
$f'(x)=0$,将问题转化为求解函数的极值点。

如果求解出的极值点满足题目给定的参数范围条件,则参数的取值范围就是极值点的区间。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。

然后计算$g'(x)$,利用一元函数的方法来判断参数的取值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数,从而转化为一元函数的问题。

二、利用导数判断函数的极值:
考虑函数$f(x)$的极值情况,可以求取其导数$f'(x)$,然后判断导数的正负性。

1.对于一元函数$f(x)$,如果导数$f'(x)$在特定点$x_0$处为零,并且$x_0$处的导数的左右性质相异,那么函数在$x_0$处取得极值。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函
数$g(x)=f(x,y)$。

然后计算$g'(x)$,判断导数的正负性来确定参数的取
值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量
求导,将其它变量视为常数。

然后再对求得的一元函数进行求导判断极值。

三、利用导数判断函数的凸凹性:
考虑函数$f(x)$的凸凹性质,可以使用导数$f''(x)$来判断。

如果导
数恒大于零,则函数凸;如果导数恒小于零,则函数凹。

1.对于一元函数$f(x)$,可以计算其二阶导数$f''(x)$,然后判断
$f''(x)$的正负性来确定函数的凸凹性质。

2.对于二元函数$f(x,y)$,将其看作一个以参数$y$为变量的函数
$g(x)=f(x,y)$。

然后计算$g''(x)$,利用一元函数的方法来判断凸凹性。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量
求导两次,将其它变量视为常数。

然后再对求得的二元函数进行求导判断
凸凹性。

综上所述,利用导数求参数的取值范围方法归纳了函数的单调性、极
值性和凸凹性的判断。

通过计算导数,我们可以推导出关于参数的方程,
从而确定参数的取值范围。

这些方法在优化问题、约束条件下的最优化问
题等数学问题中有着广泛应用。

相关文档
最新文档