常见概率分布期望方差以及分布图汇总复习进程

合集下载

随机变量与期望方差

随机变量与期望方差

0.1 b=
0.4 .
归纳求离散型随机变量期望的步骤: ①、确定离散型随机变量可能的取值。
②、写出分布列,并检查分布列的正确与否。
③、求出期望。
例1、随机抛掷一个骰子,设随机变量ξ 为所得骰子的点数,
(1)求随机变量ξ 的概率分布律; (2)求Eξ 。 解:(1)随机变量ξ的概率分布律为: x P(ξ =x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6
解:(1) X~B(3,0.7)
X P 0 1
3
2
2
3
0.3
C 0.7 0.3
1 3
C 0.7 0.3
2 3 2
0.7
3
1 2 (2) EX 0 0.33 1 C3 0.7 0.32 2 C3 0.72 0.3 3 0.73
EX 2.1 3 0.7
k

pqk-1 …
q D 2 p
例4 有一批数量很大的产品,其次品率是 15%,对这批产品进行抽查,每次抽出1件, 如果抽出次品,则抽查终止,否则继续抽查, 直到抽出次品,但抽查次数最多不超过10 次.求抽查次数ξ的期望(结果保留三个有 效数字).
分析: (1)P(ξ=k)=0.85 k-1×0.15,( k=1,2,…,9) k=10时,前9次取出的都是正品,第10次可能取出次品,也 可能取出正品, 所以P(ξ=10)=0.859×(0.15+0.85)=0.859 (2)写出ξ的分布列,由概率分布可得
x 6 7 8 9 10 上海队员: P ( x ) 0 0.3 0.4 0.2 0.1
x 6 7 8 9 10 辽宁队员: P( x) 0.04 0.24 0.44 0.22 0.06

概率分布以及期望和方差

概率分布以及期望和方差

学辅教育成功就是每天进步一点点!概率分布以及期望和方差上课时间 :上课教师:上课重点 :掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差上课规划:解题技巧和方法一两点分布知识内容⑴两点分布如果随机变量X 的分布列为X1 0P p q其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布.X100.8 0.2P两点分布又称 0 1 分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.(2)典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np .典例分析学辅教育成功就是每天进步一点点!,针尖向上;1、在抛掷一枚图钉的随机试验中,令 X1,如果针尖向上的,针尖向下 .概率为 p ,试写出随机变量X 的概率分布.2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的白,当取到白球时,球个数”,即X1,求随机变量 X 的概率分布. ,当取到红球时,3、若随机变量 X 的概率分布如下:X1P23 8C9C C试求出 C ,并写出 X 的分布列.3、抛掷一颗骰子两次,定义随机变量0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 )1, (当第一次向上一面的点数等于第二次向上一面的点数 )试写出随机变量 的分布列.4、篮球运动员比赛投篮,命中得1分,不中得 0 分,已知运动员甲投篮命中率的概率为 P .⑴记投篮1次得分X,求方差D ( X )的最大值;⑵当⑴中 D ( X ) 取最大值时,甲投3次篮,求所得总分Y的分布列及Y的期望与方差.二超几何分布知识内容将离散型随机变量X 所有可能的取值x i与该取值对应的概率p i (i 1, 2,, n)列表表示:X x1x2P p1p2⋯⋯x ip i⋯⋯x np n一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取 n 件 ( n ≤ N ) ,这 n 件中所含这类物品件数X 是一个离散型随机变量,它取值为 m 时的概率为P( X m)C M m C n N m M≤ l ,l为 n 和M中较小的一个 ) .C n N(0≤ m我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为 N , M ,n的超几何分布.在超几何分布中,只要知道 N , M 和n,就可以根据公式求出 X 取不同值时的概率P( X m),从而列出 X 的分布列.超几何分布的期望和方差:若离散型随机变量 X 服从参数为N,M,n的超几何分布,则 E(X)nM,n(N n)( N M )M.ND(X)2(N 1)N典例分析例题:一盒子内装有 10 个乒乓球,其中 3 个旧的,7 个新的,从中任意取 4 个,则取到新球的个数的期望值是.练习 1. 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的 6 题,规定每次考试都从备选题中随机抽出 5 题进行测试,每题分数为20分,求他得分的期望值.练习 2. 以随机方式自 5 男 3 女的小群体中选出 5 人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.练习 3. 在12个同类型的零件中有2 个次品,抽取 3 次进行检验,每次任取一个,并且取出不再放回,若以和分别表示取出次品和正品的个数.求,的期望值及方差.三二项分布知识内容若将事件 A 发生的次数设为X ,事件 A 不发生的概率为q 1 p ,那么在 n 次独立重复试验中,事件 A 恰好发生k 次的概率是P( X k)C kn pk q n k,其中k0 , 1, 2 , n, .于是得到X的分布列X01⋯k⋯nP C 0n p0q n C1n p1q n 1⋯C n k p k q n k⋯C n n p n q0由于表中的第二行恰好是二项展开式(q p)n C0n p0 q n C1n p1q n 1C k n p k q n k C n n p n q0各对应项的值,所以称这样的散型随机变量X 服从参数为n,p 的二项分布,记作 X ~ B(n , p) .二项分布的均值与方差:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则E ( X ) np , D (x) npq (q1 p) .二项分布:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则 E( X ) np ,D ( x) npq (q 1 p) .典例分析二项分布的概率计算1例题:已知随机变量服从二项分布, ~ B(4 , ) ,则 P(2)等于.练3习 1.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为2,则甲以 3:1 的比分获胜的3概率为( )A .8B .64C .4D .8278199练习 2.某篮球运动员在三分线投球的命中率是1,他投球 10 次,恰好投2进 3 个球的概率.(用数值表示)练习 3. 某人参加一次考试, 4 道题中解对 3 道则为及格,已知他的解题正确率为 0.4 ,则他能及格的概率为 _________(保留到小数点后两位小数)接种某疫苗后,出现发热反应的概率为0.80,现有 5 人接种了该疫苗,至少有 3 人出现发热反应的概率为.(精确到 0.01)例题 :从一批由 9 件正品, 3 件次品组成的产品中,有放回地抽取 5 次,每次抽一件,求恰好抽到两次次品的概率(结果保留2 位有效数字).练习 1. 一台X型号的自动机床在一小时内不需要人照看的概为0.8000 ,有四台这种型号的自动机床各自独立工作,则在一小时内至多有 2 台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728练习 2. 设在 4 次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于65,求事件A在一次试验中发生的概率.81例题:某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都学辅教育成功就是每天进步一点点!是1.若某人获得两个“支持,”则给予 10万元的创业资助;若只获得一个“支2持”,则给予 5 万元的资助;若未获得“支持”,则不予资助.求:⑴ 该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.练习 1. 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是 0.6 ,经销一件该商品,若顾客采用一次性付款,商场获得利润 200 元;若顾客采用分期付款,商场获得利润250 元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.练习 2. 某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为1,若中奖,则家具城返还顾客5现金 200 元.某顾客消费了 3400 元,得到3张奖券.⑴求家具城恰好返还该顾客现金 200元的概率;⑵求家具城至少返还该顾客现金 200元的概率.例题:设飞机 A 有两个发动机,飞机 B 有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p 是t的函数p 1 e t ,其中t为发动机启动后所经历的时间,为正的常数,试讨论飞机 A 与飞机 B 哪一个安全?(这里不考虑其它故障).练习 1. 假设飞机的每一台发动机在飞行中的故障率都是1 P,且各发动机互不影响.如果至少50% 的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的 P 而言,四发动机飞机比二发动机飞机更安全?练习 2. 一名学生每天骑车上学,从他家到学校的途中有 6 个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 .3⑴设为这名学生在途中遇到红灯的次数,求的分布列;⑵设为这名学生在首次停车前经过的路口数,求的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.二项分布的期望与方差例题 :已知X ~ B(10,0.8),求E( X )与D(X ).练习 1. 已知X ~ B(n,p),E ( X )8, D(X ) 1.6 ,则 n 与p的值分别为()A.10和0.8B.20和0.4C.10和 0.2D.100和 0.8练习 2.已知随机变量 X 服从参数为6,0.4的二项分布,则它的期望E(X ),方差 D(X).练习 3. 已知随机变量X服从二项分布,且E ( ) 2.4 ,D( ) 1.44 ,则二项分布的参数 n ,p的值分别为,.练习 4. 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取 4 次,则取到新球的个数的期望值是.例题:甲、乙、丙 3 人投篮,投进的概率分别是1,2,1.352⑴现 3 人各投篮 1 次,求 3 人都没有投进的概率;⑵用表示乙投篮 3 次的进球数,求随机变量的概率分布及数学期望.练习 1. 抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴ 求一次试验中成功的概率;⑵求在4次试验中成功次数X 的分布列及 X 的数学期望与方差.练习 2. 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为 4% .问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?四正态分布知识内容概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a,b 之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.yx=μO x1( x)2正态变量概率密度曲线的函数表达式为f (x) e 22,x R ,其中,2π是参数,且0 , .式中的参数 和 分别为正态变量的数学期望和标准差. 期望为 、标准差为 的正态分布通常记作N ( ,2) .正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布: 我们把数学期望为0 ,标准差为 1的正态分布叫做标准正态分布.①正态变量在区间( ,),(2 ,2 ),(3 ,3 )内,取值的概率分别是 68.3% , 95.4% , 99.7% .②正态变量在 (,) 内的取值的概率为 1,在区间 ( 3 ,3 ) 之外的取值的概率是 0.3% ,故正态变量的取值几乎都在距 x三倍标准差之内,这就是正态分布的3 原则.若 ~N(, 2) , f ( x) 为其概率密度函数,则称 F (x)P( ≤ x)xf (t )dt 为概率分布函数,特别的,,2x1t 2dt 为标准正态分布函数.2~ N (0 1 ) ,称 ( x)e2πP(x) (x) .标准正态分布的值可以通过标准正态分布表查得.典例分析(一)正态曲线(正态随机变量的概率密度曲线)1.下列函数是正态分布密度函数的是()1 ( x r ) 22 πe A . f ( x )B . f ( x )e22π2 πx 221 ( x1) 21 x 2ee2C . f ( x )4D . f ( x )22π2π2.若正态分布密度函数 f ( x)1( x 1) 2e 2( x R ) ,下列判断正确的是()2πA .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3.对于标准正态分布 N 0 ,1 1 x 2的概率密度函数2 ,下列说法不正确f xe2 π的是()A.f x为偶函数B.f x最大值为12πC.f x在x0 时是单调减函数,在x ≤ 0 时是单调增函数D.f x关于x 1对称4.设的概率密度函数为1( x 1) 2e2f ( x)2πA.P(1) P(1)C.f (x)的渐近线是x0,则下列结论错误的是()B.P( 1≤ ≤1) P(11) D.1~ N(0 ,1)(二)求,的取值以及概率例题:设 X ~ N ( ,2 ) ,且总体密度曲线的函数表达式为:f (x)1x2 2 x 1e4,2πx R .⑴求,;⑵求 P(| x 1|2) 及 P(1 2 x 1 2 2) 的值.练习 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 f ( x)1( x 80)2,则下列命题中不正确的是()200e102A.该市这次考试的数学平均成绩为80 分B.分数在 120 分以上的人数与分数在60 分以下的人数相同C.分数在 110 分以上的人数与分数在50 分以下的人数相同D.该市这次考试的数学标准差为10(三)正态分布的性质及概率计算例题 :设随机变量服从正态分布N (0 ,1) ,a0 ,则下列结论正确的个数是____ .⑴ P(||a )P(||a)P(| | a)⑵ P(||a )2P(a)1⑶ P(||a )12P(a)⑷ P(||a )1P(||a)练习 1. 已知随机变量 X 服从正态分布 N (3 ,a 2 ) ,则 P( X 3)()A .1B .1C .1D .15 432练习 2. 在某项测量中,测量结果 X 服从正态分布 N 1, 20 ,若X 在 0,1内取值的概率为 0.4 ,则 X 在 0 ,2 内取值的概率为.练习 3.已知随机变量 X 服从正态分布 N (2 , 2) , P( X ≤ 4) 0.84 ,则 P(X ≤ 0)A . 0.16B . 0.32C . 0.68D . 0.84练习4.已知X~N( 1,2 ),若 P( 3≤ X ≤-1) 0.4,则 P( 3≤ X ≤1) ()A . 0.4B . 0.8C . 0.6D .无法计算加强训练:1 设随机变量 服从正态分布 N (2 ,9) ,若 P( c 2)P( c 2) ,则 c_______.2 设 ~ N(0 1),且 P(| | b) a(0 a 1 b 0) ,则 P(b) 的值是_______(用 a 表,,≥示).3 正态变量 X ~ N (1, 2 ) , c 为常数, c0 ,若 P(c X2c) P(2c X 3c ) 0.4,求P( X ≤ 0.5) 的值.4 某种零件的尺寸服从正态分布N (0 ,4) ,则不属于区间 ( 4 ,4) 这个尺寸范围的零件约占总数的.(四)正态分布的数学期望及方差例题:如果随机变量~ N( , 2),ED1,求 P( 1 1)的值.(五)正态分布的 3 原则例题 :灯泡厂生产的白炽灯寿命(单位: h ),已知 ~ N (1000 ,302 ) ,要使灯泡的平均寿命为1000h 的概率为 99.7% ,则灯泡的最低使用寿命应控制在_____ 小时以上.练习 1.一批电池(一节)用于手电筒的寿命服从均值为35.6 小时、标准差为4.4 小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于 40小时的概率是多少?练习 2. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80 ,标准差为 10,理论上说在 80 分到 90 分的人数是 ______.杂题(拓展相关:概率密度,分布函数及其他)练习 3. 以F x表示标准正态总体在区间, x 内取值的概率,若随机变量服从正态分布N ,2,则概率P等于()A.F F B.F1F1C.F 1D.2F练习 4.甲、乙两人参加一次英语口语考试,已知在备选的10 道题中,甲能答对其中的 6 题,乙能答对其中的 8 题.规定每次考试都从备选题中随机抽出 3 题进行测试,至少答对 2 题才算合格.⑴求甲答对试题数X的分布列、数学期望与方差;⑵ 求甲、乙两人至少有一人考试合格的概率.课后练习1、一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个,则其中含红球个数的数学期望是_________.(用数字作答)2.、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为,则的数学期望是()A.20B.25C.30D.403、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是()A.np(1 p)B.np C.n D.p(1 p)4、同时抛掷4枚均匀硬币 80次,设 4 枚硬币正好出现 2枚正面向上, 2 枚反面向上的次数为,则的数学期望是()A、20B.25C.30D.405、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出 1个球,得到黑球的概率是2;从袋中任意摸出2个球,至少得到1个白5球的概率是7.9⑴若袋中共有 10 个球,从袋中任意摸出 3 个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出 2 个球,至少得到 1 个黑球的概率不大于7 .并10指出袋中哪种颜色的球个数最少.5.某厂生产电子元件,其产品的次品率为5% ,现从一批产品中的任意连续取出 2 件,求次品数的概率分布列及至少有一件次品的概率.某单位为绿化环境,移栽了甲、乙两种大树各 2 株.设甲、乙两种大树移栽的成活率分别为5和4,且各株大树是否成活互不影响.求移栽的 4 株65大树中:⑴至少有 1 株成活的概率;⑵两种大树各成活 1 株的概率.6.一个口袋中装有n 个红球(n≥5且n N *)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用 n 表示一次摸奖中奖的概率p ;⑵若 n 5 ,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n取多少时, P 最大?7.袋子 A 和 B 中装有若干个均匀的红球和白球, 从 A 中摸出一个红球的概率是 1,从 B 中摸出一个红球的概率为p .3⑴从 A 中有放回地摸球,每次摸出一个,有 3 次摸到红球即停止.①求恰好摸 5 次停止的概率;②记 5 次之内(含 5 次)摸到红球的次数为,求随机变量 的分布.⑵若 A ,B 两个袋子中的球数之比为 1: 2 ,将 A ,B 中的球装在一起后,从中摸出一个红球的概率是 2,求 p 的值.58、一个质地不均匀的硬币抛掷 5 次,正面向上恰为 1次的可能性不为 0 ,而且与正面向上恰为2 次的概率相同.令既约分数i为硬币在 5 次抛掷中有 3j次正面向上的概率,求ij .9、某气象站天气预报的准确率为80% ,计算(结果保留到小数点后面第 2位)⑴5 次预报中恰有2次准确的概率;⑵ 5 次预报中至少有 2 次准确的概率;⑶5 次预报中恰有2次准确,且其中第3次预报准确的概率;10 、某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠.若该电梯在底层载有 5 位乘客,且每位乘客在这三层的每一层下电梯的概率均为1,求至少有两位乘客在 20 层下的概率.311、10 个球中有一个红球,有放回的抽取,每次取一球,求直到第n 次才取得 k(k ≤ n) 次红球的概率.12 、已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮 3 次甲胜乙的概率.(保留两位有效数字)13 、若甲、乙投篮的命中率都是p 0.5,求投篮n次甲胜乙的概率.( n N,n ≥ 1 )14、省工商局于某年 3 月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的 x 饮料的合格率为80%,现有甲,乙,丙3人聚会,选用 6 瓶x饮料,并限定每人喝 2 瓶,求:⑴甲喝 2 瓶合格的x饮料的概率;⑵甲,乙,丙 3 人中只有 1 人喝 2 瓶不合格的x饮料的概率(精确到0.01).15、在一次考试中出了六道是非题,正确的记“√”号不,正确的记“×”号若.某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于 4 道的概率;⑶至少答对 2 道题的概率.17、某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6 .现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出 3人;⑵双方各出 5 人;⑶双方各出 7 人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?18、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60% ,参加过计算机培训的有75% ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选 1 名下岗人员,求该人参加过培训的概率;⑵任选 3 名下岗人员,记为3人中参加过培训的人数,求的分布和期望.19、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为 0.6 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记表示进入商场的 3 位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布及期望.20、某班级有n人,设一年365天中,恰有班上的m(m≤n)个人过生日的天数为 X ,求 X 的期望值以及至少有两人过生日的天数的期望值.21、购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有 10000人购买了这种保险,且各投保人是否出险相互独立.已知保险。

概率统计:数学期望、方差、协方差、相关系数、矩

概率统计:数学期望、方差、协方差、相关系数、矩

概率统计:数学期望、方差、协方差、相关系数、矩摘要:最近在学习机器学习/数据挖掘的算法,在看一些paper的时候经常会遇到以前学过的数学公式或者名词,又是总是想不起来,所以在此记录下自己的数学复习过程,方便后面查阅。

1:数学期望数学期望是随机变量的重要特征之一,随机变量X的数学期望记为E(X),E(X)是X的算术平均的近似值,数学期望表示了X的平均值大小。

∙当X为离散型随机变量时,并且其分布律为P(X=x k) =pk ,其中k=1,2,…,n;则数学期望(要求绝对收敛).∙当X为连续型随机变量时,设其概率密度为f(x),则数学期望为(要求绝对收敛).2: 方差数学期望给出了随机变量的平均大小,现实生活中我们还经常关心随机变量的取值在均值周围的散布程度,而方差就是这样的一个数字特征。

设X是随机变量,并且E{[X-E(X)2]}存在,则称它为X的方差,记为D(X)。

∙当X为离散型时,D(x) = .∙当X为连续型时,D(x) = .方差的算术平方根为X的标准差。

另外,D(X) = E{[X-E(X)2]} 经过化解可得D(X) = E(X2) – [E(X)]2 .我们一般计算的时候常用这个式子。

3:协方差对于二维的随机变量(X,Y),我们还要讨论它们的相互关系,协方差就是一个这样的数字特征。

因为E{[X-E(X)][Y-E[Y]]} = E(XY) – E(X)E(Y).又当X,Y相互独立的时候E(XY) = E(X)E(Y).这意味着若E{[X-E(X)][Y-E[Y]]} ≠ 0 ,则X与Y是存在一定关系的。

我们把E{[X-E(X)][Y-E[Y]]} 称为随机变量X与Y的协方差。

记为Cov(X,Y).即:Cov(X,Y) = E{[X-E(X)][Y-E[Y]]}4:相关系数协方差在某种意义上是表示了两个随机变量间的关系,但是Cov(X,Y)的取值大小与X,Y的量纲有关,不方便分析,所以为了避免这一点,我们用X,Y的标准化随机变量来讨论。

4_2方差及常见分布的期望方差

4_2方差及常见分布的期望方差
例1.设随机变量 X~(0-1)分布,其概率分布为 P{X=1}= p,P{X=0}=q,0<p<1,p+q=1,求D(X) 解:因 E(X)= p, 而 E(X 2)= 12· p + 02 · q = p, 于是 D(X)= E(X 2)- [E(X)]2 = p - p2 = p q
《概率统计》 返回 下页 结束
X P 8 0.3 9 0.2 10 0.5
Y P
8 0.2
9 0.4
10 0.4
偏离期望 的平方的 期望
解:
E ( X ) 8 0.3 9 0.2 10 0.5 =9.2(环) E (Y ) 8 0.2 9 0.4 10 0.4=9.2(环)
因此,从平均环数上看,甲乙两人的射击水平是一样的, 但两人射击水平的稳定性是有差别的,怎么体现这个差别呢?
b
1 E ( X ) xf ( x) dx x dx a b a ba 2 2 2 b 1 a ab b E ( X 2 ) x 2 f ( x) dx x 2 dx a ba 3 1 2 ab 2 2 2 2 ) D( X ) E( X ) [ E( X )] (a ab b ) ( 3 2
§4.2 方 差
0. 方差概念的引入
随机变量的数学期望是一个重要的数学特征,反应了随机变 量取值的平均大小,但只知道随机变量的数学期望是不够的.
引例1 甲、乙两门炮同时向一目标射击10发炮弹,其落点距 目标的位置如图:

中心






中心
甲炮射击结果
《概率统计》
返回
下页

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差


12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0

x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2

常见分布的期望和方差

常见分布的期望和方差

罕睹分散的憧憬战圆好之阳早格格创做(0,1)N 2()Yx n t =概率取数理统计沉面纲要1、正态分散的预计:()()()X F x P X x μσ-=≤=Φ.2、随机变量函数的概率稀度:X是遵循某种分散的随机变量,供()Y f X =的概率稀度:()()[()]'()Y X f y f x h y h y =.(拜睹P66~72)3、分散函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具备以下基赋本量:⑴、是变量x ,y 的非落函数;⑵、0(,)1F x y ≤≤,对付于任性牢固的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 闭于x 左连绝,闭于y 左连绝;⑷、对付于任性的11221212(,),(,),,x y x y x x y y << ,有下述没有等式创造:4、一个要害的分散函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率稀度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边沿分散:边沿概率稀度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿分散函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分散的边沿分散为一维正态分散.6、随机变量的独力性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独力.简称X 取Y 独力.7、二个独力随机变量之战的概率稀度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、二个独力正态随机变量的线性推拢仍遵循正态分散,即22221212(,Z aX bYN a b a b μμσσ=+++).9、憧憬的本量:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独力,则()()()E XY E X E Y =. 10、圆好:22()()(())D X E X E X =-. 若X ,Y 没有相闭,则()()()D X Y D X D Y +=+,可则()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11、协圆好:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独力,则(,)0Cov X Y =,此时称:X 取Y 没有相闭. 12、相闭系数:(,)()()XYCov X Y X Y ρσσ==1XY ρ≤,当且仅当X 取Y 存留线性闭系时1XYρ=,且1,b>0;1,b<0XYρ⎧=⎨-⎩ 当 当。

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲二项分布与应用随机变量的均值与方差知识要点1.事件的相互独立性(概率的乘法公式)设A、B为两个事件,如果P(AB)=P(A)P(B),如此称事件A与事件B相互独立.2. 互斥事件概率的加法公式:如果事件A与事件B互斥,如此P(A+B)=P(A)+P(B).3.对立事件的概率:假如事件A与事件B互为对立事件,如此P(A)=1-P(B).4.条件概率的加法公式:假如B、C是两个互斥事件,如此P(B∪C|A)=P(B|A)+P(C|A)5.独立重复试验:在一样条件下重复做的n次试验称为n次独立重复试验,即假如用A i(i=1,2,…,n)表示第i次试验结果,如此P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n).注:判断某事件发生是否是独立重复试验,关键有两点(1)在同样的条件下重复,相互独立进展;(2)试验结果要么发生,要么不发生.6.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k·(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.注:判断一个随机变量是否服从二项分布,要看两点(1)是否为n次独立重复试验.(2)随机变量是否为在这n次独立重复试验中某事件发生的次数.定义:假如离散型随机变量X的分布列为P(ξ=x i)=p i,i=1,2,…,n.(1)均值:称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望.n(x i-E(X))2p i为随机变量X的方差,其算术平方根D X为随机变量X的标准差.(2)方差:D(X)=∑i=1(3)均值与方差的性质:(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X).(a,b为常数)8.两点分布与二项分布的均值、方差变量X服从两点分布:E(X)=p,D(X)=p(1-p);X~B(n,p): E(X)=np ,D(X)=np(1-p)典例精析例1.【2015高考某某,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 〔1〕求A 中学至少有1名学生入选代表队的概率.〔2〕某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.例2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,如此系统正常工作的概率为( )例3.(2013·某某高考)甲、乙两支排球队进展比赛,约定先胜3局者获得比赛的胜利,比赛随即完毕.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率.(2)假如比赛结果为3∶0或3∶1,如此胜利方得3分,对方得0分;假如比赛结果为3∶2,如此胜利方得2分,对方得1分.求乙队得分X 的分布列与数学期望.例4.为贯彻“激情工作,快乐生活〞的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两局部,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进展,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者如此被淘汰,选手甲答题的正确率为23.(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛 中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.例5.(2014·某某高考改编)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进展奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)假如袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列与数学期望.(2)商场对奖励总额的预算是60 000元,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.下面给出两种方案:方案1:4个球中所标面值分别为10元,10元,50元,50元;方案2:4个球中所标面值分别为20元,20元,40元,40元.如果你作为商场经理,更倾向选择哪种方案?例6.(13分)如下列图,是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)假如将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列、数学期望与方差.例7.(12分)某用“10分制〞调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)假如幸福度不低于9,如此称该人的幸福度为“极幸福〞.求从这16人中随机选取3人,至多有1人是“极幸福〞的概率;(3)以这16人的样本数据来估计整个社区的总体数据,假如从该社区(人数很多)任选3人,记ξ表示抽到“极幸福〞的人数,求ξ的分布列与数学期望.例8.【2015高考某某,理18】某商场举行有奖促销活动,顾客购置一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假如都是红球,如此获一等奖;假如只有1个红球,如此获二等奖;假如没有红球,如此不获奖. 〔1〕求顾客抽奖1次能获奖的概率;〔2〕假如某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.例9.〔2016 某某某某市 三模21〕〔本小题总分为12分〕 设函数()21x f x e x ax =---. (Ⅰ)假如0a =,求()f x 的单调区间;(Ⅱ)假如当0x ≥时,()0f x ≥,求a 的取值X 围.参考答案例1.【2015高考某某,理17】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 〔1〕求A 中学至少有1名学生入选代表队的概率.〔2〕某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.【答案】〔1〕A 中学至少1名学生入选的概率为99100p =. 〔2〕X 的分布列为:p153515321XX 的期望为()2E X =.【解析】〔1〕由题意,参加集训的男女生各有6名.参赛学生全从B 中抽取〔等价于A 中没有学生入选代表队〕的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=. 〔2〕根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===,3133461(3)5C C P X C ===,所以X 的分布列为:p153515321X因此,X 的期望为131()1232555E X =⨯+⨯+⨯=. 例2.如图10-8-1,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,如此系统正常工作的概率为( B )【答案】 B 12A A 、至少有一个正常工作的概率为21(10.8)0.96P =--=,如此系统正常工作的概率为0.90.960.864K P P ⋅=⨯=例3.(2013·某某高考)甲、乙两支排球队进展比赛,约定先胜3局者获得比赛的胜利,比赛随即完毕.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率.(2)假如比赛结果为3∶0或3∶1,如此胜利方得3分,对方得0分;假如比赛结果为3∶2,如此胜利方得2分,对方得1分.求乙队得分X 的分布列与数学期望.【尝试解答】 (1)记“甲队以3∶0胜利〞为事件A 1,“甲队以3∶1胜利〞为事件A 2,“甲队以3∶2胜利〞为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827,P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427. 所以甲队以3∶0胜利,以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利〞为事件A 4,由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327, 故X 的分布列为所以EX =0×1627+1×27+2×27+3×27=9. 例4.为贯彻“激情工作,快乐生活〞的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两局部,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进展,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者如此被淘汰,选手甲答题的正确率为23.(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛 中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.【尝试解答】 (1)选手甲答3道题进入决赛的概率为⎝ ⎛⎭⎪⎫233=827,选手甲答4道题进入决赛的概率为C 23·⎝ ⎛⎭⎪⎫232·13·23=827,∴选手甲答题次数不超过4次可进入决赛的概率P =827+827=1627; (2)依题意,ξ的可取取值为3、4、5,如此有P (ξ=3)=⎝ ⎛⎭⎪⎫233+⎝ ⎛⎭⎪⎫133=13,P (ξ=4)=C 23·⎝ ⎛⎭⎪⎫232·13·23+C 23·⎝ ⎛⎭⎪⎫132·23·13=1027,P (ξ=5)=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·23+C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·13=827, 因此,有∴Eξ=3×13+4×1027+5×827=10727.规律方法2 求离散型随机变量的均值与方差的方法:(1)先求随机变量的分布列,然后利用均值与方差的定义求解.(2)假如随机变量X~B(n,p),如此可直接使用公式E(X)=np,D(X)=np(1-p)求解.例5.(2014·某某高考改编)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进展奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)假如袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列与数学期望.(2)商场对奖励总额的预算是60 000元,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.下面给出两种方案:方案1:4个球中所标面值分别为10元,10元,50元,50元;方案2:4个球中所标面值分别为20元,20元,40元,40元.如果你作为商场经理,更倾向选择哪种方案?【解答】(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X的所有可能取值为20,60.P(X=20)=C23C24=12,P(X=60)=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×12=40(元).(2)对于方案1:设每位顾客获得的奖励额为X1元,如此随机变量X1的分布列为X12060100P 162316∴数学期望E(X1)=20×16+60×23+100×16=60,方差D(X1)=20-6026+23×(60-60)2+100-6026=1 6003.对于方案2:设顾客获得的奖励额为X2元,如此X2的分布列为X2406080P 162316∴数学期望E(X2)=40×16+60×23+80×16=60,方差D(X2)=40-6026+23×(60-60)2+80-6026=4003.根据预算,每个顾客的平均奖励额为60元,且E(X1)=E(X2)=60,D(X1)>D(X2).因此,根据商场的设想,应选择方案2.例6.如图10-9-4所示,是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.图10-9-4(1)求直方图中x的值;(2)假如将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列、数学期望与方差.【解】(1)依题意与频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.(2)由题意知,X~B(3,0.1).因此P(X=0)=C03×3=0.729,P(X=1)=C1××2=0.243,P(X=2)=C23×2×0.9=0.027,3P(X=3)=C3×3=0.001.3故随机变量X的分布列为X 012 3PXX的方差为D(X)=3××(1-0.1)=0.27.例7.某用“10分制〞调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图10-9-3记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):图10-9-3(1)指出这组数据的众数和中位数;(2)假如幸福度不低于9,如此称该人的幸福度为“极幸福〞.求从这16人中随机选取3人,至多有1人是“极幸福〞的概率;(3)以这16人的样本数据来估计整个社区的总体数据,假如从该社区(人数很多)任选3人,记ξ表示抽到“极幸福〞的人数,求ξ的分布列与数学期望.(2)由茎叶图可知,幸福度为“极幸福〞的人有4人.设A i 表示所取3人中有i 个人是“极幸福〞,至多有1人是“极幸福〞记为事件A ,如此P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140(3)从16人的样本数据中任意选取1人,抽到“极幸福〞的人的概率为416=14,故依题意可知,从该社区中任选1人,抽到“极幸福〞的人的概率P =14ξ的可能取值为0,1,2,3P (ξ=0)=⎝ ⎛⎭⎪⎫343=2764;P (ξ=1)=C 1314⎝ ⎛⎭⎪⎫342=2764P (ξ=2)=C 23⎝ ⎛⎭⎪⎫14234=964;P (ξ=3)=⎝ ⎛⎭⎪⎫143=164所以ξ的分布列为E ξ=0×64+1×64+2×64+3×64另解由题可知ξ~B ⎝⎛⎭⎪⎫3,14,所以E ξ=3×14=0.75.例8. 【2015高考某某,理18】某商场举行有奖促销活动,顾客购置一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假如都是红球,如此获一等奖;假如只有1个红球,如此获二等奖;假如没有红球,如此不获奖. 〔1〕求顾客抽奖1次能获奖的概率;〔2〕假如某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.【答案】〔1〕107;〔2〕详见解析. 【解析】试题分析:〔1〕记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},如此可知1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;〔2〕分析题意可知1(3,)5XB ,分别求得00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()55125P X C ===,即可知X 的概率分布与其期望.试题解析:〔1〕记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球} 1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,∵142()105P A ==,251()102P A ==,∴11212211()()()()525P B P A A P A P A ===⨯=, 2121212121212()()()()()(1())(1())()P B P A A A A P A A P A A P A P A P A P A =+=+=-+-21211(1)(1)52522=⨯-+-⨯=,故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=; 〔2〕 顾【考点定位】1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】此题主要考查了离散型随机变量的概率分布与期望以与概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计 的联系越来越密切,与统计中的抽样,频率分布直方图等根底知识综合的试题逐渐增多,在复习时应予以 关注.例9.【2015高考某某,理21】函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >. 〔1〕设()g x 是()f x 的导函数,评论()g x 的单调性;〔2〕证明:存在(0,1)a ∈,使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解. 【答案】〔1〕当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.〔2〕详见解析.【解析】〔1〕由,函数()f x 的定义域为(0,)+∞,()()222ln 2(1)a g x f x x a x x '==---+,所以222112()2()2224()2x a a g x x x x -+-'=-+=.当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减; 当14a ≥时,()g x 在区间(0,)+∞上单调递增. 〔2〕由()222ln 2(1)0a f x x a x x'=---+=,解得11ln 1x xa x ---=+.令2211111ln 1ln 1ln 1ln ()2()ln 2()2()1111x x x x x x x x x x x x x x x x xϕ------------=-++--+++++. 如此211(2)2(1)10,())2()011e e e e e eϕϕ----=>=--<++,. 故存在0(1,)x e ∈,使得0()0x ϕ=. 令000101ln ,()1ln (1)1x x a u x x x x x ---==--≥+,.由1()10u x x'=-≥知,函数()u x 在区间(1,)+∞上单调递增. 所以001110()(1)()20111111u x u u e e a x e e----=<=<=<++++.即0(0,1)a ∈.【考点定位】此题考查导数的运算、导数在研究函数中的应用、函数的零点等根底知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想. 【考点定位】此题考查导数的运算、导数在研究函数中的应用、函数的零点等根底知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想. 【名师点睛】此题作为压轴题,难度系数应在0.3以下.导数与微积分作为大学重要内容,在中学要求学生掌握其根底知识,在高考题中也必有表现.一般地,只要掌握了课本知识,是完全可以解决第〔1〕题的,所以对难度最大的最后一个题,任何人都不能完全放弃,这里还有不少的分是志在必得的.解决函数题需要的一个重要数学思想是数形结合,联系图形大胆猜测. 在此题中,结合待证结论,可以想象出()f x 的大致图象,要使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解,如此这个解0x 应为极小值点,且极小值为0,当0(1,)x x ∈时,()f x 的图象递减;当0(,)x x ∈+∞时,()f x 的图象单调递增,顺着这个思想,便可找到解决方法.。

常见分布的期望和方差)

常见分布的期望和方差)

常见分布的期望和方差概率与数理统计重点摘要X — 41、 正态分布的计算: F(x) = p(x 兰x)=e ( ------ )。

c2、 随机变量函数的概率密度:X 是服从某种分布的随机变量, 求丫 = f(X)的概率密度:f Y (y)= f x (x)[h(y)]|h'(y)|。

(参见P66〜_ x y3、分布函数F(x,y)=f f f(u,v)dudv 具有以下基本性质:0<F(x,y)<1,对于任意固定的 x , y 有:F^,y) = F(x^)=0 ;对于任意的(x i , y i ), (x 2, y 2), X i<:x 2,y i<y 2,有下述不等式成立:r 24、一个重要的分布函数: F(x,y)=l&+arcta n 与Q+arcta n')的概率密度为:f (x, y)=丄 F (x, y) = 2 22兀亠 2 2 2 3 c x c y 兀(x + 4)(y +9)5、二维随机变量的边缘分布:f x (x) = J*f(x, y)dy边缘概率密度:tf Y (y) = Lcf(x,y)dxx -beF X (x^F(x^^ f J f f (u,y)dy]du边缘分布函数: '4; 二维正态分布的边缘分布为一维正态分布。

⑴、 是变量x , y 的非降函数;⑵、 ⑶、 F(x,y)关于x 右连续,关于y 右连续;⑷、yF Y(y)=F(P,y) = UJf(x,v)dx]dv随机变量的独立性:若 F(x, y) =F x (x)F Y (y)则称随机变量X ,Y 相互独立。

简称X 与Y 独立。

两个独立正态随机变量的线性组合仍服从正态分布,即 Z=aX+b Y L N(a 已卄巴^务;+b 2cr 2)o13、k 阶原点矩:vk=E(X k),k 阶中心矩:4k =E[(X-E(X))k] o16、独立同分布序列的中心极限定理:6、 7、 两个独立随机变量之和的概率密度:f z (z) = J f x (x)f Y (z-x)dx= J f Y (y)f x (z-y)dy 其中Z = X + YJ-oC9、 期望的性质: (3)、EX Y )EX( )EY();(4)、若 X ,Y 相互独立,则 E(XY) = E(X)E(Y) o10、方差: D(X ) =E(X 2)-(E(X))2o若 X , Y 不相关,贝y D(X + Y) = D(X) + D(Y),否贝U D(X + Y) = D(X)+D(Y) + 2Cov(X,Y),D(X -Y) = D(X) +D(Y) -2Cov(X,Y)11、协方差:Cov(X,Y) =E[(X -E(X))(Y-E(Y))],若 X , Y 独立,则 Cov(X,Y) = 0,此时称:X 与 Y 不相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档